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Abstract: Tea polyphenols are important ingredients for evaluating tea quality. The rapid
development of sensors provides an efficient method for nondestructive detection of tea polyphenols.
Previous studies have shown that features obtained from single or multiple sensors yield better results
in detecting interior tea quality. However, due to their lack of external features, it is difficult to meet the
general evaluation model for the quality of the interior and exterior of tea. In addition, some features
do not fully reflect the sensor signals of tea for several categories. Therefore, a feature fusion method
based on time and frequency domains from electronic nose (E-nose) and hyperspectral imagery (HSI)
is proposed to estimate the polyphenol content of tea for cross-category evaluation. The random
forest and the gradient boosting decision tree (GBDT) are used to evaluate the feature importance to
obtain the optimized features. Three models based on different features for cross-category tea (black
tea, green tea, and yellow tea) were compared, including grid support vector regression (Grid-SVR),
random forest (RF), and extreme gradient boosting (XGBoost). The results show that the accuracy of
fusion features based on the time and frequency domain from the electronic nose and hyperspectral
image system is higher than that of the features from single sensor. Whether based on all original
features or optimized features, the performance of XGBoost is the best among the three regression
algorithms (R2 = 0.998, RMSE = 0.434). Results indicate that the proposed method in this study
can improve the estimation accuracy of tea polyphenol content for cross-category evaluation, which
provides a technical basis for predicting other components of tea.
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1. Background

Tea polyphenols (TP), as the main biological active ingredient in tea, affects the aroma of tea
and the volatility of flavor compounds [1]. Different tea varieties have different polyphenol contents,
which is one of the key indicators for assessing tea quality [2] and which affects tea quality control.
In addition, tea polyphenols have attracted the attention of scholars at home and abroad because of
their various pharmacological effects [3], which makes the quantitative extraction and detection of tea
polyphenol content especially important [4]. Therefore, the establishment of an efficient tea polyphenol
detection model is of great significance for tea quality improvement and function expansion.
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In recent years, many chemical analysis methods have been used to determine the total polyphenol
content in tea, such as gas chromatography (GLC), capillary electrophoresis, and high-performance
liquid chromatography (HPLC) [5–7], which have achieved good results. However, they still have
some disadvantages, such as low detection efficiency, high destructiveness, and high detection cost,
which cannot meet the requirements of real-time detection of tea quality. Therefore, it is important
to find a rapid and nondestructive detection method. In the last ten years, with the development of
spectroscopic instruments and data processing technologies, there have been many studies on the
detection of phenolic components in tea. However, they mainly focus on the general models of green
tea, black tea, and oolong tea to detect tea polyphenols [8–14]. At present, there is still a lack of a
general model to evaluate the quality cross-category tea parameters. Therefore, the nondestructive
detection of polyphenols from cross-category teas still faces great challenges.

With the rapid development of sensors, the wide application of electronic nose (E-nose), electronic
tongue, and near-infrared technology [15–22] has made tea quality estimation easier. Especially,
electronic nose technology has the convenience and objectivity of detecting food taste, which has
been successfully applied to many aspects of tea research by simulating the human olfactory system,
including in the tea fermentation process [23,24], tea classification [25–28], tea storage [29], and tea
components [30]. However, the function of a single sensor always has certain limitations [31]. Therefore,
it is necessary to study the combination of different technologies to capture more comprehensive
information. Many studies report that combining multiple sensor signals can improve the results of tea
quality estimates. For example, the combination of electronic nose and capillary electrophoresis [32],
the combination of electronic nose and visible/near infrared spectroscopy [33], and the combination of
electronic nose and electronic tongue technologies [34–36]. All of the above studies have achieved
good results, regardless of whether they used a single sensor or a multisensor, which obtains signal
features or functional group features that can reflect changes in the internal composition of the tea.
However, the lack of spatial information limits the in-depth study of tea polyphenols. Actually,
different varieties of tea might have different spatial characteristics, even if they come from the same
category, not to mention that different categories of tea certainly have obviously different spatial
characteristics. Therefore, it is necessary to study the spatial features of tea to make up for the lack
of information. To date, hyperspectral imaging technology has been used to improve the evaluation
of tea components, including polyphenols [37–39], amino acid [40], and catechins [41], due to the
advantages of simultaneous acquisition of spatial image information and spectral information of the
analyte. However, it remains unclear whether it is possible to improve the estimation model of the
polyphenol content of cross-category tea based on the fusion features of different sensors.

In fact, how to effectively fuse multiple features based on E-nose and hyperspectral imagery (HSI)
still faces many problems. On the one hand, there is the question of how to extract more meaningful
features. On the other hand, there is the question of how to select more representative features.
Previous studies have shown that multisource information fusion can more effectively detect the
composition of tea [33]. Moreover, the time domain and frequency domain features are more effective
in extracting internal quality from the sensor signal array [42]. However, there are still some obstacles
to the acquisition of features of cross-category tea. The wide application of wavelet transforms [43,44]
provides a new idea for the analysis of tea quality, since this method can extract the time domain and
frequency domain features of the signal [45].

Therefore, this study focused on the feasibility of fusion features from multisource sensors,
including E-nose and HSI, to estimate the polyphenol content of cross-category tea. To make full use of
time domain features and frequency domain features, support vector regression (SVR) [46], random
forest (RF) [47], and extreme gradient boosting (XGBoost) [48] are used to construct an estimation
model to improve the accuracy of tea polyphenol content of cross-category.

The purpose of this study is to: (1) extract time domain features and frequency domain features
from the electronic nose and hyperspectral systems, respectively; (2) fuse time domain features and
frequency domain features based on E-nose and HSI to improve estimation models of polyphenol
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content for cross-category tea; and (3) compare and evaluate polyphenol content estimation models for
cross-category tea based on three different regression methods.

2. Data and Methods

2.1. Sample Collection

A total of 110 samples of tea (three categories: yellow tea, black tea, and green tea) were collected
from different provinces of China, which were kept in a closed jar and stored in a refrigerator at about
4 ◦C before test. In order to obtain a wide range of tea polyphenols, different geographical origins of
tea samples were collected for the same variety of tea for experimentation.

For the same category of tea, different varieties (geographical origins) of tea samples were collected
for experimentation. For example, three brands were collected for black tea, including Zhengshan
Xiaozhong tea, Qimen Black tea (Anhui Huangshan and Anhui Qimen, China), and Jinjunmei tea.
Therefore, 10 varieties were obtained, as shown in Table 1, 10–15 samples were selected for each variety,
and 110 samples were used as research objects.

Table 1. Geographical sources and descriptive statistics of tea polyphenol content (%).

Tea Category Tea Variety (Geographical Origins) Number Range (%) Mean ± SD (%)

Black tea Zhengshan Xiaozhong (Fujian) 10 10.65–13.21 11.832 ± 0.850
Qimen Black Tea (Anhui Huangshan) 10 13.66–16.54 15.196 ± 0.810

Qimen Black Tea (Anhui Qimen) 10 16.51–22.85 18.789 ± 1.567
JinJunMei (Fujian) 10 12.62–19.16 16.99 ± 1.788

Green tea Huangshan Maofeng (Anhui) 15 25.32–29.41 26.485 ± 1.195
Liuan Guapian (Anhui) 15 27.42–29.65 28.535 ± 0.632

Yellow tea Junshan Yinzhen (Hunan) 10 14.55–19.6 16.34 ± 1.863
Huoshan Huangya Tea (Anhui) 10 11.88–16.65 13.862 ± 1.367

Mengding Huangya Tea (Sichuan) 10 11.36–16.35 14.334 ± 1.738
Pingyang Huangtang Tea (Zhejiang) 10 13.34–19.36 16.735 ± 2.231

The tea polyphenol content was directly titrated by potassium permanganate. The tea polyphenol
content was calculated according to the Equation (1):

X =
(A − B) ×ω× 0.00582/0.318

m×V1/V2
(1)

where X represents the content (%) of tea polyphenols; A and B represent the number of milliliters
of potassium permanganate consumed by the sample and the number of milliliters of potassium
permanganate consumed in the blank, respectively; and ω represents the concentration of potassium
permanganate (%), m represents the mass (g) of the sample, and V1 and V2 represent the volume (mL)
of the test solution and the test solution for measurement, respectively.

2.2. Sample Sampling

2.2.1. HSI Sampling

The hyperspectral image acquisition system used in this experiment included a near-infrared
spectrograph (Imspector V17E, Spectral Imaging Ltd., Oulu, Finland), which covers the spectral range
of 900–1700 nm, and a charge couple device (CCD)-based digital video camera (IPX-2M30, Imperx
Inc., Boca Raton, FL, USA), two 150W halogen lamps (3900, Illumination Technologies Inc., New York,
NY, USA), one data acquisition black box, reflective linear tube, electronically controlled displacement
platform (MTS120, Beijing Optical Instrument Factory, Beijing, China), and the image acquisition and
analysis software (Spectral Image Software, Isuzu Optics Corp., Zhubei, Taiwan). The four tungsten
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halogen lamps of the reflected light source are evenly distributed on the ring bracket in the dark box,
and the light source is irradiated in a direction of 45◦ with respect to the vertical direction.

The parameters when collecting hyperspectral images are set as follows: exposure time of 20 ms,
electronic control stage moving speed of 8 mm·s−1, image resolution of 636 × 815 pixels; spectral
resolution of 5 nm, spectral range of 908–1700 nm, spectral sampling interval of 2 nm. Here, 20 g ± 0.5 g
from each variety tea sample was evenly spread in a Φ 9 × 1 cm culture dish, and was placed on an
electronically controlled stage in a black box to collect hyperspectral images of tea, which were black
and white calibrated to remove noise interference and other light source interference.

2.2.2. E-Nose Sampling

The electronic nose (PEN3, Win Muster Air-sense Analytics Inc., Schwerin, Germany) used to
collect the scent fingerprint of tea has many functions, including automatic adjustment, automatic
calibration, and automatic enrichment, and consists of three units, including a gas sensor array, a signal
preprocessing unit, and a pattern recognition unit. The gas sensor array is composed of 10 metal oxide
sensors (MOS) (W1C, W5S, W3C, W6S, W5C, W1S, W1W, W2S, W2W, and W3S), which are defined
as f0–f9 and are sensitive to different types of volatiles. The characteristics of each sensor are shown
in Table 2.

Table 2. Performance description of sensors for the PEN3 electronic nose (E-nose).

Array
Number

Sensor
Name Object Substances of Sensing Component Threshold

Value/(mL m−3)

f0 W1C Aromatics C6H5CH3 10
f1 W5S Nitrogen oxides NO2 1
f2 W3C Ammonia and aromatic molecules C6H6 10
f3 W6S Hydrogen H2 100

f4 W5C Methane, propane and aliphatic
nonpolar molecules C3H8 1

f5 W1S Broad methane CH4 100
f6 W1W Sulfur-containing organics H2S 1
f7 W2S Broad alcohols CO 100

f8 W2W Aromatics, sulfur-, and
chlorine-containing organics H2S 1

f9 W3S Methane and aliphatics CH4 10

Zero gas was pumped into the cleaning channel to reset the sensors before sampling, and 5 g of
each tea sample was placed in a 100 mL glass beaker, sealed and placed for 30 min, and the gas in
the headspace bottle was equilibrated and tested. The parameters of the electronic nose were set as
follows: sampling interval of 1 s, sensor cleaning of 60 s, sensor return time of 10 s, sampling time of
75 s, and injection flow rate of 600 mL/min.

2.3. Feature Extraction

2.3.1. Feature Extraction from E-Nose System

Feature extraction is used to extract the useful information of a sensor signal by a certain means,
so that the discrimination between different types of signals is highlighted and maximized, which is
an important part of the model establishment process. The time domain feature mainly measures
the change of the signal with time. By comparing the waveform shape of the electrical signal, small
differences in odor can be obtained for different samples.

In order to achieve quantitative evaluation of multiple features, parameters including variance,
integrals, steady state average, mean differential value, skewness, and kurtosis were selected as time
domain features, as shown in Table 3. Variance describes the degree of data dispersion acquired by
different sensors, the integral value reflects the total response of the sensor to the gas, the steady state
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average reflects the characteristic information of the sample, the average differential value reflects the
average speed of the sensor’s response to the gas, and skewness and kurtosis reflect the distribution of
signals [49–52].

Table 3. Feature extraction from electronic nose signals.

Indices Name Formula

VAR Variance value VAR = 1
N

N∑
i=1

(ci − c)2

INV Integral value INV = c(i)∆t

RSAV Relative steady-state average value RSAV = 1
N−t0

T∑
to

ci

ADV Average differential value ADV = 1
N−1

N−1∑
i=1

ci+1−ci
∆t

KURT Kurtosis coefficient KURT =

1
N

N∑
i=1

(ci−c)4

( 1
N

N∑
i=1

((ci−c)2)
2
− 3 =

m4

m2
2
− 3

SKEW Coefficient of skewness SKEW =

√
N(N−1)
N−2

1
N

N∑
i=1

(ci−c)3

( 1
N

N∑
i=1

((ci−c)2)
3
2

Here, ci represents the response of the sensor to the second of the sample; c is the average of the
response of the signal; N is the acquisition time of a sample, where N = 75; ∆t is the time interval
between two adjacent acquisition points (∆t = 1 s); t0 is the time corresponding to when the steady
state is ready to be reached.

The frequency domain feature mainly depicts the frequency distribution of the signal. Signal-based
frequency domain transformation generally analyzes the energy and entropy values of signals at
various frequencies. Wavelet transform is one of the potential technologies for frequency domain
information extraction. It can decompose signals into subsignals of different frequencies and effectively
express different features. Therefore, the maximum energy and mean of the wavelet transform
coefficients are used to represent the main characteristics and overall level of the sensor signal.

Here, Xi is the wavelet coefficient of CWT processed by 2i layers, i represents the different scale
factors (i = 1, 2, 3 . . . 10), the wavelet coefficient energy is the square of the wavelet coefficient at each
scale, Ei is the wavelet coefficient energy, and S is the sum of the wavelet coefficient energy. WM and
WA represent the maximum and mean of the sum of the energy of the wavelet coefficients [53]:

Ei = X2
i (2)

S j =
n∑

i=1

Ei j ( j = 1, 2, . . . 10 for E-nose) (3)

WM = max
∣∣∣S1, S2, . . . S j . . . Sn

∣∣∣( j = 1, 2, . . . 10 for E-nose) (4)

WA =
1
n

n∑
j=1

S j( j = 1, 2, . . . 10 for E-nose) (5)

2.3.2. Feature Extraction from HSI

In image processing, the time domain is the scanning of signals at different times, the processing
object is the image itself, and the frequency domain is a coordinate system used to describe the
frequency characteristics of a signal. In the frequency domain, the information of the image appears
as a combination of different frequency components. Wavelet transform is a time frequency analysis



Sensors 2020, 20, 50 6 of 18

method based on Fourier transform, which can simultaneously represent features including time
domain and frequency domain.

Therefore, the wavelet transform is used to obtain the energy (WE) and entropy (WEN)
characteristics of sub-images of different frequencies from the hyperspectral image. In this study, the
Daubechies wavelet is used to decompose the hyperspectral image in two layers, WE and WEN, for the
image according to Equations (6) and (7) [54]:

WE =
1

MN

M∑
m=1

N∑
n=1

∣∣∣IΛ
mn

∣∣∣2 (6)

WEN = −
1

MN

M∑
m=1

N∑
n−1

IΛ
mn(log 2( IΛ

mn)) (7)

where M×N represents the image, (x, y) is a pixel, IΛ
mn is the wavelet coefficient, and Λ = |LH, HL, HH|.

2.4. Methodology

2.4.1. Normalized Processing

To eliminate the differences between different features to achieve the comparability of multiple
indicators, the data needs to be normalized; that is, a dimensionless processing method is required that
can reduce the calculation amount and training time. The sensor characteristic data is mapped to 0–1
by the normalization method, and the calculation formula is as shown in the Formula (8).

V′ =
V −Vmin

Vmax −Vmin
(8)

where V′ and V represent the normalized value and original value, Vmax and Vmin represent the
maximum and the minimum value of the original data.

2.4.2. Support Vector Regression

Support vector regression (SVR) is a linear regression through dimensional transformation.
The value of SVR parameters (penalty parameters and kernel parameters) has a great influence on the
evaluation performance of SVR. To improve the accuracy of the model, the grid algorithm is used to
optimize the selection of SVR parameters [46]. Therefore, the SVR hyperparameter range is shown
in Table 4.

Table 4. The support vector regression (SVR) modeling hyperparameters.

Parameter Range Optimum Value

c 0 to 20 15
g 0 to 10 5
s 0 to 10 3
p 0.001 to 1 0.01

2.4.3. Random Forest

Random forest (RF) is an integrated learning method based on bagging, which further improves
the level of generalization for the model by selecting random variable sets and random samples from
the calibration data set [47], to avoid overfitting caused by excessive eigenvalues and weakening of the
influence of outliers on the model. In this study, RF is used to construct the prediction model, and the
hyperparameter range of RF is shown in Table 5.
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Table 5. The random forest (RF) regression modeling hyperparameters.

Parameter Range Optimum Value

n_estimators 100 to 2000 1000
max_depth 1 to 10 3

extra_ options. importance [0, 1] 1
extra_ options. nPerm [0, 1] 1

bootstrap [True, False] FALSE

2.4.4. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) [48] is an integrated algorithm based on lifting trees.,
which uses the gradient descent architecture to enhance the integrated tree approach of weak learners
(typically classification and regression tree). The hyperparameters of the model are optimized with
grid search, as shown in Table 6, which is used to build the best model.

Table 6. Extreme gradient boosting (XGBoost) regression modeling hyperparameters.

Parameter Range Optimum Value

learning_rate 0.1 to 1 0.1
n_estimators 100 to 1000 400
max_depth 1 to 10 5

gamma 0.1 to 1 0.1
subsample 0.1 to 1 0.9

min_child_weight 3 to 10 5

2.4.5. Feature Importance Assessment Method

To reduce the number of features and improve the accuracy of the model, feature selection based
on the importance of the feature can eliminate irrelevant or redundant features. Therefore, feature
selection based on the XGBoost method and correlation coefficient analysis methods are used to detect
and eliminate useless features.

In the training process of the XGBoost model, the criterion for dividing each node of the tree
is implemented to achieve the optimal features, which indicates the importance of this feature in
dividing decision tree nodes. The importance of a feature is the sum of the occurrences of it in all trees.
The larger the value, the more important this feature is. Correlation analysis can measure the closeness
of the correlation between two characteristic factors [55]. Pearson’s correlation coefficient was used to
analyze the correlation between tea polyphenols and the time domain and frequency domain features
from HSI. The correlation coefficient value ranges from −1 to 1, and the larger the absolute value, the
higher the correlation.

To ensure the representativeness of tea polyphenol content, the data set was divided into a
calibration set and validation set according to different varieties of tea. The ratio was about 7:3, and
the results are shown in Table 7. The content of tea polyphenols ranged from 10.65% to 29.65% in all
samples. The data distribution trend of the calibration set was also consistent with the validation set,
indicating that the data distribution of the two data sets was reasonable.

Table 7. Descriptive statistics of tea polyphenol (TP) contents in the calibration and prediction sets.

Data Set Number Content Range Mean SD

Full 110 10.65–29.65 18.78 5.82
Calibration set 80 10.65–29.65 18.61 5.94
Validation set 30 11.31–29.13 19.21 5.47
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To further verify the universality of the model, the coefficient of determination (R2), adjusted
determination coefficient (adjusted_R2) as shown in Formula (9), and the root mean squared error
(RMSE) were used as indicators to interpret and quantify the model [56,57].

adjusted_R2 = 1−
(1−R2)(n− 1)

n− p− 1
(9)

where n is the number of samples and p is the number of features.

3. Results and Analysis

3.1. Feature Extraction and Feature Selection from E-Nose System

Figure 1 shows the response of the sensor array to Jinjunmei tea. As can be seen from Figure 2, the
sensor W1W has a large response to the odor of the tea, and the response value is large. The sensors
W5S, W1S, W2W, and W2S are positively deviated by 1, indicating that the response value is enhanced.
The sensors W3C, W5C, and W1C deviate by 1 in the negative direction, indicating that the signal
changes less. Therefore, different teas have different odors and the sensor signals obtained are different.
It can be seen from Figure 1 that the response of the sensor tends to stabilize after 55 s. To facilitate
data processing and correct differentiation, multiple features were extracted for each response curve.

Figure 2 shows a characteristic histogram of the response signal of each sensor for a tea sample.
It can be seen from the figure that different characteristics reflect different response information for the
same sensor, revealing that the gas sensor has broad spectrum responsiveness. However, the same
feature also differs for different sensors, which reflects the selectivity of the sensor. Therefore, the
sample data pattern generated by the array can be used to express the difference in tea quality and
to achieve a one-to-one correspondence between the response pattern and the sample. Additionally,
the array can be used to estimate the composition of a tea sample. For a single feature, the electronic
nose signal consists of 10 features corresponding to 10 gas sensors. For six time domain features, the
electronic nose signal is represented by 10 × 6 features. Therefore, the initial time domain feature
matrix from the electronic nose is 110 × 60 features.
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The feature importance based on XGBoost is shown in Figure 3, where the vertical axis represents
features and the horizontal axis represents the number of times the feature is used to divide the decision
tree nodes. As can be seen from Figure 3, the F-score of each feature for the preferred sensor array is
different and the difference in performance is large. Therefore, this study ranks the top 30% of sensors
according to the importance of the feature, and 3 × 6 features are preferred by XGBoost. For variance,
kurtosis, and skewness, f1, f3, and f9 are selected according to importance; f0, f1, and f3 are selected for
integral value (INV); f1, f3, and f6 are selected for average differential value (ADV); and f3, f6, and f9
are selected for relative steady-state average value (RSAV). The numbers of decision tree nodes for the
above features are all above 400.
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3.2. Feature Extraction and Feature Selection from HSI

The 50 × 50 pixel area in the middle of the hyperspectral image was chosen as the region of
interest (ROI). The spectral values of all the pixels of the ROI were extracted, and the average value was
calculated as the spectral value of the sample. The spectral curves of the 110 tea samples are shown
in Figure 4. There is significant noise at both ends of the spectrum. To improve the stability of the
model, a total of 457 bands of 944–1688 nm were selected for further analysis. Successive projections
algorithm (SPA) [40] was used to extract 1106 and 1375 nm as feature wavelengths for hyperspectral
imaging. Time domain and frequency domain features were further extracted for hyperspectral images
corresponding to feature wavelengths.
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Twenty-four features were extracted from hyperspectral images corresponding to characteristic
wavelengths of tea samples (as shown in Figure 5), which describe the features of tea hyperspectral
images for different feature parameters (entropy and energy), wavelet decomposition of different layers
(two layers), and different directions (three directions). There are different correlations between the
features and tea polyphenols.

In this study, Pearson’s correlation analysis was performed between 24 features and tea polyphenol
content, as shown in Figure 6. The top 25% features with the absolute value of the correlation coefficient
were selected. Therefore, six features that were positively correlated with TP were selected for further
modeling, namely B1_HL1_WE, B1_LH1_WE, B1_LH1_WEN, B2_LH1_WE, and B2_LH1_WEN; along
with B2_HL2_WE, which was negatively correlated with TP. The absolute values of the correlation
coefficient of the above features ranged from 0.4 to 0.59.
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Figure 5. Original images and hyperspectral images based on characteristic wavelengths for three
categories of tea. (A1): Zhengshan Xiaozhong ( Fujian); (A2): Qimen Black tea (Anhui Huangshan);
(A3): Qimen Black tea ( Anhui Qimen); (A4): JinJunMei (Fujian); (B1): Huangshan Maofeng (Anhui);
(B2): Liuan Guapian (Anhui); (C1): Junshan Yinzhen (Hunan); (C2): Huoshan Huangya tea (Anhui);
(C3): Mengding Huangya tea (Sichuan) and (C4): Pingyang Huangtang tea (Zhejiang) represent the
original images. A1_1106, A2_1106, A3_1106, A4_1106, B1_1106, B2_1106, C1_1106, C2_1106, C3_1106
and C4_1106 represent the 1106 nm hyperspectral images corresponding to the above original images;
A1_1375, A2_ 1375, A3_1375, A4_ 1375, B1_1375, B2_1375, C1_1375, C2_1375, C3_1375 and C4_1375
represent the 1375 nm hyperspectral images corresponding to the above original images.)
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3.3. Different Methods for Estimation of Polyphenol Content in Cross-Category Tea

The estimation models of tea polyphenol content were constructed with different features of
cross-category tea, including time domain features and frequency domain features acquired from
E-nose and HSI; and fusion features, which were compared with the model based on the original
features, including the SVR, RF, and XGBoost models, as shown in Table 8. For the calibration set, R2

ranged from 0.839 to 0.977 for Grid-SVR, R2 ranged from 0.758 to 0.876 for RF, and R2 ranged from
0.992 to 0.998 for XGBoost. For the validation set, R2 ranged from 0.703 to 0.816 for Grid-SVR, R2

ranged from 0.722 to 0.854 for RF, and R2 ranged from 0.744 to 0.90 for XGBoost, which indicates that
the estimation results based on models of Grid-SVR, RF, and XGBoost perform well.

Table 8. Estimation models for polyphenol content of cross-category tea based on different variables
with three techniques. Note: Grid-SVR = grid support vector regression; RF = random forest;
XGBoost = extreme gradient boosting; RMSE = root mean square error.

Model Features
Variables Calibration Validation

Number R2 Adjusted_R2 RMSE R2 Adjusted_ R2 RMSE

Grid-SVR
E-Nose 20 0.923 0.819 1.659 0.754 0.472 2.852

HSI 6 0.849 0.705 2.313 0.694 0.451 3.225
Fusion 26 0.977 0.940 0.906 0.816 0.561 2.856

RF
E-Nose 20 0.848 0.656 2.318 0.796 0.551 2.637

HSI 6 0.765 0.561 2.881 0.724 0.496 2.982
Fusion 26 0.876 0.695 2.094 0.854 0.645 2.287

XGBoost
E-Nose 20 0.995 0.988 0.274 0.810 0.579 2.422

HSI 6 0.987 0.973 0.705 0.747 0.532 3.099
Fusion 26 0.998 0.995 0.434 0.900 0.750 1.895
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3.4. Results of Models Based on Different Features

In the model constructed using all the original features, for calibration, the R2 values of the model
were 0.759–0.906 for E-nose, R2 ranged from 0.758 to 0.995 for HSI, and R2 was between 0.823 and 0.992
using the fusion features. For the validation set, R2 values of the models were 0.703–0.808, 0.641–0.744,
and 0.791–0.871 for E-nose, HSI, and fusion features, respectively.

All of the models were built using the preferred features from E-nose and HSI, including the
Grid-SVR, RF, and XGBoost; these models performed better than those based on all features. As shown
in Figure 7, especially for validation, R2 for E-nose is between 0.754 and 0.81, R2 for HSI is between
0.694 and 0.747, and R2 for fusion features is between 0.816 and 0.90.
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4. Discussion

4.1. Wavelet Transform and Features

Hyperspectral images with rich spectral information and image information contain numerous
bands, which lead to excessive data dimensions. In addition, the spectral absorption features of tea
polyphenols are mainly caused by the frequency doubling and frequency combination of basic chemical
bonds, such as O–H and C–H in the molecules [58]. Therefore, in this study, the feature wavelengths
of tea polyphenols were extracted according to the spectral curve, and the time domain features and
frequency domain features were extracted according to the hyperspectral image corresponding to the
feature wavelengths, which analyzes not only the spectral features, but also spatial features. From the
spectral dimension, the hyperspectral images showed the performance of the material under different
spectral signals. From spatial dimension analysis, an image is essentially a signal, which is a measure
of the intensity variation between various locations of the image, including low frequency signals
and high frequency signals. Moreover, the time domain and the frequency domain are the basic
properties of the signal [59]. The time domain feature represents the time domain morphology and
periodic variation of the signal, and the frequency domain analysis reflects the components of the
signal. Therefore, the time domain features and frequency domain features extracted in this study are
more representative.

Wavelet transform is the use of an orthogonal wavelet base to decompose the signal into
components of different scales, which is equivalent to the partial decomposition of time series signals
by using a set of high-pass and low-pass filters. Furthermore, the wavelet transform provides a “time
frequency” window that varies with frequency, which obtains the detailed features of the signal by
multiscale analysis of the signal stretching [45]. Therefore, regardless of the E-nose or HSI, the features
extracted by wavelet transform are representative.

4.2. Different Features Affect Estimation Results

The number of features extracted will have a certain impact on the accuracy of the model [60].
Too few features cannot fully express the useful information of the data, which limits the accuracy of
the model; too many features will increase the complexity and computation of the model. In order to
obtain a good model estimation effect by applying the appropriate number of features, in this study,
the feature selection methods were applied to the reduction of features from multisource sensors.
Moreover, the cross-category tea polyphenol content prediction models constructed by feature fusion,
such as Grid-SVR, RF, and XGBoost, showed that multisource feature fusion effectively improved the
accuracy of the model.

Among them, the accuracy of the three models using the fusion features was higher than that
of the individual features. For the Grid-SVR model, the R2 values of the model based on the fusion
features were 5.5% and 13.1% higher than the accuracy of the E-Nose and HSI features alone. The R2

values of the RF model were increased by 3.1% and 12.6%, and the R2 values of the XGBoost model
were increased by 0.3% and 1.2%, respectively. Therefore, feature fusion can achieve effective data
compression, facilitate real-time processing, and provide the information needed for decision analysis.

To verify the universality of the models, adjusted R2 was used to re-evaluate the models, and
the results are shown in Table 8. Regardless of whether using Grid-SVR, RF, or XGBoost models, the
adjusted R2 values of models based on the fusion features were the highest, which indicates that this is
important for feature fusion to improve the accuracy of the model. At the same time, the adjusted
R-square value as another evaluation index can eliminate the impact of the number of samples on the
accuracy of the model, which further illustrates that the three models established are all valid.

4.3. Different Regression Models Affect Estimation Results

Table 8 shows that the estimated model established by the machine learning method in this paper
performs well. Among them, the accuracy of the XGBoost model was higher than the Grid-SVR model
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or the RF model, which increased by 0.72% and 14.7% with the E-Nose feature, by 13.9% and 22.4%
with the HSI feature, and by 2.1% and 12.2% with the fusion feature, respectively. The accuracy of the
XGBoost estimation model, whether based on a single feature or a fused feature, was high. In fact, all
three methods have their own characteristics. XGBoost and RF are integrated learning methods based
on boosting and bagging, respectively. Grid-SVR is an SVR model whose parameters are optimized by
grids, and which performs well.

In addition, the methods based on fusion features obtained from E-nose and HSI can provide
different methods for predicting the tea polyphenol content of cross-category tea. Wang et al. estimated
the polyphenol content of five varieties of green tea [61]. Wang et al. estimated polyphenol contents four
Chinese tea, including black tea, dark tea, oolong, and green tea [62]. Although they all achieved good
results, they were all based on NIR (near-infrared reflectance) spectroscopy, lacking comprehensive
feature fusion. However, the time domain features and frequency domain features from different
sensors in this study can provide a new approach for estimating tea composition. The proposed method
was used to obtain the expected predictions, despite dealing with different categories, different brand
samples, different sensors, and different features. In the future, more varieties of tea should be collected
to further improve the universality of the model and provide technical support for nondestructive
testing of tea.

5. Conclusions

In this study, an estimation model for polyphenol content in cross-category tea based on feature
fusion was proposed, including time and frequency domains, and cross-category tea varieties, such as
black tea, green tea, and yellow tea. On the one hand, fusion-based models are superior to models
based solely on electronic nose or hyperspectral features, as multisensor feature fusion provides
more features, including time and frequency domain features, which reflect gas-sensitive information,
spectral and spatial information. The Grid-SVR, RF, and XGBoost models were constructed to estimate
the polyphenol content of cross-category teas, with the XGBoost model performing best out of the
three models (R2 = 0.998 and adjusted R2 = 0.995 for calibration, R2 = 0.90 and adjusted R2 = 0.75 for
validation), which provides a technical basis for quantitative estimation of tea polyphenol content of
cross-category tea. In addition, the method proposed in this paper can be used to nondestructively
detect the components of other varieties of tea, such as the amino acids and tea polyphenols of white
tea, dark tea, and Pu’er tea in future research.
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