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Abstract: Obtaining the in-depth information of radioactive contaminants is crucial for determining
the most cost-effective decommissioning strategy. The main limitations of a burial depth analysis lie
in the assumptions that foreknowledge of buried radioisotopes present at the site is always available
and that only a single radioisotope is present. We present an advanced depth estimation method
using Bayesian inference, which does not rely on those assumptions. Thus, we identified low-level
radioactive contaminants buried in a substance and then estimated their depths and activities.
To evaluate the performance of the proposed method, several spectra were obtained using a 3 × 3
inch hand-held NaI (Tl) detector exposed to Cs-137, Co-60, Na-22, Am-241, Eu-152, and Eu-154
sources (less than 1µCi) that were buried in a sandbox at depths of up to 15 cm. The experimental
results showed that this method is capable of correctly detecting not only a single but also multiple
radioisotopes that are buried in sand. Furthermore, it can provide a good approximation of the burial
depth and activity of the identified sources in terms of the mean and 95% credible interval in a single
measurement. Lastly, we demonstrate that the proposed technique is rarely susceptible to short
acquisition time and gain-shift effects.

Keywords: remote depth profiling; radioisotope identification; Bayesian inference; uncertainty
estimation; gamma spectral analysis; low-level radioactive contaminants; nuclear decommissioning;
low-resolution detector

1. Introduction

Sites near nuclear power plants are susceptible to large-scale land and building contamination
because of the significant amount of radioactive waste generated by such facilities. It is, therefore,
important to acquire information on the wastes present on these sites on behalf of project management
and engineering services working on environmental restoration [1–3]. In particular, depth profiling of
radioactive contaminants is critical for determining the most cost-effective decommissioning strategy,
because the quantity of radioactive waste required for disposal can be reduced considerably by
removing surface contamination at varying depths [4]. Nevertheless, the task of depth profiling is still
difficult to achieve because porous materials such as soil and concrete covering the contaminants can
act as a shield, resulting in the attenuation of emitted radiation.

One example of such waste is on the beaches of Dounreay in Northern Scotland, where radioactive
soil contaminants are widely spread along the beach [5,6]. This is due to the so-called Dounreay
hot particles that are mainly composed of Cs-137 and Co-60, released from the fuel processing of
the Material Test Reactor at the Dounreay nuclear facility. Other examples of buried radioactive
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contaminants include orphan radioactive sources [7]. An orphan source is generally a sealed source of
radioactive material that has been lost, abandoned, misplaced, stolen, or otherwise transferred without
proper authorization [8].

Therefore, various non-destructive methods for remote-depth profiling have been reported in
many papers [9–18]. However, the majority of the nonintrusive methods reported in these studies
were based on a frequentist approach; that is, they required repeated measurements in order to
provide a mean value with a standard error. Also, the maximum detectable depth of these methods
was not sufficient to detect deeply buried contaminants. Therefore, a new approach, based on
Bayesian inference, has recently been developed [19] to overcome the limitations imposed by older
methods. This method can offer more reliable results because the output of burial depth analysis can
be expressed as a probability distribution, even in a single measurement. In addition, its capability
for maximum detectable depth for weak activity of the 0.94-µCi Cs-137 and 0.69-µCi Co-60 sources
is superior in comparison with the existing methods. However, this method still assumes that only
a single radioisotope is present in the substance and that no other radioisotopes will interfere with
the measurement; a common assumption that is prevalent in other studies. But such assumptions
can seriously undermine the results of a burial depth analysis in which there are different or multiple
radioisotopes present.

Consequently, the objective of this study is first to identify all low-level radioactive contaminants
buried in any substance, and then estimate remote depth profiling for the identified radioisotopes using
Bayesian inference. In this study, radioactive sources of Cs-137, Co-60, Na-22, Am-241, Eu-152, and
Eu-154, which are common elements encountered during decommissioning of nuclear facilities, were
considered for the depth profiling. For convenience, the set of these radioisotopes will hereafter be
referred to as the radioisotope library. Experimental results analyzed from various spectra, composed
of not only single but also multiple radioisotopes, have been addressed to evaluate the performance of
the proposed method. Furthermore, we have investigated the depth estimation performance of the
proposed method in terms of data acquisition time and gain-shift effects due to calibration drift.

2. Materials and Methods

2.1. Bayesian Inference

Probability is one of the quantities that measure an event with an uncertainty that is associated
with that particular event. There are two general philosophies providing different interpretations of
probability: namely, frequentist inference and Bayesian inference [20]. In a frequentist approach, the
probability is associated with the long-term frequency or proportion of events, in which the unknown
parameters are treated as fixed values. That is, a frequentist does not associate probabilities with
random variates, and only repeatable events can have probabilities in a statistical process. In contrast, a
Bayesian approach is rooted in the belief that probabilities can be associated with unknown parameters
(i.e., treated as random variables) to represent the uncertainty in any occurrence. That is, it can lead to
much more intuitive results. For example, suppose you want to know the possibility that Korea will
host the next World Cup. Bayesians are willing to assign a legitimate probability to Korea hosting
the next World Cup based on the degrees of belief on the possible outcomes and every available
information. Unlike Bayesians, frequentists do not assign any numerical probability to the same
event because the World Cup cannot be regarded as a hypothetically repeatable process. This is a
philosophical issue that frequentists can run into [21]. Also, some of the resultant interpretations are
not particularly intuitive.
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A Bayesian inference determines the probability distribution over the parameter or equivalently,
the posterior distribution p(θ

∣∣∣y) of random variables θ, given prior distributions p(θ), and likelihood
function p(y

∣∣∣θ) by applying Bayes’ theorem:

p(θ
∣∣∣y) = p(y

∣∣∣θ) p(θ)

p(y)
, (1)

In the past, the challenge of applying the Bayesian inference to real-field applications was
mainly around the computation requirement for the intractable high-dimensional integrals in the
evidence p(y). However, it is now possible, owing to recent advances made in computation technology
and in marginal-estimation techniques. The Markov Chain Monte Carlo (MCMC) algorithm is
a technique that is widely used for approximate inference, in which the posterior distribution is
estimated through a collection of samples via the Markov process [22]. Since the late 1940s, there
has been tremendous progress in the field of statistics, seeing the development of such techniques as
the Metropolis Hasting algorithm, the Hamiltonian Monte Carlo, and more recently, the No-U-Turn
sampler [23]. These algorithms were based on MCMC so that they could obtain the posterior probability
of parameters with accuracy. However, their relatively high costs in computation and their inefficient
processes have hindered their usage in real-world applications. An alternative method that can
overcome these limitations is to convert the computation of p(θ

∣∣∣y) to an optimization problem, also
known as variational inference.

With variational inference, we assume there is a parameterized family of distributions q(θ; υ) (or
equivalently, a variational distribution); then, we find the setting of the parameters that minimize the
Kullback-Leibler (KL) divergence to the posterior distribution of interest:

υ∗ = argminKL
(
q(θ; υ)

∣∣∣∣∣∣p(θ∣∣∣y)). (2)

The optimized q(θ;υ∗) is then regarded as an approximation to the posterior distribution. Since
the KL divergence involving the posterior distributions lacks an analytic form, we instead maximize
the evidence lower bound (ELBO):

L(υ) = Eq[logp(θ, y)] −Eq[logq(θ; υ)]. (3)

This can be simplified further by taking a mean-field approximation, where the parameters in the
variational family are assumed to be fully factorized to independent variables. However, the difficulties
arising from the model-specific derivations and implementations in developing such algorithms still
hinder its use in practical applications. However, automatic differentiation variational inference
(ADVI), which is a gradient-based method, can resolve this complexity in computation by providing a
recipe for an automatic solution based on variational inference [24]. The underlying idea of ADVI is to
transform the space of latent variables and to automate derivatives of the joint distribution by relying
on the capabilities of probabilistic programming systems. For programming ADVI computation,
we used Python language with the probabilistic programming framework of PyMC3 to establish a
probability model and execute variational inference.

2.2. Model Specification

By defining a mathematical model that describes an observed spectrum in terms of the burial
depth, activity, and shift degree of the spectrum, we can identify buried radioisotopes and obtain
the posterior distribution of the depth and activity of the identified sources. Such a model can be
established by extending the model defined by Kim et al. [19,25]

Mi =

J∑
j=1

A jP jδ j

4πh2 e−µAh f
(
z j, ηi

)
+ cBi f or i = 1, . . . , K (4)
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Here, Mi is the measured spectrum (s−1) with i representing the channel (0 < i ≤ K); J is the total
number of radioisotopes; A j is the activity of the radioisotope (µCi); P j is the total sum of gamma
emission probabilities within the energy range of interest (i.e., 2.8 γs−1Bq−1 for the 511 and 1275
keV gamma rays of Na-22); µA is the linear attenuation coefficient of gamma-ray in air (cm−1); h
is the detection height measured from the detector to the surface of a given material (cm); z is the
buried depth of a radioactive source (0 ≤ z ≤ D cm) in a material from the front surface; η is the
shift degree of the spectrum; Bi is the background spectrum measured for K channels with c being its
proportionality constant; δ is the effective front area (cm−1); and f (z, ηi) is the bilinear interpolation
function. Computation of f (z, ηi) requires a spectrum measurement at depths ranging from 0 to D cm
at certain intervals to determine the K ×D response matrix for a radioisotope. Consequently, f (z, ηi)
can be interpolated using the closest points to the f (z, ηi) among the known values of depths and
channels from the K ×D response matrix [19]. The parameter δ can be obtained experimentally by
placing a source on the material surface (that is, at 0 cm depth), which can be expressed as:

δ =
4πr2N

APe−µAr , (5)

where N is the total net counts of the spectrum (s−1), and r is the detection height (cm) between the
detector and the surface of a material.

Thus, the proposed model defines the function f (z, A, η, c) where the variable marked in bold
type represents a vector notation. In practice, the existence of inevitable uncertainties inherent to the
physical processes, such as radioactive disintegration, has an effect on the measured spectrum. In this
regard, we can assume that the spectrum is normally distributed with a zero mean and variance of σ2

P(M
∣∣∣z, A, η, c) = N

(
f (z, A, η, c), σ2

)
. (6)

The availability of prior distributions for z, A, η, c, and, σ2, which represents our knowledge of
the parameters before taking any measurements, is assumed by Kim et al. [19]. That is, A, c, and σ2

followed gamma distributions with parameters (1, 1); z and η followed uniform distributions with
parameters (0, 18) and (0.85, 1.15), respectively. These prior distributions reflected our belief that the
sources might be buried less than 18 cm in the sand, and their activities would be low.

2.3. Procedures on Spectral Analysis

The spectral analysis of the depth estimation is a two-step process. First, the radioisotopes that
are least likely to have generated an observed spectrum are excluded according to certain criteria [25].
This step is necessary because the model assigns a probability distribution to the parameters of every
radioisotope present in the radioisotope library. For instance, the ratio of the standard deviation σ j to
the mean u j of a radioisotope, i.e., relative standard deviation (RSD), can have a large value where a
certain radioisotope in the library is not contributing to the spectrum. In terms of the magnitude of
RSD, a small value suggests that the data are clustered tightly around the mean while the opposite is
true in a large value of RSD. In addition, a radioisotope that does not attribute to the spectrum may
have a relatively negligible contribution. The relative contribution (RC) of the radioisotope, C j to the
spectrum can be expressed as:

C j =

A jP j

z j
2∑J

j=1
A jP j

z j
2

. (7)

Here, radioisotopes can be regarded as present when the following conditions are satisfied:

C j > 3% and
σi
ui

< 0.2. (8)
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These thresholds are subject to change depending on the situation. The first analysis can be
thought as the identification step. Second, the identified radioisotopes through the first analysis are
analyzed to obtain their final depths and activities.

2.4. Experimental Setup

Gamma-ray spectra were obtained on radioactive sources buried in a sandbox filled with fine silica
sand by using a 3 × 3 inch hand-held NaI (Tl) detector (NUCARE, Rad IQTM HH200, Incheon, Korea)
that was located 3 cm away from the surface of the box, as depicted in Figure 1a. The detector was
used only for the purpose of acquiring gamma spectra and the recorded raw data were then processed
and analyzed separately through Python. The sandbox was composed of 0.3 cm-thick acrylic sheet
forming a tank of 50 cm × 40 cm × 40 cm (length × width × height). The thickness of the acrylic sheets
was chosen so that the gamma rays emitting from the source would be scattered in the sand matrix.
The activities of the sources used for the experiments were 0.94 µCi, 0.69 µCi, 0.50 µCi, 0.90 µCi, 0.89
µCi, and 0.84 µCi for Cs-137, Co-60, Na-22 Am-241, Eu-152, and Eu-154, respectively. In addition, the
sources were buried in a graduated box (50 cm × 0.3 cm × 0.3 cm) that was inserted into the main box
to position the sources at the exact location in relation to the front of the sandbox surface, as shown in
Figure 1b.
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Figure 1. (a) An acrylic box filled with sand and an NaI (Tl) detector for gamma spectroscopy; and
(b) a graduated box marked with the buried distance of the source measured from the front surface of
the sandbox.

The response matrix was obtained by placing the sources in the graduated sandbox at depths of
0 cm, 3 cm, 7 cm, 12 cm, and 18 cm. Then, the spectra were measured at each depth for 30 min to ensure
that minimal statistical fluctuation was achieved. A background spectrum for the response matrix was
obtained under identical conditions in the absence of sources. For the energy range of spectra, values
were chosen from 20 to 1600 keV (i.e., 563 channels). During these experiments, energy calibration was
performed prior to taking each measurement via the built-in automatic calibration function provided
by the detector system. This function is based on the energy emitted by the primordial radioisotope of
K-40 (1461 keV). The automatic calibration function was not used for the acquisition of the test spectra
because this method automatically compensates the gain-shift effects because of changes in ambient
temperature or calibration drifts [19].
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3. Results

3.1. Case 1: Single Radioisotope

Figure 2 shows the joint probability distributions between the depth and activity of the
radioisotopes analyzed for a spectrum, measured for 300 s for a Cs-137 source buried at a depth of
3 cm. From the first analysis, we can clearly see that the distribution of the Cs-137 is clustered tightly
around the mean, while the distribution of the other radioisotopes (i.e., Co-60, Na-22, Am-241, Eu-152,
and Eu-154) is spread along high values of the depth at low activity. As shown in Figure 3, the values
of the RCs and RSDs for the five radioisotopes did not satisfy the criteria mentioned in Section 2.3,
and therefore only the radioisotope of Cs-137 provided any notable contribution to the spectrum. The
second analysis was then performed on the Cs-137 to determine its burial depth and activity. The
result confirmed that the joint probability distribution of the Cs-137 was closely centered around the
true value of the depth and activity (i.e., 3 cm and 0.942 µCi). It is not always true, however, that the
distributed results of the first and second analyses will yield nearly the same output, as we have seen on
this occasion. This is because it is possible for this method to induce a distortion in the analysis results
by assigning a biased mean of activity to certain radioisotopes during the identification step [25].
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Figure 2. Joint distributions between the depth and activity of the radioisotopes in the radioisotope
library for a spectrum acquired for 300 s with a Cs-137 source buried in sand at the depth of 3 cm.
The scatter dots represent the correlations between the depth and activity, while red lines and the
curves outside the plot area represent their true values and corresponding densities, respectively. The
distribution from the first analysis is obscured by that of the second analysis and is hardly visible in the
plot for Cs-137.

Figure 4 shows the estimated depth and activity with a 95% credible interval for all single
radioisotopes, namely: Cs-137, Co-60, Na-22, Am-241, Eu-152, and Eu-154, buried in sand over a
range of 0–15 cm at intervals of 3 cm. The spectra for the analysis were measured for 300 s. From the
experimental results, we found that the proposed technique was capable of correctly identifying the
buried radioisotopes and determining the depth of the identified radioisotopes with the exception
of the Am-241 source at burial depths exceeding 9 cm. At these depths, RSD and RC values for
all radioisotopes in the radioisotope library did not meet the criteria, meaning that there were no
other radioisotopes affecting the spectra except for the background radiation. This was mainly due
to the high attenuation of low-energy photons (e.g., 59 keV) emitted by Am-241. As a consequence,
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the spectra obtained with the Am-241 source buried deeply became almost indistinguishable from a
background spectrum, as shown in Figure 5. Excluding the Am-241, the results confirmed that the
true depth was approximated by the mean value of the estimated depth with a 95% credible interval
for all radioisotopes with very weak activities that were buried in sand over a range of 0–15 cm; the
estimated depths at a depth of 6 cm tend to be slightly higher, probably because of the discrepancy
between the measured spectra and the spectra calculated by interpolation. In addition, the estimated
mean values of the activity with a 95% credible interval for the identified radioisotopes were in close
agreement with the true values. Likewise, the trend in the relationship between the depth and the
activity was also in agreement with the results report by Kim et al. [19].
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black solid line represents the background spectrum with the same acquisition time. The inset shows
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3.2. Case 2: Multiple Radioisotopes and Data Acqusition Time

To validate the performance of the proposed method in cases where multiple radioisotopes were
buried at different depths, we measured the spectra with different acquisition times of 10 s, 30 s, and
300 s for Eu-152 and Eu-154 sources that were buried in sand at 3 cm and 6 cm in depth, respectively,
as shown in Figure 6. The reason for the acquisition of the spectra with the reduced acquisition times
was to verify the performance of the proposed method in large-scale field measurements that require
a rapid acquisition. As shown in Figure 7, the radioisotopes that had not contributed to the spectra
(i.e., Cs-137, Co-60, Na-22, and Am-241) could be rejected in the identification step, meaning that our
method can detect the correct radioisotopes for the spectra, even with short acquisition times. The
estimated depth and activity of the identified radioisotopes for the spectra are illustrated as joint
probability distributions in Figure 8. From these results, the distributions between the depth and
activity for the radioisotopes were more closely clustered with increasing acquisition time. In addition,
the center of the distributions got closer to the true values. This can be more clearly seen in Figure 9
where the error bar is in the form of mean and 1.96 standard error (or equivalently, a 95% credible
interval). This shows that the true values of the depth for the identified radioisotopes indeed fell
within the 95% credible interval of the estimated depths analyzed for the spectra. To our surprise, the
mean values of the depth analyzed even for the acquisition time of 10 s closely agreed with the true
values, which is a much better result than that reported by Kim et al. [19]. This was due to the use of
the larger-size more efficient detector. The estimated values of the activity for Eu-154 deviated slightly
from the true values. This was possibly due to a position error in the sources during the measurements.
In this proposed method, the determination of depth depends primarily on a spectral shape; that is,
our approach determines the burial depths of radioisotopes that are most likely to have produced
an observed spectrum through the combination of spectral shapes of each radioisotope at varying
depths. In contrast, the activity was calculated based mainly on the determined depth and counts in
the observed spectrum (see Equation (4)). In this regard, the activity should be accurately estimated
once the depths are exactly estimated and the acquisition time is sufficient to reduce the statistical
fluctuation present in the observed spectrum.
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Figure 6. Experimental spectra with different acquisition times of 10 s (black dash-dotted line), 30 s
(sky-blue dashed line) and 300 s (blue solid line) for the following radioisotopes buried in sand: Eu-152,
3 cm and Eu-154, 6 cm. Obtained spectra were normalized to the total count over the energies of interest
for comparison.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 14 

 

152, 3 cm and Eu-154, 6 cm. Obtained spectra were normalized to the total count over the energies of 

interest for comparison. 

 
(a) 

 
(b) 

Figure 7. (a) RC and (b) RSD of radioisotopes in the radioisotope library for three spectra with 

acquisition times of 10 s, 30 s and 300 s with the following radioisotopes buried in sand: Eu-152, 3 cm 

and Eu-154, 6 cm. The red lines denote criteria for the RC and RSD (i.e., 3% and 0.2, respectively). 

 

Figure 8. Joint distributions between the depth and activity of identified radioisotopes (i.e., Eu-152 

and Eu-154) for experimental spectra acquired with 10 s, 30 s, and 300 s for Eu-152 and Eu-154 sources 

buried in sand at depths of 3 cm and 6 cm, respectively. The scatter dots represent the correlations 

between the depth and activity, while the red lines and the curves outside the plot area represent their 

true values and corresponding densities, respectively. 

Figure 7. (a) RC and (b) RSD of radioisotopes in the radioisotope library for three spectra with
acquisition times of 10 s, 30 s and 300 s with the following radioisotopes buried in sand: Eu-152, 3 cm
and Eu-154, 6 cm. The red lines denote criteria for the RC and RSD (i.e., 3% and 0.2, respectively).
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Figure 8. Joint distributions between the depth and activity of identified radioisotopes (i.e., Eu-152
and Eu-154) for experimental spectra acquired with 10 s, 30 s, and 300 s for Eu-152 and Eu-154 sources
buried in sand at depths of 3 cm and 6 cm, respectively. The scatter dots represent the correlations
between the depth and activity, while the red lines and the curves outside the plot area represent their
true values and corresponding densities, respectively.Sensors 2020, 20, x FOR PEER REVIEW 10 of 14 
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Figure 9. (a) Estimated depth and (b) activity of identified radioisotopes (i.e., Eu-152 and Eu-154) in
the form of mean and 1.96 standard error analyzed for experimental spectra with acquisition times of
10 s (black square), 30 s (sky-blue circle), and 300 s (blue triangle). The spectra were acquired with
Eu-152 and Eu-154 sources buried in sand at depths of 3 cm and 6 cm, respectively.

Figure 10 shows more complex spectra obtained with acquisition times of 10 s, 30 s, and 300 s for
Na-22, Am-241, and Eu-152 with burial depths of 10 cm, 3 cm, and 8 cm, respectively. Similar to the
previous case, the radioisotopes that are not part of the spectra (i.e., Cs-137, Co-60, and Eu-154) were
rejected in the identification step and we could therefore correctly detect the radioisotopes of Na-22,
Am-241, and Eu-152. The estimated depth and activity of the identified radioisotopes were reported in
terms of mean and 1.96 standard errors, as shown in Figure 11. Here, trends relating to the acquisition
time can be observed on the standard errors that are similar to those reported in Figure 9. In particular,
the estimated depth of Na-22 for the spectrum with the acquisition time of 10 s showed a relatively
large standard error. Also, it deviated from the true value because of the statistical fluctuations in
the spectrum. Except this, the results indicated that there was a satisfactory agreement between the
estimated and true values for the complex spectrum even where there were the short acquisition times.
However, the estimated activities showed relatively more significant deviations from the true values
because the activity is inversely related to the square of the depth (see Equation (4)).



Sensors 2020, 20, 95 11 of 14

Sensors 2020, 20, x FOR PEER REVIEW 10 of 14 

 

 

(a) 

 

(b) 

Figure 9. (a) Estimated depth and (b) activity of identified radioisotopes (i.e., Eu-152 and Eu-154) in 

the form of mean and 1.96 standard error analyzed for experimental spectra with acquisition times of 

10 s (black square), 30 s (sky-blue circle), and 300 s (blue triangle). The spectra were acquired with Eu-

152 and Eu-154 sources buried in sand at depths of 3 cm and 6 cm, respectively. 

Figure 10 shows more complex spectra obtained with acquisition times of 10 s, 30 s, and 300 s 

for Na-22, Am-241, and Eu-152 with burial depths of 10 cm, 3 cm, and 8 cm, respectively. Similar to 

the previous case, the radioisotopes that are not part of the spectra (i.e., Cs-137, Co-60, and Eu-154) 

were rejected in the identification step and we could therefore correctly detect the radioisotopes of 

Na-22, Am-241, and Eu-152. The estimated depth and activity of the identified radioisotopes were 

reported in terms of mean and 1.96 standard errors, as shown in Figure 11. Here, trends relating to 

the acquisition time can be observed on the standard errors that are similar to those reported in Figure 

9. In particular, the estimated depth of Na-22 for the spectrum with the acquisition time of 10 s 

showed a relatively large standard error. Also, it deviated from the true value because of the 

statistical fluctuations in the spectrum. Except this, the results indicated that there was a satisfactory 

agreement between the estimated and true values for the complex spectrum even where there were 

the short acquisition times. However, the estimated activities showed relatively more significant 

deviations from the true values because the activity is inversely related to the square of the depth (see 

Equation (4)). 

 

Figure 10. Experimental spectra with different acquisition times of 10 s (black dash-dotted line), 30 s 

(sky-blue dashed line), and 300 s (blue solid line) for the following radioisotopes buried in sand: Na-

Figure 10. Experimental spectra with different acquisition times of 10 s (black dash-dotted line), 30 s
(sky-blue dashed line), and 300 s (blue solid line) for the following radioisotopes buried in sand: Na-22,
10 cm; Am-241, 3 cm; and Eu-152, 8 cm. Obtained spectra were normalized to the total count over the
energies of interest for comparison.
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Figure 11. (a) Estimated depth and (b) activity of identified radioisotopes (i.e., Na-22, Am-241, and
Eu-152) in the form of mean and 1.96 standard error analyzed for experimental spectra with acquisition
times of 10 s (black square), 30 s (sky-blue circle), and 300 s (blue triangle). The spectra were acquired
with Na-22, Am-241, and Eu-152 sources buried in sand at depths of 11 cm, 3 cm, and 8 cm, respectively.
The red dotted lines denote the true values.

3.3. Effect of Gain Shift

To investigate how well the proposed technique would accurately analyze shifted spectra because
of gain-shift effects, we acquired spectra at an acquisition time of 30 s for the Eu-152 and Eu-154
sources at burial depths of 3 cm and 6 cm after calibration drifts had occurred in the detector. Figure 12
shows these spectra with two different magnitudes of the shift (blue-sky dotted line and blue solid
line referred to as “G1” and “G2”) and the normal spectrum (black dash-dotted line) for comparison.
In fact, these shifted spectra would be very difficult to analyze without proper recalibration settings; the
position of the original photo-peak in the high-energy region of the normal spectrum was overlapped
completely by another peak in the G2 spectrum. Nevertheless, the proposed method was able to
exclude the radioisotopes that had not contributed to the shifted spectra in the identification step.
For the G1 spectrum, the estimated depths of Eu-152 and Eu-154 closely agree with the true values
as shown in Figure 13a. For the G2 spectrum, the mean value of the estimated depth for Eu-154 was
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7.52 ± 0.38 (1.96σ) cm, which was slightly overestimated. The activity tended to be underestimated
against the determined depths as the spectrum shifted in a positive direction (see Figure 13b). This was
possibly due to an increase in full width at half maximum as the spectrum moves to higher energies,
resulting in a reduction in the maximum counts in the region of the photo-peaks, which does not
occur in spectra that were shifted mathematically via interpolation. Overall, the presented results
demonstrated a capability to accommodate a shift in the spectra caused by calibration drift in the
complex spectra of multiple radioisotopes.
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Figure 12. Experimental spectrum composed of Eu-152 and Eu-154 sources buried in sand at depths of
3 cm and 6 cm, respectively (black das-dotted line) and its shifted spectra (sky-blue dashed line and
blue solid line) having different magnitudes of the shift due to calibration drifts. The spectra were
acquired for 30 s.
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Figure 13. (a) Estimated depth and (b) activity of identified radioisotopes (i.e., Eu-152 and Eu-154) in
the form of mean and 1.96 standard error analyzed for a 30-s measured spectrum composed of Eu-152
and Eu-154 buried in sand at depths of 3 cm and 6 cm (black square) and its shifted spectra (sky-blue
circle and blue triangle). The red dotted lines denote the true values.

4. Discussion

In this work, we demonstrated the estimation of remote depth profiling for contaminated low-level
radioactive materials that are composed of single or multiple radioisotopes by applying Bayesian
inference. An earlier report had already shown that this approach is reliable and robust because it
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allows us to offer the mean and standard error for the estimated depth and activity from a single
measurement [19]. Also, the reported experimental results demonstrated that significant improvements
in earlier findings had been achieved. First, the proposed technique does not rely on an assumption
that we have foreknowledge of a radioisotope present at the site, or that only a single radioisotope
exists there. Instead, this method first identifies unknown radioisotopes and then determines the depth
and activity of the identified source(s). Thus, we are not only able to identify individual radioisotopes
for spectra composed of multiple radioisotopes, but also to provide a good approximation of each one’s
depth and activity. Second, the results showed that this method can be applied to both low-level buried
wastes and all gamma-emitting radioisotopes, regardless of the intensity of the gamma-ray energy or
the number of gamma rays emitted, given that photons are not fully attenuated in a substance and
contribute to the spectra to some degree. Lastly, we demonstrated that this method is also capable of
accommodating the gain-shift effects in spectra with multiple radioisotopes.

One of the challenges associated with the measurement point is that it is difficult to find an
optimal position for the detector in relation to the location of the buried radioactive contaminants.
An alternative solution could be to position the detector at the location with the maximum intensity
of total count rate. However, multiple contaminants buried at different depths may not be vertically
positioned. If they are located in that way, the error of the x-y position causes an error of the burial
depth (z position). Further work must be conducted to resolve this issue so that a better approximation
of localized radioactive wastes in three dimensions can be achieved.

5. Conclusions

In this work, we presented a novel method for the remote depth estimation of unknown radioactive
contaminants using Bayesian inference. Experimental results confirmed that this method correctly
identifies radioactive contaminants composed of multiple radioisotopes as well as a single radioisotope
and provides good estimates of depths buried in sand for the identified isotopes in a single measurement.
In addition, we demonstrated that short acquisition time and gain-shift effects did not significantly
degrade the analysis results for spectra composed of multiple radioisotopes. These results showed
significantly improved remote depth estimation capability in comparison with the existing methods.
Therefore, the proposed method is capable of achieving a rapid nonintrusive localization of buried
low-level multiple radioactive contaminants through in situ measurement.
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