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Abstract: Traditional handcrafted crowd-counting techniques in an image are currently transformed
via machine-learning and artificial-intelligence techniques into intelligent crowd-counting techniques.
This paradigm shift offers many advanced features in terms of adaptive monitoring and the control of
dynamic crowd gatherings. Adaptive monitoring, identification/recognition, and the management of
diverse crowd gatherings can improve many crowd-management-related tasks in terms of efficiency,
capacity, reliability, and safety. Despite many challenges, such as occlusion, clutter, and irregular
object distribution and nonuniform object scale, convolutional neural networks are a promising
technology for intelligent image crowd counting and analysis. In this article, we review, categorize,
analyze (limitations and distinctive features), and provide a detailed performance evaluation of
the latest convolutional-neural-network-based crowd-counting techniques. We also highlight the
potential applications of convolutional-neural-network-based crowd-counting techniques. Finally,
we conclude this article by presenting our key observations, providing strong foundation for future
research directions while designing convolutional-neural-network-based crowd-counting techniques.
Further, the article discusses new advancements toward understanding crowd counting in smart
cities using the Internet of Things (IoT).
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1. Introduction

Crowd counting (CC) aims to count the number of objects, such as people, cars, cells, and drones
in still images or videos. It can be performed in different ways, such as digital-image processing,
machine learning, and deep learning. More specifically, crowd counting can be done through
various state-of-the-art techniques, such as counting by detection [1–3] regression [4–8], density
estimation [9,10] and clustering [11–14]. The problem of crowd counting is of significant importance in
computer vision due to its wide variety of applications in urban planning, anomaly detection, video
supervenience, public safety management, defence, healthcare, and disaster management [15–17].

Crowd-counting techniques face many challenges, such as high cluttering, varying illumination,
varying object density, severe occlusion, and scale variation caused by different perspectives [18–22].
For instance, high cluttering can distort the resolution of an estimated map, and light illumination can
reduce its accuracy. Further, varying object density reduces prediction accuracy due to nonuniform
density distribution. Similarly, severe occlusion increases prediction error, and scale variation reduces
both counting prediction and density-map resolution .
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Due to a wide variety of applications, from commercial to military purposes, with significant
importance in computer vision, crowd counting is a challenging scientific problem to be
solved. A number of researchers tried to provide detailed surveys and analyses of previous
techniques by considering various crowd features. These traditional crowd-counting techniques
mainly focus on handcrafted low-level crowd features. These low-level features are selected,
extracted, and transformed into an organized input for the regression model that is used for
loss-function evaluation and minimization. In this regard, comprehensive analysis was provided
by Zhan et al. [23] for general crowd counting. They mainly reviewed vision and nonvision
problems. In vision-based problems, crowd modelling is based on extracted information from
visual data and employed for crowd-event inference. Nonvision approaches, on the other
hand, aim to describe and predict the collected effects of crowd behavior by rectifying the
relationship between features. Later on, Zitouni et al. [24] focused on crowd-counting models with
emphasis on their limitations. Their main contribution was the categorization of crowd-modelling
techniques into motion-flow-based models, learnt-appearance-based models, and hybrid approaches.
Motion-flow-based models were further subcategorized into optical-flow-based models, Lagrange
based methods, and background-subtraction-based models. The authors in [25] investigated
crowd-counting techniques by considering different categories, like holistic, intermediate, and local
approaches. The authors in [26] focused on conventional and convolutional-neural-network
(CNN)-based single-image crowd-counting techniques. They mainly compared the properties of
handcrafted crowd-counting techniques with CNN-CC techniques.

To sum up, the existing above-mentioned surveys and analysis, except for [26], mostly focused
on conventional approaches that emphasised handcrafted features to improve the accuracy of crowd
analysis. In [26], traditional and CNN-CC algorithms were reviewed. However, the authors did not
review recent CNN-based crowd-counting algorithms, which are evaluated on the most challenging
and multivariant datasets [27,28]. Further, the aforementioned works did not analyze the advantages
and limitations of each technique. The limited categorization of CNN-CC techniques restricts
future researchers from fully understanding the scope and available room for improvement in any
category. Finally, they did not conduct a quantitative comparison in terms of prediction accuracy.
These drawbacks/deficiencies in existing works indirectly and negatively impact system performance.
For instance, due to a lack of categorization, the whole domain under any specific category has not
been explored. Not considering key aspects such as advantages, disadvantages, limitations, intrinsic
features, and multivariant datasets meant that in-depth properties are ignored in the design process of
a crowd-counting algorithm. Such scanty investigations usually lead to a huge diversity of simulation
results in comparison to the real crowd count.

Motivated by the above-mentioned deficiencies in previous surveys [23–26], we comprehensively
reviewed the most recent CNN-CC techniques to understand the newest trends and highlight room
for future research in any particular area. Understanding crowd-mobility behaviors would be a key
enabler for crowd management in smart cities, benefiting various sectors such as public safety, tourism,
and transportation. The main theme of crowd-counting categorization is to help researchers to further
exploit and dive deep into any particular branch to obtain maximum output. This article discusses
existing challenges and recent advances to overcome them and allow the sharing of information across
stakeholders of crowd management through Internet of Things (IoT) technologies. To summarize,
this paper makes the following contributions.

• We specifically reviewed recent CNN-CC techniques in order to highlight deficiencies, advantages,
disadvantages, and key features in each category.

• We categorized CNN-based methods into three main categories to fully understand evolving
research aspects. Previously, authors in [26] categorized CNN-based approaches into two main
categories (network-based and training-approach-based). However, by reviewing the literature
and observing the overall crowd-counting mechanism from different perspectives, we realized
the need for a new category, and thus introduced image-view-based methods.
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• Image-view-based CNN-CC techniques (Image-view-CNN-CC) were further subdivided into
arial-view-based (camera and object are perpendicular to each other) and perspective-view-based
(camera and object are parallel to each other) methods. Due to this inclusion, crowd counting in
health care (microscopic images), counting through unmanned aerial vehicles (UAVs) is further
investigated under arial-view-based methods. Moreover, scale-varying issues caused by different
perspectives can be further investigated in detail under perspective-view-based methods.

• We provide detailed quantitative comparison (in term of n Mean Absolute Error (nMAE) within
each subcategory of the three main categories, and overall performance-based conclusion under
different datasets, such as UCF, WE, STA, and STB.

• By observing different aspects of CNN-CC, we also highlighted the features of each subcategory
with quantitative comparison that provides a strong foundation for future research in highly
diverse and robust scenarios.

The rest of paper is organized as follows. Section 2 is focused on traditional crowd-counting
methods and image analysis. In Section 3, we discuss the complete and detailed operation of the
crowd-counting mechanism. Section 4 is focused on the categorization of CNN-CC techniques by
considering their features, datasets, and architectures. In Section 5, we discuss applications of CNN-CC
techniques. In Section 6, we discuss the implications of 3D crowd counting. In Section 7, we provide
a quantitative comparison between different CNN-CC techniques. Finally, Section 8 provides the
conclusion with future research directions.

2. Traditional Crowd Counting and Image Analysis

2.1. Crowd Counting

A crowd is defined as a large gathering of people for a specific reason, such as religious occasions,
sports events, and political gatherings. Crowd counting is defined as estimating or counting the
number of people in an image or video [29,30]. Techniques for crowd counting are divided into
two basic categories: supervised and unsupervised crowd counting. In supervised crowd counting,
the input data are known and labelled, and the machine is only used to determine the objective
function (hidden pattern). In unsupervised crowd counting, the used data and labels are unknown,
and the machine is used to categorize and label the raw data before determining the objective function.
These categories are further divided into different types, as shown in Figure 1. Supervised crowd
counting is further divided into counting by regression, density estimation, detection, and CNN [31,32].
The unsupervised category, on the other hand, includes counting by clustering. Their descriptions are
as follows.

Supervised learning-based 

Crowd Counting

Un-Supervised learning-

based Crowd Counting

Categorization of 

Crowd Counting

Counting by 

Regression

Counting by 

Density Estimation

Counting by 

Detection
Counting by CNN

Counting by 

Clustering

Figure 1. Categorization of crowd-counting techniques.

2.1.1. Counting by Detection

Counting by detection can be defined as a method to compute the abstraction of image information
and local decisions at every point to know about features of a particular type at that point. The authors
in [33] proposed a CNN-based hybrid hidden Markov model (HHMM) for speech recognition.
The HMM is used to obtain inherent dynamic features that can be used for anomaly detection in
crowd analysis. The authors in [34,35] found a solution for reconstructing full-body locomotion that
could be used in 3D crowd analysis and abnormal-behavior detection. The earlier research focused on
detection-based counting to count the number of people in a scene [3]. Through a sliding-window
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detector, detection could be monolithic or part-based. Traditional pedestrian-detection techniques
used monolithic detection [16,36–38]. In these techniques, a classifier is trained by using different
features, including Histogram Oriented Gradient (HOG) [16], edgelet [39] and a shapelet [40] extracted
from the body of people. The monolithic way of detection performs very well in low-density crowds,
but its performance degrades in high density. Therefore, researchers were motivated to address this
issue by using part-based detection techniques [41,42] that use boosted classifiers for specific body
parts, including shoulders and head, to estimate the count in that area [43].

2.1.2. Counting by Regression

Counting by regression is carried out to obtain a more robust and accurate function via known
inputs of images and output (ground truth). The authors in [34,35] determined a solution on the
basis of reconstructing full-body locomotion that could be applicable in 3D crowd analysis and
anomaly detection. Regression-based crowd-density estimation was first exploited by Davies et al. [7].
The extraction of low-level features (foreground area and edge features) is carried out in the video
frame. The total edge count and foreground area are extracted from the raw features. In this way,
a linear-regression model was developed to establish mapping between actual and estimated count.
Shape- and part-based detectors are not successful in the presence of high-density crowds and
high-clutter backgrounds. The main components that establish counting by a regression pipeline
are low-level feature extraction and regression modelling [4]. Different features, such as gradient,
foreground, and edge features, and textures are used to encode low-level information. Further,
standard background-subtraction techniques are used for the extraction of foreground features
that are removed from foreground segments. Blob-based holistic features, such as perimeter, area,
and perimeter–area ratio have had promising results [4,25]. However, these techniques focus
on the global properties of the scene. Local features and textures like Gray Level Co-Occurence
Metrics (GLCM), HOG, and Local Binary Pattern (LBP), are used to further improve the accuracy of
classification, detection, and crowd counting. After the extraction of local and global features, a variety
of regression methods, including linear [44], Gaussian, [45], and ridge regression [7], and NNs [46] are
used to learn mapping between the actual crowd count and low-level features.

2.1.3. Counting by Density Estimation

Counting through density estimation is employed to obtain an estimate by using observed data
of an unobservable probability-density function. This technique has made it possible to overcome
the problem of occlusion and clutter by using spatial information with a density-estimation approach.
For example, Lempitsky et al. [10] incorporated spatial information by proposing linear mapping
between local features and estimated-density (ED) maps. The difficult task of detecting and localizing
individual objects has been eliminated by calculating image density whose integral in any particular
region provides the estimated count of that region. In [10], cutting-plane optimization is used to solve
convex optimization tasks by introducing a risk-based quadratic cost function.

2.1.4. Counting by CNN

Though detection, regression, clustering, and density-estimation-based crowd-counting
techniques perform well to some extent by using handcrafted features, for crowd analysis, motion
analysis, and the 3D construction of body parts, different types of CNN- and LSTM-based algorithms
have been proposed. In particular, the authors in [47] and [48] proposed a CNN-based descriptor
and LSTM-based network to obtain motion and appearance information along the tracks of human
body parts. Similarly, the authors in [49] investigated 3D face-model construction by using a 2D view
of the face. Further, the authors in [50] investigated deep-learning architecture for the classification
of a driver’s actions. Abstractive text summary using a generative adversarial network was done
by the authors in [51], while the authors in [52] proposed a CNN-based technique to obtain high
representational features for the detection of secondary protein structures. In order to further improve



Sensors 2020, 20, 43 5 of 33

accuracy, researchers used CNN-based crowd-counting techniques [21,53,54]. Counting through CNN
employs convolution, pooling, Rectified Linear Unit (RelU), and Fully Connected Layers (FCLs) to
extract features that are used to obtain the density map [55]. Counting through CNN is more efficient
in terms of accuracy, but at the cost of high computational complexity.

2.1.5. Counting by Clustering

Counting by clustering relies on the assumption that visual features and individual motion
fields are uniform, so similar features are grouped into different categories. For example, [13] used
a Kanade–Lucas–Tomasi (KLT) tracker to obtain low-level features, and then employed Bayesian
clustering [14] to find the approximate number of people in an image. The aforementioned methods
explicitly model appearance features. Thus, false estimation arises when people remain in static
position or when objects repeatedly share the same trajectories. Hence, we concluded that counting by
clustering performs better in continuous image frames.

2.2. Image Analysis

Image analysis is widely used to extract useful information from an image, specifically digital
images, by using different techniques like digital-image processing, machine learning, and deep
learning [56]. Inspired by the phenomenon of the human-visual-cortex system, CNNs extract high-level
features from an image. Image analysis has more subfields like pattern recognition, digital geometry,
medical imaging, and computer vision [57–60]. These subfields cover various modern-day applications
in astronomy, defence, filtering, microscopy, remote sensing, robotics, and machine vision [61,62].

2.3. Unique Challenges of CNN-Based Image Crowd Counting

CNN-based crowd counting faces many challenges that restrict the counting accuracy of these
networks (i.e., MAE, MSE, and ED) and the resolution of the density map. These challenges are
depicted in Figure 2 and explained below.

• Occlusion occurs when two or more objects come very close to each other and merge, so that it is
hard to recognize individual objects. Thus, crowd-counting accuracy is decreased [18].

• Clutter is a kind of nonuniform arrangement of objects that are close to each other. It is also related
to image noise, making recognition and counting tasks more challenging [19].

• Irregular object distribution refers to varying density distribution in an image or a video.
For irregular objects, counting through detection is only viable in sparse areas. On the other hand,
counting by regression overestimates the sparse areas and is only viable in dense areas. Thus,
the irregular distribution of an object is a challenging task for crowd counting [20].

• Nonuniform object scales often occur due to different perspectives. In counting, objects close
to the camera look larger when compared to ones farther away. The nearest objects have more
pixels than far-away objects. Thus, ground-truth and actual-density estimations are affected by
the nonuniform pixel distribution of the same object [21].

• An inconstant perspective occurs due to different camera angles, tilt, and the up–down movement
of the camera position. Object recognition and counting accuracy are greatly affected by varying
perspectives [22].
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Figure 2. Unique challenges of convolutional-neural-network (CNN) crowd counting (CC) techniques
in an image.

2.4. Motivation for Employing CNN-Based Image Crowd Counting

Traditional handcrafted crowd-counting techniques such as those in [1,14] perform well if the
training dataset has a low computational cost. However, challenges like occlusion, clutter, and scale
variation reduce the accuracy of such traditional methods. In addition, the ED map obtained by
employing these handcrafted methods has a low resolution that limits their applicability in many areas,
such as medical imaging and military applications. In short, the manual nature of feature extraction
by handcrafted methods makes them less (non)adaptive to evolving crowd-counting demands.
By observing the above-mentioned deficiencies in traditional crowd-counting algorithms, and the
success of CNNs in numerous computer-vision applications, researchers were inspired to exploit
their ability in estimating the nonlinear feature density maps of crowd images [53–55]. These density
maps can be utilized in machine-learning processes for more accurate prediction/estimation of the
crowd count [63,64]. Further, up- and downsampling, scale aggregation, and preclassification with a
multicolumn approach could also be used to increase the accuracy of crowd counting. On the other
hand, deconvolution [65] and Generative Adversarial Networks (GANs) [66] can be employed to
enhance the quality of a density map for medical applications.

3. CNN-Based Crowd Counting: Overview

CNNs are useful in numerous applications, such as signal processing, image processing,
and computer vision. In this regard, various CNN-CC algorithms were proposed to cope with
major issues like occlusion, low visibility, inter- and intraobject variation, and scale variation due
to different perspectives. A generic CNN-CC flow diagram is shown in Figure 3 that depicts two
approaches. The first, on the left, found ground-truth density (GTD) except for the last two blocks,
which were used for comparison and error computation. The second, on the right, computed ED and
crowd counting. The description of each block is as follows.
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Figure 3. General form of CNN-CC algorithm. Crowd-counting mechanism starts from object
annotation in an image to density estimation; object counting is depicted. General framework of
crowd counting (top), and CNN working is expanded (bottom).

Labelling: In machine learning, annotation is a process of labeling data such as text, audio,
and image. The annotated data are used by a computer or computers to recognize similar patterns
in unseen data. There are different annotation categories, such as bounding-box annotation,
polygonal segmentation, line annotation, landmark annotation, 3D cuboids, and dot annotation [67].
These different types of annotations are used to obtain the ground truth. In crowd counting, dot
annotation is the first step to compute the GTD, and it is carried through various scientific tools like
Labelbox, LabelMe, and RectLabel [10].

GTD computation: Ground truth can be defined as the information provided by direct observation
instead of inference. There are different ways to obtain the GTD, such as Gaussian kernel,
geometry-adaptive kernel, and GANs [8]. The geometry-adaptive kernel performs better than
the Gaussian kernel. This is due considering spread-factor-based geometric information. Further,
a combination of generative and discriminative networks brings the generated image very close to the
original one. Therefore, the obtained GTD from GANs has better quality as compared to that of the
Gaussian, geometry, or body-aware techniques.

GTD and ED comparison: In crowd counting, ED and GTD are compared to compute the loss
between estimated output and ground truth. In the literature, different techniques were employed
to compute loss, such as cross-entropy and MSE [17]. A combination of sigmoid and MSE converge
much slower as compared to sigmoid and cross-entropy due to the gradient-vanishing problem.
Cross-entropy, on the other hand, performs well on classification problems, but better performance
was shown in terms of MSE in regression-based problems.

Weight Computation: After comparing the loss between ED and GTD, the next step is to update
the network weight to minimize loss. The updated weight is computed by Wnew = Wold + η ∂L

∂W .
This weight update process (backpropagated to the CNN) is terminated when loss is minimized
(process converges). Wold and Wnew depict the old and new weights, where the last term is the
combination of learning rate η and change in loss with respect to weight [17].

CNN: In CNN-CC, the image is first fed into the CNN that consists of convolution, ReLU, pooling,
and FCL, as depicted in Figure 3 (bottom). The CNN functions by extracting image features in the
form of a feature map. These features are fed into the regression model for estimating the density
map for crowd counting. CNN can be categorized into single, multi-, and single with scale-aware
networks. Depending on the application, the complexity (single–multi column) and layers of CNN can
be optimized to obtain the desired results. These categories are further optimized to provide strong
and granular-level foundation for researchers in the future.
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Density estimation: It can be defined as a way to estimate the probability density function
of a random variable on the basis of observed (ground-truth) data. There are different ways to
obtain the ED of a crowd, like density estimation by clustering, detection, and regression [3,7,13,68].
Detection-based techniques perform well with sparse crowds, while regression-based methods perform
well on dense-crowd environment, and they overestimate crowds in sparse patches. A combination of
detection and regression can be used to achieve better performance in both sparse and dense scenarios.

Counting: It is a method that is performed after the computation of a density map to count the
number of objects (people, cells, cars, etc.) in an image or video. Different well-known handcrafted
techniques perform according to image density [10]. For example, in sparse-density images, counting
by detection performs well due to a lack of overlapping objects, while CNN-based methods perform
well on images with a diverse density range.

Unique challenges faced by CNN-CC algorithms include a complex network architecture,
increased number of parameters, high computational cost, and real-time deployment. Traditional
handcrafted crowd-counting algorithms can be deployed for real-time monitoring at the cost of reduced
accuracy and a low-resolution density map. These techniques also fail to obtain the desired results in
high occlusion, a diverse density range, and scale-varied environments. On the other hand, CNN-CC
algorithms perform better in terms of prediction accuracy and resolution. Traditional handcrafted
methods have less computational cost. The majority of applications aim for high prediction accuracy.
Many researchers tried and succeeded to minimize complexity. Hence, growing trends towards
CNN-CC techniques motivated us to review and analyze the latest and most well-known research
articles on the most challenging datasets.

4. Categorization of CNN-CC Techniques

The categorization of CNN-CC techniques plays an important role in their understanding at
a granular level. Such a level of understanding enables researchers to design distributed control
and monitoring algorithms for various crowd-counting applications in military combat, disaster
management, public gatherings, etc.

Categorization of CNN-based Crowd 

Counting Techniques

Network-based 

Method

Image-View-based 

Method

Training 

Approach-based Method

Basic-CNN

Multi-task 

Framework

Scale-aware CNN

Context-Aware 

CNN

Patch-based 

Inference

Whole Image-

based Inference

Arial-view-based 

Image

Perspective view-

Based Image

Figure 4. Categorization of CNN-CC techniques.
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The only CNN-CC categorization done by Sindagi et al. [26] conducted a very limited research
survey of 17 research articles in two main categories, with 17% of articles from 2015, 64% from 2016,
and only 17% from 2017. They categorized existing CNN-based techniques only on the basis of network
properties and training sets. In order to cover new research articles with evolving architectures and
future requirements in terms of datasets and algorithm design, we contribute by adding a new category
of CNN-CC techniques, as shown in Figure 4. Inclusion of the third category based on the orientation
of input image plays a significant role in the design of CNN-CC architectures and algorithms by
understanding the dynamics of the input image. Moreover, we cover 52 of the latest research articles
in three main categories, with only 5.76% research articles from 2015, 23.07% from 2016, 25% 2017,
and 46.15% from 2018.

Since datasets, in terms of their intrinsic features, play a vital role in the design of CNN-CC
algorithms, we provide a brief description of the available datasets prior to categorization details of
the CNN-CC techniques. Currently available datasets are of two types, public and private. Public
datasets are those publicly available on the Internet, and private ones are the intellectual property of
their corresponding authors/organizations. We list five of the most well-known and popular datasets,
and their intrinsic features in Table 1.

Table 1. Summary of different crowd-counting datasets with their intrinsic features.

Dataets USCD [17] Mall [4] UCF [69] WE [28] STA [26] STB [26]

No. of
images (NOI) 2000 2000 50 3980 482 716

Resolution 158 × 238 320 × 240 Varied 576 × 720 Varied 768 × 1024

Minimum
head count 11 13 94 1 33 9

Average
head count 25 - 1279 50 501 123

Maximum
head count 46 53 4543 253 3139 578

Total head
count (THC) 49,885 62,325 63,974 199,923 241,677 88,488

Qualitative
features

Collected from
video camera,
ground-truth
annotation,
low-density
dataset,
no perspective
variation

Collected from
surveillance camera,
diverse illumination
condition;
compared to USCD,
it has higher density,
no scene-perspective
variations

Collected from
various places like
concerts, marathons,
diverse scenes with
wide range of
densities,
challenging
datasets as compared
to USCD and Mall

Specific for
cross-scene
crowd-counting
large diversity,
but limited as
compared to UCF,
not dense as
compared to UCF,
more images

Chosen from
Internet,
large scale,
largest in terms
of number of
annotated people,
large density as
compared to (B),
diverse scenes,
and varying
densities

Collected from
Shanghai,
varying scale and
perspective,
nonuniform
density level
in many images,
making it tilt
towards the
low-density level
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Figure 5. Architectures of different subcategories: (a) basic-CNN-CC, (b) context-aware CNN-CC
techniques (context-CNN-CC), (c) patch-based-CNN-CC, (d) scale-aware CNN-CC techniques
(scale-CNN-CC), (e) multitask-CNN-CC, (f) whole-image-CNN-CC, (g) aerial-view-CNN-CC, and (h)
perspective-CNN-CC.

4.1. Network-CNN-CC Techniques

Techniques in which the network is modified in terms of layers or columns, and the inclusion of
any other module for classification, segmentations, and surveillance ultimately changes the properties
of the actual network are called Network-CNN-CC. Techniques under this category are very useful
for obtaining high-level crowd features that may lead to significant improvement in a diverse range
of densities, such as religious and political gatherings, and sports events. Although techniques
in this category play a vital role in obtaining contextual information with varying scales, due to a
complex architecture, these types of techniques may not be computationally suitable for real-time
crowd counting. Further, Network-CNN-CC-based techniques are subcategorized into basic-CNN-CC,
context-CNN-CC, scale-CNN-CC, and multitask-CNN-CC, as shown in Figure 5. Their details are
as follows.

4.1.1. Basic-CNN-CC Techniques

Crowd-counting techniques that have a basic CNN architecture are in this subcategory.
Basic-CNN-CC techniques can be regarded as the pioneer of deep-learning methods for density
estimation that can be applied to obtain a crowd count in real time due to the simple network
architecture. Table 2 shows Basic-CNN-CC with their features, used datasets, and architectures.

Fu et al. [70] proposed a bilevel density-estimation method by using a basic CNN architecture.
Their first task was to estimate crowd density (i.e., to extract crowd features of different density levels).
Estimation speed is increased by removing similar connections. Their second task was to classify
discriminative features by using a cascaded classifier. Similarly, a residual learning method with an
inception-layer-based technique was proposed in [71] to count the number of cars by dividing an
image area into overlapped patches. A stride was adjusted to distinguish nonlocalized cars with
contextual information in order to reduce the MSE. Wang et al. [72] proposed an FCNN model with
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argumentation strategy to increase the number of training data for more robustness of dense and
diverse environments. Zhao et al. [73] proposed a CNN model to count the number of people crossing
a line in surveillance videos. The original problem was divided into two subproblems (estimation
of crowd density and crowd velocity) for reducing the complexity of the main problem. In [74],
the authors proposed a deep-learning approach to estimate mid- and high-level crowds in an image.
A regressor was used to estimate the number of individuals in a local area, while its overall density
was estimated by adding the estimated densities of local regions. In their work, a feature vector
was learned by using ConvNets architecture for estimating crowds in their respective local regions.
The authors in [75] used a basic CNN for multiple applications that included indoor and outdoor
counting. Layer boosting (i.e., increasing the number of trained network layers to iteratively train a
new classifier that is used to fix the errors of the previous one) and selective sampling (i.e., minimizing
the impact of low-quality samples) are used to reduce processing time and enhance counting accuracy.
Four ensemble networks are fine-tuned by training every network on the basis of previous errors.

Remarks: Most techniques under this subcategory mainly focus on density estimation instead of
crowd count. These techniques may not perform well in highly occluded and varying perspective
scenarios due to an oversimplified architecture. In these techniques, the speed of density estimation
can be enhanced by removing redundant samples. By iteratively reducing errors in different network
layers, error-rate probability can also be reduced.

Table 2. Summary of advantages and limitations of basic-CNN-CC algorithms.

Technique Features Datasets
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Fu et al. [70] Real-time approach
PETS_2009, Subway video,
Chunix_Road video X X ConvNets

Mundhenk et al. [71]
Contextual information,
creation of large datasets of cars

Cars Overhead with Context
(COWC), X X

AlexNet,
Inception

Wang et al. [72]
End-to-end deep CNN
regression model UCF X X FCN

Zhao et al. [73]
Joint learning of crowd
density and velocity USCD, [LHI, TS,CNN] * X X FlowNet

Hu et al. [74]
Two supervisory signals:
crowd count and crowd density UCF, USCD X X ConvNets

Walach et al. [75]
Gradient boosting and selective
sampling, and elimination of low-quality
training samples

UCF, USCD, [Bacterial Cell, Make 3D] * X X Boosting Net

* Private datasets.

4.1.2. Context-CNN-CC Techniques

Crowd-counting techniques that utilize both the local and global contextual information of
an image for improving counting accuracy fall into this subcategory. The contextual information
of an image means a relationship of nearby pixels (i.e., neighboring information) with a targeted
area for overall improvement. Techniques under this category are very useful in applications that
need contextual information, such as counting the number of moving drones or the number of cars
in parking lots. These techniques are also helpful for obtaining density level and distribution in
various density-based images. Table 3 shows context-CNN-CC with their features, used datasets,
and architectures.
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Table 3. Summary of advantages and limitations of Context-CNN-CC algorithms

Technique Features Datasets
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Chattopadhyay et al. [76] Associative subitizing PASCAL VOC, COCO X X ConvNet

Zhang et al. [77] Attention model for head detection UCF, STA, STB X X AM-CNN

Li et al. [78]
Dilated convolution and
multiscale contextual
information

UCF, STA, STB, WE CSRNet

Han et al. [79] Combination of correlation and MRF UCF X X ResNet

Wang et al. [80] Density adaption network ST, UCF X X DAN, LCN , HCN

Liu et al. [81] Spatially aware network ST, UCF, WE X X
Local Refinement
Network

For instance, the idea of an every-day object count was proposed by the authors in [76]
by considering the novel idea of associative subitizing (humans’ ability to give quick count
estimates/assessments for small object counts). Zhang et al. [77] proposed an attention model to
detect head location (high probability indicates head location). Similarly, multiscale feature branches
were used to suppress the nonhead region. Li et al. [78] used a combination of CNN and dilated
convolution (expanded kernels to replace pooling) for improving the quality of a density map. A dilated
convolutional layer was also used for combining contextual information in diverse congested scenarios.
Han et al. [79] proposed a CNN–Markov random field for crowd counting in still images. They divided
the whole image into small overlapping patches, so that features were extracted from the overlapping
patches, and fully connected NNs were used to regress the patch count. The adjacent patches had
high correlation due to overlapping. Correlation was used by MRF to smooth people counts within
adjacent local patches to improve the overall accuracy of the crowd count. In [80], the authors
proposed a density-adaptation-based network to accurately count the number of objects. A generalized
framework was proposed that was trained on one dataset and then adapted on another. Density level
was computed by selecting a network that was trained on different datasets. The architecture consisted
of three networks: a density-adaptation network that was used to identify low or high density, and the
other two networks were responsible for counting. Liu et al. [81] proposed a deep recurrent spatially
aware network in which a spatial-transformer module was used for counting while simultaneously
tackling both scale and rotation variations.

Remark 1. Real-time contextual information can be employed by using dilated convolution. More specifically,
a deeper dilated CNN can be used to enhance the quality of density maps, and an adaptive density network can
be used to enhance counting accuracy. However, such contextual information is obtained at the cost of higher
network complexity. As a result, techniques in this subcategory may not be feasible for real-time applications
with low complexity demands/requirements.

4.1.3. Scale-CNN-CC Techniques

Basic-CNN-CC techniques that have evolved in terms of scale variations (for robustness and
accuracy improvements) are called Scale-CNN-CC techniques. Scale variation means varying the
resolution caused by different perspectives. The techniques in this category play a vital role in
enhancing accuracy in highly congested and occluded scenarios. The extraction of multiscale patches
from an input image makes the goal comparatively easier for crowd counting. This may increase
accuracy in a dense and diverse range of datasets such as UCF and STA. However, these techniques
rely on the extraction of multiscale patches with a complex architecture. Table 4 depicts the limitations
and merits of different scale-CNN-CC methods. The negative sampling and data-driven approach is
missing in all the listed methods.
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Table 4. Summary of advantages and limitations of scale-CNN-CC algorithms.

Technique Features Datasets
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Liu et al. [82] Geometry-aware crowd counting ST, WE, Venice X X Siamese

Huang et al. [83] Exploits cross-scale similarity ST, WE X X Wide and Deep

Kang et al. [84] Image pyramid to deal with scale variation ST, WE, USCD X X VGG network

Boominathan et al. [85] Combination of deep and shallow networks UCF X X VGG-16

Zeng et al. [86] Single multiscale column ST, UCF X X Inception

Kumagai et al. [87]
Integration of multiple
CNNs (gating and expert CNN) UCF, Mall X X MoC-CNN

Onoro-Rubio et al. [88]
CCNN for mapping the appearance of
image patch to its density map;
Hydra CNN is scale-aware model

UCF, USCD,
TRANCOS X X CCNN, Hydra

Shi et al. [89] Dynamic data-augmentation strategy, NetVLAD ST, UCF, WE X X VGG-like net

Cao et al. [90]
Multi-scale feature extraction with
scale aggregation modules UCF, STA, STB, USCD X X SANet

Shen et al. [91] GANs-based network, novel regularizer ST, UCF, USCD X X ACSCP

Liu et al. [82] proposed a geometric-aware crowd-density-estimation technique. An explicit
model was proposed to deal with perspective distortion effects. Huang et al. [83] reduced the
computational cost by investigating the idea of stacked pooling. Instead of using multiscale kernel
pooling, stacked pooling is used to extract scale information for making it applicable in real-time
applications. Later on, Kang et al. [84] used an image pyramid to deal with scale-varying issues in
an image. Instead of changing the filter size, feeding downsampled images into the network was
efficient for crowd-counting accuracy. Then, predictions from different scales were fused to obtain the
final ED. The authors in [85] proposed a combination of a shallow and a deep network to effectively
capture high-level semantics (face, body) and low-level features to accurately estimate crowd density
in scale-varying conditions. The authors in [86] proposed a single column multiscale cost effective
method for real-time applications. By using a single column with a multiscale blob, scale-related
features were extracted. These scale-related features generated by the network were used for dense
crowd counting. In [87], the authors proposed a combination of gating (multiclass classifier) and
a multiple-expert CNN. The gating CNN automatically directs the input patch to the expert CNN
that makes the algorithm robust for large appearance changes. Onro-Rubio et al. [88] proposed two
methods to address crowd appearance and scale variation in an image. First, a counting CNN was
proposed to map image appearance into its density map. Second, a congested and varying scale region
is tackled through the Hydra CNN without any geometric information. The Hydra CNN used the
pyramid of patches extracted from multiple scales for density estimation. The authors in [89] proposed
a multiscale multitask crowd-counting algorithm with an aggregated feature vector. Multiscale features
were basically combined into a single vector, a ‘vector of locally aggregated descriptor’, which was
optimized by backprorogation. Moreover, a data-argumentation approach was used to increase the size
of the training data. Cao et al. [90] proposed an encoder–decoder-based CNN to reduce computational
complexity. By avoiding a multicolumn CNN with a classifier, a simpler scale-aware network (SANet)
was used to address scale-varying issues. Further, transpose convolution was used to enhance the
quality of the density map. Motivated by the success of GANs in an image for image-translation
problems, the authors in [91] employed GANs for crowd counting. The GANs were used for the
translation of the image and its patches into generated maps. The actual GTD was compared with the
generated map to find the best-resolution density map (high-quality). A novel regularizer adversarial
cross-scale consistency pursuit network (ACSCP) was proposed to maintain the parent (whole image)
and child (four patches) relationship for reducing counting loss (previously caused by averaging).
By using adversarial loss, the distance between the parent density map and the concatenated-image
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density map was calculated for minimizing loss. This regularizer performed well as compared to l2
regression loss.

Remark 2. A greater pooling range (multikernel pooling and stacked pooling) is beneficial to capture a multiscale
range to reduce computational cost. Rather than using the multicolumn approach (computationally complex),
the concatenated-scale aggregation modules may increase counting accuracy. Moreover, the quality of the density
map can be enhanced by using transposed convolutional layers at the cost of high complexity.

4.1.4. Multitask-CNN-CC Techniques

CNN-CC techniques that not only account for crowd counting but also for other tasks
like classification, segmentation, uncertainty estimation, and crowd-behavior analysis are called
multitask-CNN-CC techniques. We review the inter-relationship between these multiple tasks and
their impact on the performance of individual tasks under the multitask-CNN-CC umbrella. Table 5
shows the detailed description of features, used datasets, and architecture of different algorithms
under multitask-CNN-CC.

The authors in [92] proposed a ConvNet architecture to count the number of penguins. Due to
occlusion and a scale-varying environment, a multitask learning technique was proposed to overcome
foreground–background segmentation and uncertainty in density estimation. Idrees et al. [93]
investigated the multitask technique by inter-relating three main problems: crowd counting, density
estimation, and localization. In their work, the counting task was facilitated by density estimation
and localization. Zhu et al. [94] proposed a deep and shallow FCN. Features extracted from a deep
and shallow FCN were concatenated with the addition of two deconvolutional layers to make the
output image similar to input image in terms of resolution. Instead of relying on modeling the
visual properties, Huang et al. [95] proposed a semantic scene (body-structure-aware) CNN-based
crowd-counting method. In their work, the crowd-counting problem was decomposed into a multitask
problem. These multitasks involved the extraction of rich semantic-feature information, mapping
the input scene image to the semantic scene model (body-part map and structured density map),
and crowd counting. Yang et al. [96] proposed a multicolumn multitask neural network (MMCNN)
to overcome drastic scale variation in an image. They used the multicolumn by incorporating three
main changes. First, up- and downsampling was utilized to extract multiscale features. Second,
deconvolution was used to account for loss due to downsampling. Third, loss per scale was minimized
to make features more discriminative. Liu et al. [97] proposed a self-supervised method to increase the
training data for enhancing accuracy. The ranked patches (cropped from original image) were used as
side information. Moreover, multiscale sampling was utilized to further enhance accuracy.

Table 5. Summary of advantages and limitations of multitask-CNN-CC algorithms

Technique Features Datasets
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Arteta et al. [92]
Multitasking: foreground and background
segmentation, uncertainty, and density
estimation

Penguins dataset X X ConvNet

Idrees et al. [93] Multitasking with loss optimization UCF-QNRF X X DenseNet

Zhu et al. [94]
Combination of pedestrian flow
statistics task with people counting

UCF,
[DH302IMG, DH302VID] * X X VGGNet-16

Huang et al. [95] Body structure-aware methods STB, UCF, USCD X X
Multi-column body-part
aware model

Yang et al. [96]
Multicolumn multitask CNN focusing
on drastic scale variation

ST, UCF, USCD,
MALL, WE X X MMCNN

Liu et al. [97] Self-supervised tasking UCF, STA, STB X X VGG-16

* Private Datasets.
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Remark 3. First, training data can be increased by cropping an image into smaller patches (containing less
than or an equal number of objects as compared to the larger patch). Second, the inter-relationship between
different tasks may enhance counting accuracy. Third, deconvolution can be employed to enhance the quality
of the density map. Finally, multiple tasks assist each other to increase the overall accuracy of the network.
However, multitasking increases network complexity, which reduces its employability for real-time applications.

4.2. Image-View-CNN-CC Techniques

The main focus of this category is to analyze an input image (arial or perspective) and accordingly
design the network so that network accuracy can be improved. These techniques are very useful in
medical imaging, monitoring of targeted areas through drones, and counting people through CCTV.
Since camera angle, tilt, and position with respect to the object play a critical role in the development of
any algorithm, we mainly divided image-view-CNN-CC into two subcategories: aerial-view-CNN-CC
and Perspective-CNN-CC.

4.2.1. aerial-View-CNN-CC Techniques

The set of techniques that mainly design the network according to input image (aerial-view-based)
fall in this category. Techniques under this subcategory have applications in healthcare, commerce,
the military, etc. Detailed limitations and characteristics of each of the algorithms under the umbrella
of aerial-view-CNN-CC are given in Table 6.

In [98], the authors proposed a method to count the number of cells in a growing human
embryo. They computed a bounding box by selecting a particular region (enclosing the embryo).
Then, an end-to-end deep CNN was presented to count the number of cells in a microscopic image.
Ribera et al. [99] proposed a regression model to estimate plants in an image (taken through a UAV).
They minimized the number of neurons in the final layer to reduce the computational complexity
of the network. However, issues like lack of large amounts of training data and occlusion were not
addressed. The authors in [100] proposed a feature pyramid network with a VGG-style neural network
for the segmentation and counting of microscopic cells. They utilized the downsampling of an image
several times and learned features at varying scales to enhance segmentation and counting accuracy.
However, downsampling affects the resolution of the ED map. Another approach was proposed
by Xie et al. [101] to estimate the number of cells in a microscopic image. In this technique, two
convolutional regression networks with a large receptive field (filters) were used to overcome cell
clumps and the cell-overlapping problem.

Table 6. Summary of advantages and limitations of aerial-view-CNN-CC algorithms

Technique Features Datasets *
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Khan et al. [98]
Automatic approach to select a region
of interest by computing a bounding
box that encloses the embryo

Time-lapse image
sequences X X

Architecture of
Krizhevsky

Ribera et al. [99]
Plants are estimated by using the
regression model instead of classification

RGB UAV images of
sorghum plants X X Inception-v2

Hernnandez et al. [100] Feature pyramid network BBBC005 X X VGG-Style NN

Xie et al. [101] Two convolutional regression networks RPE, T and LBL cells X X VGG-net

* Private Datasets.

Remark 4. By knowing the characteristics of the input image, techniques with less complexity and error rate
can be designed. Individual regression models can be sequentially trained for low and high density to handle
object clumps and sparsity. Occlusion can also be handled by feeding the downsampled patches into the CNN.
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4.2.2. Perspective-CNN-CC Techniques

Techniques that mainly design the network according to the input image (perspective-view-based)
fall in this category. These techniques are useful in varying-perspective scenarios with diverse scale
variations. These techniques are applicable in dense-crowd-counting (e.g., sports events) scenarios
having different perspectives, such as a shopping mall. By knowing the properties of the input image,
techniques can be designed that have less complexity and high accuracy. The detailed features, used
datasets, and architecture of each algorithm are shown in Table 7.

Table 7. Summary of advantages and limitations of Perspective-CNN-CC algorithms

Technique Features Datasets
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Kang et al. [102]
Incorporating side information
(perspective weights) in CNN by
using adaptive convolutional layers

USCD X X ACNN

Zhao et al. [103] Perspective embedded deconvolution network WE X X PE-CFCN-DCN

Marsden et al. [104] Multidomain patch-based regressor ST, Penguin, Dublin cell * X X VGG16

Zhang et al. [105]
Cross scene crowd counting, human body
shape and perspective variation are considered UCF X X Crowd CNN model

Shi et al. [106] Perspective-aware weighting layer UCF, WE, STA, STB X X PACNN

Yao et al. [107] General model based on CNN and LSTM ST, UCF, WE X X DSRM with ResNet

* Private Datasets.

The authors in [102] proposed an adaptive CNN to incorporate perspective information.
The convolutional-filter weights were adapted according to the current image scene by using
perspective information. Zhao et al. [103] proposed a perspective-embedded deconvolution network
(PE-CFCN-DCN) to model the varying size of pedestrians considering perspective distortion.
They used a location-aware Gaussian function with varying kernel parameters for each annotated
point (dot) to obtain the GTD. They also added a perspective map (one channel) as an additional
channel to the RGB image (three channels) by modifying the filter depth from three to four channels.
Perspective information was embedded with the deconvolution network (upsampling process) by
utilizing structural information of different levels that help in the formation of a smooth and accurate
density map (high-quality). Marsden et al. [104] proposed a multidomain patch-based (overlapped)
regressor for object counting with the removal of redundant parameters in the model to reduce its
complexity. A pretrained classification network was used to extract high-level features. The extracted
features were mapped to the object count by using an FCNN. Further, switching among learned visual
domains (people, wildlife, cells, and vehicles) could be accomplished with a subset of parameter
interdomain sharing. This interdomain switching is very helpful in tackling different perspectives,
scales, and density variations. Zhang et al. [105] proposed a switchable training method with
multiobjective tasking. Two subtasks (estimating density and crowd count) influenced each other
due to the introduction of a data-driven approach by choosing training scenes from all training
data that have almost identical perspective maps with the target scene (test data). Shi et al. [106]
proposed a perspective-aware CNN model where the perspective map was predicted and used as a
perspective-aware weighting layer. This additional layer was responsible for combining thedensity
maps obtained from varying-scale feature maps. The density and perspective maps were combined
to provide the estimated count. The varying perspective and resolution problem was solved by
Yao et al. [107] by proposing a Deep Spatial Regression Model (DSRM) using the CNN and LSTM. First,
high-level features were extracted by using a CNN. Due to the high correlation among the overlapped
patches, the LSTM structure used spatial information in adjacent regions to enhance counting accuracy.
The final count was obtained by adding all the local patch counts.

Remarks: Perspective distortion may be reduced by inserting a perspective-aware weighting layer
(separate layer) in the deconvolution network. Parameters among the different domains (trained on
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separate datasets) can be shared to overcome varying-perspective problems such as object-size and
resolution variation.

4.3. T-CNN-NN Techniques

The set of techniques in this category are differentiated according to the approaches used to train
the CNN, for example, training the CNN on the basis of a whole image or cropped patches. Such
approaches can be used to improve the prediction accuracy of the network or the quality of its density
map. Whole-image-based training minimizes the network computational cost at the cost of reduced
accuracy, while patch-based training enhances network accuracy for high computational cost. These
techniques are useful in medical imaging, commercial, and military applications. These techniques are
categorized into patch-based-CNN-CC and whole-image-CNN-CC. Details are as follows.

4.3.1. Patch-Based-CNN-CC Techniques

In these techniques, the CNN is trained by using cropped patches where a sliding window is
run over the test image. These techniques are very useful in applications where there is enhanced
resolution quality of the density map and it cannot be compromised, such as in cancer diagnosis.
Both the affected cell count and the resolution of affected cells are important. The main objective
of this category is to design a system for enhanced density-map quality at high computational cost.
The detailed characteristics of each algorithm under patch-based-CNN-CC are shown in Table 8.

Cohen et al. [108] proposed a deep CNN inspired by inception networks. Instead of estimating the
crowd count on the whole image, a smaller network is used to estimate the number of objects in a given
receptive field. Overestimation of the crowd count in sparse areas by regression-based technique and
underestimation of the crowd count in dense areas by detection-based techniques motivated the authors
in [109] to proposed a detection and density-estimation (DecideNet) method that employed a counting
mode based on density conditions. Inspired by the skip-connection method for crowd counting,
the authors in [110] proposed an optimized method for information flow within different convolution
and deconvolution layers. Convolution layers were used to detect the edges and colors, but this
low-level information obtained from earlier layers may or may not have contributed to enhancing
the performance of the network in terms of MAE. Therefore, a Gated U-Net (GU-Net) was employed
to determine the amount of information passed to the final layer (convolution or fully connected)
for a more accurate feature-selection process. Similar to the idea of [109], Xu et al. [111] proposed a
depth-of-information-based guided crowd-counting method (Digcrowd) to deal with highly dense and
varying-perspective images. Segmentation was performed on an image to divide it into two regions: far-
and near-view regions. In the near-view region, people are counted by detection, and Digcrowd maps
are used in the far-view region to map counted people to their density map. The authors in [112] used
a head detector to find the varying size of a human head. After dividing images into multiple patches,
an SVM classifier was used to classify crowded and noncrowded patches. In order to find the head size,
regression was performed on each patch. After finding the head size, the total number of heads in a
particular patch was calculated by dividing patch area with head size. The authors in [113] proposed a
count-net technique by focusing on the head portion by filtering the background. Feature extraction and
classification were also simultaneously performed with crowd counting. Zhang et al. [114] proposed
a patch-based multicolumn CNN (MCNN) crowd-counting technique with a geometry-adaptive
kernel for density estimation. The varying size of the receptive fields used in each CNN column was
used to handle scale-varying objects (heads). However, the aggregation of the density map at the
end may have decreased the quality of the ED map. Wang et al. [115] proposed a skip-connection
CNN (SCNN) for crowd counting. The overall network used four multiscale units for extracting
scale-varying features. Each multiscale unit consisted of three convolutional layers. Several multiscale
units were used to extract the scale-varying features. Moreover, an augmentation strategy (without
redundancy) was adopted by cropping the two patches (having different scales) from each input
image. The CNN was individually trained on these two scales to overcome any drastic scale variations.
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Sam et al. [116] proposed a switch CNN technique by considering three regressors trained on low-,
medium-, and high-density image patches. A switch (classifier) was used to direct the input patch to a
particular regressor for addressing any density-variation issues.

Table 8. Summary of advantages and limitations of patch-based-CNN-CC algorithms.

Technique Features Datasets
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Cohen et al. [108]
Smaller network used for
estimation in given receptive field [VGG, MBM] * X X Count-ception

Liu et al. [109] Detection and density-estimation network Mall, STB, WE X X DecideNet

Onro-Rubio et al. [110]
Joint feature extraction and pixelwise
object density ST, USCD, TRANSCOS X X GU-Net

Xu et al. [111] Depth-information-based method STB, Mall, ZZU-CIISR X X
Multi-scale
network

Shami et al. [112] Head-detector-based crowd-estimation method ST, UCF X X ImagNet

Zhang et al. [113] Aggregated framework UCF, AHU-CROWD X X count-net

Zhang et al. [114] Multicolumn CNN with varying receptive fields ST, UCF X X MCNN

Wang et al. [115] Skip-connection CNN with scale-related training ST, UCF X X SCNN

Sam et al. [116] Switch CNN multidomain patch-based regressor ST, UCF, WE X X Switch CNN

* Private Datasets.

Remark 5. Detection and regression can be sequentially employed on targeted image patches to enhance network
prediction accuracy. Further, extracted low-level information about network edges and colors can be iteratively
filtered to reduce the computational cost of the network.

4.3.2. Whole-Image-CNN-CC Techniques

Techniques in this subcategory perform whole-image-based inference, and are very useful in
real-time applications due to the reduced computational cost. These techniques have applications
in pedestrian counting, counting passing cars across CCTV, etc. The absence of negative sampling
and lack of a data-driven approach are common in all the listed algorithms (see Table 9). Detailed
characteristics of each algorithm under patch-based-CNN-CC are shown in Table 9.

Table 9. Summary of advantages and limitations of whole-image-CNN-CC algorithms

Technique Features Datasets
Negative
Samples

Data
Driven Architecture

Yes No Yes No

Rahnmonfar et al. [117]
Simulated learning, and synthetic data for training,
tested on real images Fruit dataset * X X Inception-ResNet

Sheng et al. [118]
Pixel-level semantic-feature map,
learning locality-aware features

USCD,
Mall X X

Semantic-feature map
and W-VLAD encoding

Marsden et al. [119]
Simultaneous multiobjective method for violent-behavior
detection, crowd counting and density-level
classification, creation of new dataset

UCF X X ResNetCrowd

Marsden et al. [120] Multiscale averaging to handle scale variation ST, UCF X X FCN

Sindagi et al. [121]
Multitask end-to-end cascaded network
of CNNs to learn both crowd-count
classification and density estimation

ST, UCF X X Cascaded network

* Private Datasets.

A CNN-based fruit-counting technique was proposed by Rahnemoonfar et al. [117] by using
a deep-simulated-learning algorithm. The network was trained on synthetic data (24,000 images
consisting of variably sized tomatoes) with a whole-image-based training approach. A modified
version of the Inception-ResNet architecture was used to implement the idea of fruit (tomatoes)
counting. Sheng et al. [118] focused on the discriminative power of image representation by combining
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semantic information and locality-aware features (spatial and context information). By using the
CNN, they mapped the pixel space into a semantic-feature map. Pixelwise features indicated a
particular semantic class (e.g., road, person, pole, car, building). Furthermore, locality-aware features
were used to exploit the local and contextual information. Later, the authors in [119] proposed a
multiobjective technique by using residual deep-learning architecture (ResnetCrowd) to investigate
crowd counting, violent-behavior detection, and density-level classification. The authors in [120]
proposed a FCN for crowd counting by addressing the problems of scale variation and high density
within an image. Instead of changing the receptive field (filter size) in a CNN, a scale-down version
fed the network. To obtain the final count, they computed the mean of the downsampled images.
Sindagi et al. [121] proposed a multitask cascaded CNN network to accurately learn crowd density
and crowd classification. They exploited discriminative features (high-level prior) to handle high-level
density variation within an image.

Remark 6. Counting accuracy could be enhanced by feeding the network with semantic and locality-aware
features. High-level prior (i.e., density-level classification) with density estimation also take part in
performance improvement.

5. Applications of CNN-CC Algorithms

CNN-CC techniques have a diverse range of applications, as shown in Figure 6.
These applications include intelligent crowd analysis, military applications, public-event management,
disaster management, and health-care applications [23]. Detailed descriptions are given as follows.

Intelligent Crowd Analysis: Crowd-counting techniques can be employed to gather information for
intelligent analysis and inference. For example, the queue length in front of a billing reception center
(electric, gas, and water bills), especially in developing countries, could be observed and analyzed to
accordingly optimize the number of staff members. Traffic-signal wait time could be optimized with
respect to crowd flow, especially during office hours. Moreover, appropriate product placement can be
done in big malls and stores according to the interest of people [9,122,123].

Military Applications: CNN-CC techniques can be used in military applications such as counting
the number of moving drones or fighter jets or the number of enemy soldiers and their weapons. Thus,
the strength of the enemy’s armed forces could be estimated to counter a surge [52,124,125].

Public-Event Management: CNN-CC techniques can be used in concerts, sports events, and political
rallies to count the number of people. Thus, these events can be managed by analyzing and counting
the crowd to avoid disastrous situations. This would also be beneficial in properly managing available
resources, such as spatial capacity and optimizing crowd movements [126–128].

Disaster Management: There are different overcrowding scenarios, like musical concerts and
religious gatherings, which could be life-threatening when a portion of the crowd panics and charges
in random directions. In the recent past, huge numbers of people have died from suffocation in highly
crowded areas in different public-gathering events. Early detection of overcrowding and better crowd
management in political rallies, sports events, and musical concerts can be made possible by analyzing
the crowd gathering [129–131].

Suspicious-Activity Detection: Terror attacks in public places can be minimized by using crowd
analysis and violent-crowd-behavior detection techniques. Traditional handcrafted methods do not
perform well in harsh and densely crowded events, and could be replaced by CNN-based face
recognition and detection techniques for better crowd analysis [132–135].
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Health-Care Applications: CNN-CC techniques play an important role in health-care systems,
especially with patients suffering from cancer and other diseases where it is important to count a
number of cancerous cells for early-stage diagnosis. The authors in [136] proposed a deep model for
cell detection in zebrafish images. This framework was used to detect tyrosine hydroxylase cells in
zebrafish brain images. Further, the authors in [137] presented a CNN-based model for histopathologic
cancer diagnosis through a deep-learning architecture to increase the objectivity and efficiency of
histopathology-slide analysis. The authors in [138] also diagnosed skin cancer by using skin images
with a deep NN. Finally, the authors in [139] trained a deep NN to predict different liver diseases.

Safety Monitoring: A huge number of CCTV monitoring systems at airports, religious gathering
places, and public locations enable easier crowd monitoring. CNN-CC algorithms could be further
analyzed to detect behaviors and congestion-time slots to ensure the safety and security of the
public [140]. For example, the authors in [141] presented a multicamera approach to detect dangers
by analyzing crowd density. In other works ,such as [142,143], the authors proposed a surveillance
system to generate a graphical report by analyzing crowds and their flow in various directions through
CCTV cameras.

Figure 6. Applications of crowd analysis in different fields

6. Three-Dimensional Crowd Counting

The widespread usage of CCTV monitoring systems at airports, religious gathering places, and
public places enable easier monitoring of crowd. However, traditional crowd-counting methods
with classification [144,145] and segmentation [146] via deep-learning techniques rely on 2D datasets
instead of video crowd counting. The task of crowd counting from videos is challenging due to
severe occlusions, scene-perspective distortions, diverse crowd distributions, and especially complex
network architectures. Limitations in terms of complex networks (high computational cost) restrict
researchers from deploying real-time crowd-counting algorithms. For that, we need to simplify
deep-learning models so that they can be easily deployed. Rapidly growing crowd-counting
technologies demand investigations to reduce NN computational cost and network complexity.
More specifically, the reduction of complex models to simpler ones [147,148] encourages the wide
adoption of such models in remote stations for real-time applications, such as crowd analysis in
autonomous vehicles.
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Dimensionality reduction is used to reduce the complexity of machine-learning networks and
reduce overfitting. The authors in [149] proposed a principal-component-analysis (PCA)-based
nonparametric,unsupervised technique for dimensionality reduction. The authors in [150] investigated
PCA applications , kernel PCA (KPCA), and independent component analysis (ICA) with an SVM
for feature extraction. PCA was used to linearly transform the original inputs into uncorrelated new
features, whereas the linearly transformed features in ICA are statistically independent. KPCA is
nonlinear PCA that is done by generalizing the kernel method into linear PCA. Similarly, the authors
in [151] proposed an unsupervised method for dimensionality reduction called Locally Linear
Embedding (LLE). By maintaining the geometric features of a nonlinear feature structure, it reduces
the n-dimension feature space. LLE optimization does not involve local minima by mapping
inputs into a single coordinate having lower dimensions. By observing the performance of model
simplifications in machine-learning approaches, different authors also proposed simplified models for
deep learning [152–155].

7. Performance Evaluation of CNN-CC Algorithms

In this section, our main goal was to evaluate the selected existing CNN-CC algorithms.
For evaluation purposes, we considered a common performance metric: MAE, where N is the number
of test samples, yi is used for ground-truth count, and y

′
i is the estimated count of i th sample.

MAE =
1
N

N

∑
i=1
|yi − y

′
i| (1)

For comparison, we chose the following benchmark techniques:

• [73–75] as Basic-CNN-CC algorithms tested via the USCD and UCF datasets.
• [77–81] as Context-CNN-CC algorithms tested via the UCF, ShanghaiTech-A (STA) and

ShanghaiTech-B (STB) datasets.
• [83–91] as Scale-CNN-CC algorithms tested via the UCF, STA and STB datasets.
• [94–97] as Multi-task-CNN-CC algorithms tested via the UCF, STA and STB datasets.
• [102,104–107] as Perspective-CNN-CC algorithms tested via the UCF, STA and STB datasets.
• [109–116] as Patch-based-CNN-CC algorithms tested via the UCF, STA and STB datasets.
• [119–121] as whole-image-CNN-CC algorithms tested via the UCF, STA and STB datasets.

Figure 7a shows that the normalized MAE (nMAE) of [74] was relatively higher than that of [75]
when tested on the USCD dataset. This is because of an underestimation of layer boosting that
iteratively increased the number of network layers due to selective sampling. Further, the nMAE
of [73] was relatively less than that of [75] when tested on the USCD dataset. This is because the
two subproblems (crowd-velocity and -density estimation) in [73] assisted each other to enhance
performance. Similarly, the nMAE of [75] was relatively less than that of [74] when tested on the
UCF dataset due to previously mentioned reasons. Hence, we concluded that, instead of the direct
insertion of new layers in the CNN, iteratively increasing the number of layers in a trained network
may improve system performance in terms of nMAE. System performance may further be improved if
a multitasking approach is employed.
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Figure 7. Normalized Mean Absolute Error (nMAE) of network-CNN-CC algorithms tested on different
datasets: (a) basic-CNN-CC, (b) context-CNN-CC, (c) scale-CNN-CC, and (d) multitask-CNN-CC

Figure 7b shows that the nMAE of [81] was relatively lower than that of [77–80] when tested
on the UCF dataset. The reason was the consideration of a spatial transformer network (to tackle
scale and rotation), and a local refinement network (to account for contextual information) in [81].
Further, the nMAE of [78] was relatively lower than that of [77,80,81] when tested on the STA and STB
datasets. This is due to the consideration of dilated convolution by expanding the kernel that is useful
in extracting contextual information. By comparing the nMAE, the performance of [78] was the relative
lowest from all compared algorithms when tested on the STB dataset due to the tilted behavior of STB
towards low density. Hence, after observing the performance of context-CNN-CC, we concluded that
counting accuracy could be enhanced on datasets with diverse scenes and varying densities by solving
pose variations and photographic angles for accurate density estimation. Performance could also be
increased on low-density datasets by adopting dilated convolution.

Figure 7c depicts that the nMAE of [91] was relatively low when compared to that of [85–90] on
the UCF dataset. This is due to the introduction of a novel ASCP framework (inspired from GANs).
Adversarial loss instead of l2 regression loss also enhanced accuracy. Further, the nMAE of [90] was
relatively low when compared to that of [83,84,89,91] on the STA and STB datasets. This is because the
combination of a scale-aware network with transpose convolution enhanced the counting accuracy and
quality of the density map. Further, the nMAE of [91] was relatively low when compared to that of [84]
on the STA dataset due to the above-mentioned reasons. However, [91] had a relatively high nMAE
as compared to that of [84] on the STB dataset. This is due to the consideration of scale-aggregation
modules with a combination of Euclidian and local-pattern consistency loss by [84]. Hence, we
concluded that there were two main scale-variation issues that need solutions: (1) A scale-specific
network performs poorly on unknown scales, which results in low-quality density maps. (2) The
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coherence issue among different density maps is not properly addressed (summing the individual
local counts may not be necessary to approximate the total count).

Figure 7d depicts that the nMAE of [97] was relatively low when compared to that of [94–96] on
the UCF dataset. The reason was the consideration of a self-supervised learning technique (increased
training-data size). Further, the nMAE of [97] was relatively low when compared to that of [95,96]
on the STA and STB datasets due to the above-mentioned reasons. Further, [96] had a relatively low
nMAE when compared to that of [94,95] on the UCF and STB datasets. This was due to handling
scale variation by using multikernels (parallel) with a multitask approach. Hence, we concluded that
counting accuracy could be enhanced by focusing on calculating the accurate GTD, and increasing the
number of training data improves ED quality. Drastic scale variation could also be handled by using
the combination of semantic information (body-part information) with up- and downsampling.

Figure 8a shows that the nMAE of [107] was relatively low when compared to that of [105]
and [106]. This is because Yao et al. [107] used a combination of CNN (extracting high-level information)
and LSTM (using spatial information to regress the local count from adjacent patches) to increase
network prediction accuracy. Further, the nMAE of [102] was relatively low when compared to that
of [104,106] on the STA dataset. This is due to the incorporation of side (contextual) information having
perspective weights in the CNN. However, the nMAE of [106] was relatively low when compared to
that of [102] with a low margin on the STB dataset. The accuracy enhancement was due to separate
perspective-aware layers considered by [106]. Hence, we concluded that, by combining the fine-tuning
part (retrieving training scenes from all training datasets that had a similar perspective map with the
target scene) with a deconvolution network increases accuracy and enhances ED map quality.

Figure 8. nMAE of CNN-CC algorithms tested on different datasets: (a) perspective-CNN-CC, (b)
patch-based-CNN-CC, and (c) whole-image-CNN-CC.

Figure 8b depicts that the nMAE of [116] was relatively low when compared to that of [112–115]
on the UCF dataset. This is due to the consideration of density-level classification of image patches
with a density-oriented-based regressor approach. Further, the nMAE of [115] was relatively low
when compared to that of [110–112,114,116] on the STA dataset. This is due to consideration of a skip
connection with scale-oriented training to handle varying-scale issues. The nMAE of [110], on the other
hand, was relatively low when compared to that of [109,112,114–116] on the STB dataset. This was
due to the consideration of controlled flow of information through the convolution and deconvolution
layers in [110]. We therefore conclude that for datasets with a dense and diverse range of densities,
a specific-task-oriented regressor and deconvolution increase accuracy for estimating a high-quality
density map. However, low-density datasets can be tackled by using a patch-based augmentation
(varying-scale) strategy, and optimized information flow within the convolution and deconvolution
layers by addressing the scale-varying issue caused by the perspective view.

Figure 8c shows that the nMAE of [121] was relatively low when compared to that [119,120] on
the UCF dataset. The reason of this error reduction was the consideration of the high-level prior with
density estimation. Further, the method in [120] has a low nMAE when compared to that of [119] on
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the UCF dataset. This is due to addressing the problem of dense crowds by feeding images at multiple
scales, as in Marsden et al. [120]. Further, the nMAE of [121] was relatively low when compared to
that of [120] on the STA and STB datasets due to the above-mentioned reasons. Hence, we conclude
that high-crowd-density issues can be solved up to an extent by varying the image scale. Multitasking
makes the system more complex for real-time applications.

By comparing the performance of subcategories of Network-CNN-CC, we concluded that
density-estimation accuracy is increased by using adversarial loss instead of regression loss. The quality
of the density map is also enhanced by using GANs, as per Shen et al. [91]. The work in [91] had the
lowest nMAE as compared to the rest of the algorithms under network-CNN-CC when tested on the
most challenging UCF dataset. The enhanced performance was proved by [90] on the STA and STB
datasets under network-CNN-CC. This is due to consideration of training loss with a scale-aware
network by using transpose convolution. Similarly, by observing the performance of subcategories
of image-view-CNN-CC, we concluded that [102,106,107] performed well on the STA, STB, and UCF
datasets. This is due to the utilization of a CNN with LSTM for spatial information to regress the local
object count in adjacent regions (patches) in [107]. The enhanced performance of [84,106] was due to
consideration of the perspective information and perspective-aware weighting layer. By investigating
the training-CNN-CC, we concluded that [110,115,116] performed well on the STB, STA, and UCF
datasets, respectively. This enhanced performance was due to using a density-level classifier with a
density-oriented regressor in [116]. The reason for the high performance was the usage of a skip
connection with scale-oriented training in [115]. The algorithm in [110] performed well due to
optimized information movement within the convolution and deconvolution layers. Finally, we
concluded that the algorithm of Shen et al. [91] performed well on the UCF dataset, while that of
Cao et al. [90] showed better performance on the STA and STB datasets.

8. Conclusions and Key Observations

Intelligent crowd counting and its analysis are a future development of traditional handcrafted
methods. By leveraging the tight integration of machine-learning and artificial-intelligence
technologies with traditional crowd-counting techniques, intelligent crowd counting and its analysis
provide advanced features such as adaptive control for dynamic crowd gatherings, and their wide-area
monitoring/surveillance. These advanced features can improve many crowd-management-related
tasks in terms of efficiency, capacity, reliability, and safety. CNN-CC techniques can effectively
support many applications that require adaptive monitoring, identification, and management over
diverse crowd-gathering horizons. In this article, we presented a comprehensive review of CNN-CC
and density-estimation techniques. We mainly categorized CNN-CC techniques into network-,
image-view-, and training-CNN-CC. Moreover, we subcategorized the three main categories and
accordingly summarized recent research articles. In each subcategory, we discussed the latest research
articles in terms of their key features, used datasets, and architectures. We also critically reviewed
the research articles in terms of key characteristics and deficiencies. Finally, we provided quantitative
comparison results of the sub- and main categories to facilitate future researchers. On the basis of our
comprehensive review, we conclude the following key observations.

• Counting accuracy of basic-CNN-CC is enhanced by removing redundant samples, while
multitasking improves the overall accuracy of an algorithm.

• The quality of a density map in context-CNN-CC is enhanced by using a deeper dilated
CNN, while counting accuracy is enhanced by using an adaptive-density network through
pose-variation-based solutions.

• By investigating scale-CNN-CC, we observed that counting accuracy is improved by using stacked
pooling that reduces computational cost. Moreover, concatenated-scale aggregation modules
increase accuracy, and the quality of the density map is enhanced.

• Counting the accuracy of multitask-CNN-CC is increased by using self-supervised learning,
inter-relations between multiple tasks, and up- and downsampling. However, multitasking makes
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the system more complex for real-time applications. Density-map quality is also enhanced by
using deconvolution layers.

• Performance i of aerial-view-CNN-CC n terms of nMAE is increased by using multiple regression
models, and occlusion is handled by feeding the downsampled patches in the CNN.

• Counting accuracy of the PRCC is enhanced by inserting a perspective-aware layer in the
deconvolution network, parameter sharing within different domains, and retrieving training
scenes from all training datasets that have similar perspective maps with target scenes.

• The nMAE of patch-based-CNN-CC is increased by using detection and regression depending
on image density and the optimal transfer of information within CNN layers. For dense
datasets, the combination of density-level classification, a specific task-oriented regressor,
and deconvolution increase accuracy with the estimation of high-quality density maps. Density
datasets are tackled by using a patch-based augmentation (varying scale) strategy.

• The counting accuracy of whole-image-CNN-CC is improved by exploiting semantic and
locality-aware features, and density-level classification. Diverse-crowd-density issues are also
fixed to some extent by varying image scales, making these techniques highly applicable in
real-time applications.

For future work, we will integrate Restricted Boltzmann Machines (RBMs) into a CNN-based
crowd-counting network. Further, we will enhance the accuracy and quality of estimated density maps
by using varying receptive fields. Besides accuracy, we are interested in reducing the computational
cost (number of parameters) of CNN-based crowd-counting networks.
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Acronyms

NNs Neural Networks
CNNs Convolutional NNs
RNNs Recurrent NNs
FCL Fully Connected Layer
UAV Unmanned Aerial Vehicle
ReLU Rectified Linear Unit
GTD Ground Truth Density
ED Estimated Density
GLCM Gray Level Co-Occurrence Metrics
HOG Histogram Oriented Gradient
LBP Local Binary Pattern
KLT Kanade–Lucas–Tomasi
GANs Generative Adversarial Networks
MAE Mean Absolute Error
MSE Mean Square Error
STA ShanghaiTech-A (a dataset)
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STB ShanghaiTech-B (a dataset)
WE World Expo 10 (a dataset)
CNN-CC CNN Crowd Counting
Network-CNN-CC Network-based CNN-CC techniques
Basic-CNN-CC Basic CNN-CC techniques
Context-CNN-CC Context-aware CNN-CC techniques
Scale-CNN-CC Scale-aware CNN-CC techniques
Multi-task-CNN-CC Multitask CNN-CC techniques
Image-view-CNN-CC Image-view-based CNN-CC techniques
Aerial-view-CNN-CC Aerial-view-based CNN-CC techniques
Perspective-CNN-CC Perspective-view-based CNN-CC techniques
Patch-based-CNN-CC Patch-based CNN-CC techniques
Whole-image-CNN-CC Whole-image-based CNN-CC techniques
Training-CNN-CC Training-approach-based CNN-CC techniques
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