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Abstract: The vibration monitoring of ball bearings of a rotating machinery is a crucial aspect for smooth
functioning and sustainability of plants. The wireless vibration monitoring using conventional Nyquist
sampling techniques is costly in terms of power consumption, as it generates lots of data that need to be
processed. To overcome this issue, compressive sensing (CS) can be employed, which directly acquires
the signal in compressed form and hence reduces power consumption. The compressive measurements
so generated can easily be transmitted to the base station and the original signal can be recovered
there using CS reconstruction algorithms to diagnose the faults. However, the CS reconstruction is
very costly in terms of computational time and power. Hence, this conventional CS framework is not
suitable for diagnosing the machinery faults in real time. In this paper, a bearing condition monitoring
framework is presented based on compressed signal processing (CSP). The CSP is a newer research
area of CS, in which inference problems are solved without reconstructing the original signal back from
compressive measurements. By omitting the reconstruction efforts, the proposed method significantly
improves the time and power cost. This leads to faster processing of compressive measurements for
solving the required inference problems for machinery condition monitoring. This gives a way to
diagnose the machinery faults in real-time. A comparison of proposed scheme with the conventional
method shows that the proposed scheme lowers the computational efforts while simultaneously
achieving the comparable fault classification accuracy.

Keywords: compressive sensing; compressed signal processing; bearing fault diagnosis; feature extraction;
random demodulator

1. Introduction

The industrial plants consist of several types of machines. The rotating parts in these machines are
often subjected to mechanical tear and wear [1]. If the attention is not paid towards this wear and tear,
it may lead to the breakdown in the machines and unexpected shutdown in the plant [2]. Apart from
mechanical faults, machines can also develop electrical faults, which may be the reason behind
serious hazards. Therefore, condition monitoring of these machines is very important for early stage
fault detection. This avoids unscheduled repairs, minimize failures and hence, guarantee reliability,
availability, and sustainability of machines, which saves time, money, and power consumption [3].
Several noninvasive machine condition monitoring techniques have been proposed in literature.
These techniques are based on measuring either electrical quantities like current, voltage, and external
magnetic field, or the mechanical quantities like acceleration, velocity, force, etc. A review of the
emerging machine condition monitoring techniques has been presented in [4]. The most commonly
used technique is the motor current signature analysis (MCSA), which is based on analyzing the
spectrum of the stator current signal. But this method works fine if the machine is operating at constant
speed and rated load. For the faults induced due to rotor eccentricities, phase current monitoring is
an easy way. Split phase current signature analysis (SPCSA) is another method, which utilizes the
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air gap flux density modulation due to rotor eccentricities. Recently, methods based on stray flux
measurements have been proposed. The methods are noninvasive and simple to implement but are
difficult to model [5]. Another recent noninvasive approach for real-time fault diagnosis is the Parks’
vector approach, which makes use of inexpensive sensors and measurement system [4].

To diagnose the gear and bearing faults, vibration sensors are installed on the machines to monitor
their vibration trends. Typically, faults in the ball bearings of machine are detected with the help of
vibration monitoring of machines [6]. The vibration data may be obtained by measuring displacement,
velocity, acceleration or force, which can be processed to determine the type and severity of fault,
if present [7]. Several digital signal processing (DSP) techniques can be used to process the vibration
data like fast Fourier transform, discrete Fourier transform, short-time Fourier transform, wavelet
transform, etc. These techniques are cost-effective and can be implemented for real-time fault diagnosis.
utilizing these advantages of DSP techniques, an online method for early stage bearing fault diagnosis
has been presented in [8,9]. These techniques are based on decomposing the vibration signal sub-bands
using wavelet transform.

In this era of information age, the machinery vibrations are monitored remotely through wireless
links. For this, the battery operated wireless sensor nodes are installed on the machines. These nodes
continuously sense the machinery vibrations and send these data to the base station. At the base
station these data are processed and the machinery condition is identified. As these nodes generate
a huge amount of data, therefore the major hurdle in wireless vibration monitoring is the handling
of huge amount of data with power constrained nodes. To reduce the transmission power, the data
sensed with traditional sampling mechanism require compression before transmission to the base
station. The compression stage drains a lot of battery power [10,11]. Therefore, traditional sampling
mechanism overburdens the sensor node. In this scenario, compressive sensing (CS) performs superior
to the traditional method. CS is a relatively newer sensing method, which samples at a much lower
rate than traditional method. This in turn generates far fewer samples and hence reduce the power
required for sampling, compression and transmission [12,13].

The mathematical background of CS was developed by Donoho, et al. in 2004 [14,15]. CS has been
shown to be applicable for the signals which are either sparse or compressible, either in their original
domain or in some transformed domain. Since, almost all the signals have sparse or compressible
representation in some domain, therefore, applicability of CS extends to a wider range of signals [16].
The speciality of CS is that the sampling rate in case of CS is decided by the signal sparsity as compared
to the Nyquist-criterion, where the sampling rate depends upon the highest frequency component
present in signal. CS works by the mechanism of random sampling. Therefore, the CS measurements
tend to be non-adaptive, i.e., current measurement has no relation with the previous measurements [17].
Another quality of CS is that the original signal can be reconstructed faithfully from these random
measurements with the help of some non-linear technique, e.g., convex optimization or some iterative
methods, subject to the constraints of signal sparsity, minimum number of compressive measurements
required, incoherence between sensing matrix and signal sparsifying basis [18]. The major applications
of CS are in the fields, like: non-visible wavelengths acquisition, imaging via neutron scattering,
medical imaging, ultra wideband signal acquisition, etc. [19,20].

A precise and timely diagnosis of machinery faults is the crucial aspect of condition monitoring.
In this regard, the Nyquist and conventional CS frameworks for remotely monitoring the machinery
health are shown in Figures 1 and 2. The signal acquisition using Nyquist framework is done via
oversampling the signal by many orders of magnitude greater than Nyquist rate. This generates too
many samples. After compression, these samples are transmitted to the base station. These stages
consumes a lot of power. At the base station, which is not power constrained, the received signal is
decompressed to obtain the estimate of original signal. Then the relevant features are extracted from
the signal to identify its class. In conventional CS framework, the CS acquisition is first implemented
on remote node and then the compressive measurements are transmitted to the base station. At the
base station, the vibration signal is reconstructed from compressive measurements to extract the
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relevant features for diagnosing the faults using traditional signal processing techniques. Both of
the above mentioned frameworks are not suitable for the real time fault diagnosis because: (i). the
Nyquist framework generates too many samples which consumes a lot of power for processing. (ii).
conventional CS uses complex reconstruction and cannot be implemented on node. For real time
monitoring the major requirement is that the relevant features extraction and their classification must
be done on node within the available power budget [21,22].

(a)

(b)

Figure 1. Scenario representing WSN implementation using Nyquist sampling technique: (a) sensor
node and (b) base station.

(a)

(b)

Figure 2. Scenario representing WSN implementation using conventional CS technique: (a) sensor
node and (b) base station.

In this paper, a bearing condition monitoring framework is presented based on compressed signal
processing (CSP). CSP is a newer research area of CS, in which inference problems are solved without
reconstructing the original signal back from compressive measurements. The concept of CSP is based
on the fact that the compressive measurements carry sufficient information about the original signal,
from which it is possible to recover the original signal back. Apart from recovering, the other signal
processing tasks like: classification, detection and estimation, can also be performed on compressive
measurements [23–25]. A scenario representing WSN implementation using CSP is shown in Figure 3.
Here, the implementation of the sensor node is same as that in the conventional CS scenario, while the
difference lies in the implementation of base station. In this, using some modified signal processing
technique, the features are directly extracted from the compressive measurements, instead of first
recovering the original signal. These features are then further used for classifying the condition of the
system under supervision. CSP enables the real time machine condition monitoring and early stage
detection of faults to avoid the unexpected plant shutdowns [26,27]. The proposed scheme for bearing
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condition monitoring is based on CSP and is applied on the bearing vibration database taken from
laboratory for dynamics of machines and structures (Ladisk) [28]. The authors of [28] are associated
with this laboratory and they have prepared this vibration dataset by measuring the reactive forces
due to vibration excitation. This dataset is freely available to use. For extracting the features directly
from compressive measurements of bearing vibration signal, a feature extraction method has been
proposed. Then, for classifying these features, several classifiers have been tested and the best one is
used for classification purpose.

(a)

(b)

Figure 3. Scenario representing WSN implementation using CSP technique: (a) sensor node and (b)
base station.

The further organization of this paper is as follows: Section 2 discusses the background and
related work in this area. Section 3 describes the proposed framework for bearing condition monitoring
based on CSP. Section 4 presents the supporting results and related discussion.

2. Background and Related Work

In this section, the background related to generating compressive measurements and work related
to the bearing fault diagnosis from compressive measurements are presented. Let, x ∈ Rn or Cn

be an input signal, ϕ ∈ Rm×n or Cm×n be a random measurement matrix and y ∈ Rm or Cm be the
output measurement vector, where m� n. The mathematical model for generating CS measurements
corresponding to an input signal is given by (1) [20].

y = ϕx, (1)

For gathering sufficient information about the input signal, the minimum number of CS
measurements to be taken depends upon the sparsity of underlying signal. Their number can be
further reduced by introducing incoherence between measurement and sparsifying basis of signal,
where sparsifying basis is the basis in which signal has sparse representation [19]. CS basically uses
random matrices as the measurement basis, which are incoherent with any other basis. For perfect
reconstruction, a relation between minimum number of measurements, m, sparsity, k and coherence,
µ is given by (2) [7,29].

m ≥ cµ2k log n. (2)

Although the original signal can always be reconstructed back from compressive measurements
subject to the constraints of RIP and incoherence, but this conventional CS framework is not suitable
for real time fault diagnosis due to high reconstruction cost. The major requirement of self diagnosing
systems is that the processing should be done on node for faster and accurate diagnosis. In this scenario,
the framework based on CSP seems to fit well, because of its inherent advantage of omitting the need of
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reconstruction. This directly overcomes the reconstruction cost and also allows to relax the constraint
of minimum number of compressive measurements imposed by signal recovery. This means that
more and more undersampling can be done till the inference problem can be solved with sufficiently
high accuracy, without bothering about the signal recovery [27]. The related work concerning the
bearing fault diagnosis directly from compressive measurements includes: bearing fault detection
by incomplete reconstruction, in which reconstruction process is terminated in-between, once the
harmonics related to fault are identified [30]. Although, this method saves power by only solving the
incomplete reconstruction, but this also cost some power, hence is not suitable in power constrained
environment. Another approach suggested by Zhang et al., for bearing vibration monitoring from
compressive measurements is using several trained dictionaries corresponding to the bearing faults,
for diagnosing the faults from compressive measurements [31]. This method is computationally
expensive, because corresponding to each and every fault, the trained dictionaries need to be stored
and the compressive measurements need to be sparsified against each and every dictionary to identify
the dictionary for which sparsest representation is obtained. The dictionary so identified corresponds
to the fault. As this method is computationally expensive, hence it is not suitable for the purpose
targeted in this paper. Another method proposed by Shao et al., is using the concept of convolutional
deep belief network along with Gaussian visible units for learning the features from compressive
measurements [32]. Their method also increases the computational burden and hence, costs power.
In contrast to the above methods, the proposed method is simpler and less computationally expensive
and can support the machinery fault diagnosis in real time.

3. Proposed Framework

The proposed framework for machinery condition monitoring is shown in Figure 4. This consists
of the following stages: (i) compressive acquisition stage, (ii) feature extraction stage, and (iii)
classification stage. In the first stage, the signal acquisition using CS is performed to generate
compressive measurements. The second stage processes these measurements to extract relevant
features. The final stage uses a trained classifier to classify the features into different classes. The details
of these stages are presented below:

Figure 4. The proposed machinery condition monitoring scheme based on compressed signal
processing (CSP) for real time fault detection.

3.1. Stage-I: Compressive Acquisition

This first stage uses a CS acquisition method to sense the input signal. The various CS architectures
are available in literature, e.g., random demodulator (RD) [33], random modulator pre-integrator
(RMPI) [34], compressive multiplexer (CMUX) [35], etc., for this purpose. In this paper, RD has
been used for the acquisition of bearing vibration signals, because of its simple architecture. RD was
proposed by Laska et al., in 2007 and is an efficient wide-band signal sampler. It can sample signals at
a rate much below the Nyquist. The architecture of RD is shown in Figure 5. Here, the input signal
x(t) is first randomized by multiplying with a pseudorandom noise like sequence, say of +/− 1s.
This sequence is called chipping sequence pc(t). This randomization spreads the signal frequencies
to lower as well higher frequency regions. The resulted signal is then passed through an integrator,
which accumulates the multiplied signal for a specific duration and generates its unique frequency
signature occupying the lower frequency region. This low frequency signal is then sampled at a rate
much below the Nyquist rate of original signal and hence, results in fewer compressive measurements.
These measurements give a unique frequency signature corresponding to a particular input signal
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frequency and hence, preserves the information about the original signal. This information is useful
in recovering the original signal back from compressive measurements, as well as can be used for
inference applications.

Figure 5. Stage-I: compressive acquisition of sensor output signal using random demodulator.

The matrix form of RD operation is governed by (3) and (4). Here, P consists of n−terms of
chipping sequence along the diagonal. The multiplication with this matrix randomizes the input signal,
represented by x̃. The matrix H serves the purpose of accumulate and dump unit. This is an m× n
matrix, responsible for undersampling the signal by accumulating a specific number of samples of x̃.
The number of samples to be accumulated for generating a single output measurement is given by the
R = bn/mc, which is the number of ones in single row of H. The product of two matrices P and H
mimics the random matrix, ϕ [33,36].

P =

p1
. . .

pn

 ; H =

111 · · ·
111 · · ·

111 · · ·

 (3)

x̃ = Px

y = Hx̃ = ϕx

ϕ = HP

 . (4)

3.2. Stage-II: Feature Extraction

After obtaining compressive measurements, the second stage is the feature extraction stage.
As compressive measurements preserve the structure of underlying signal, which means that the
energy of compressive measurements will be specific for a specific input signal. Here, the energy in
compressive measurements of bearing vibration signal is used as a feature to distinguish between
the different conditions of a bearing. The features are extracted from compressive measurements for
the different undersampling factors under consideration. For comparison purpose, the features are
extracted from original signal as well. The process of feature extraction from original signal and from
compressive measurements is described below. In order to use the same filter coefficient matrices,
a slight modification in feature extraction process is required in case of compressive measurements
compared to the original signal.

3.2.1. Feature Extraction from Original Signal

For easing the feature extraction process, the signal is first divided into segments. To use energy as
a feature, the energy from each segment of original signal is extracted with the help of band-pass filters
and norm-2 computation, as shown in Figure 6. Here, each signal segment is passed through a bank of
eight band-pass filters (BPFs), which divides the signal bandwidth into eight equal bands. The reason
for using eight filters for each segment is that it improves the fineness in features, which enhances
the distinguishability among features belonging different classes. Use of more number of band-pass
filters will not significantly improve the fineness in features but will further increase the computational
burden. After this, the energy of these filtered signal segments is extracted by computing the 2-norm
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of each filtered output. This generates a single feature of dimensionality eight. Similarly, the other
elements of feature vector are generated from the next segments of bearing vibration signal.

Figure 6. Process of feature extraction from Nyquist samples.

3.2.2. Feature Extraction from Compressive Measurements

Here also, the compressive measurements are first generated segment wise and for each segment,
the features are extracted. The process of feature extraction from compressive measurements is shown
in Figure 7. In order to use the same filter matrices, which were designed for original signal, a slight
modification in above filtering process needs to be done for extracting the features from compressive
measurements. Here, the filter coefficients matrix Bi is modified by pre-multiplication with ϕ and
post-multiplication with ϕ†

R, as Equation (5):

B̂i = ϕBi ϕ
†
R. (5)

This generates m × m filter matrices having dimensions compatible with the compressive
measurements and hence can be easily used with these measurements. The mathematical derivation
of this formulation is presented below by assuming zi be the output of ith conventional filter and ẑi be
the output of ith modified filter, then ẑi is obtained by randomizing the zi as:

ẑi = ϕzi

B̂iy = ϕBix

B̂i ϕx = ϕBix

B̂i ϕ = ϕBi

post-multiplication with ϕ†

B̂i ϕϕ† = ϕBi ϕ
†

B̂i = ϕBi ϕ
†

where, y is the set of compressive measurements which are also the input of modified filters here
and x is the corresponding set of original signal measurements, also the input of conventional filters.
This relaxes the need to design m×m filter matrices separately corresponding to each undersampling
factor. Another advantage of this design is that compared to using the separate conventional m×m
filter matrices, the modified design yields better results when used with compressive measurements.
If using conventional m×m filters, then one needs to design separate filters corresponding to different
undersampling factors used, while in the modified design, the single n× n filter matrix designed for
original signal is used for compressive measurements corresponding to all the CS undersampling
factors. The multiplication given in (5) converts the size of n× n filter matrices to m×m according to
the undersampling factor used. A comparison of their performance is presented in the next section.
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Here, the set of compressive measurements are first passed through the modified filter stage, generating
eight filtered signals. The energy of each filtered signal is then extracted by computing its 2-norm.
This generates a single feature of dimensionality eight. The whole process is repeated for all the
segments belonging to respective undersampled signal to obtain the corresponding feature vector.

Figure 7. Method used for extracting features from compressive measurements.

3.3. Stage-III: Classification

In the third stage, classification from the features extracted needs to be done. The classification
problem dealt in this paper is a four class classification problem, as the four types of bearing faults
have been considered for experimentation. For this purpose, several classifiers like, linear support
vector machine (SVM), cubic SVM, fine k-nearest neighbour(k-NN), weighted k-NN, etc. have been
trained. The feature set on which classifier training and testing has to be done, is first divided into
training and test sets. 50% of the data are used as training set and the remaining 50% are used for
testing. The training is done separately on the features extracted from the original signal and from the
compressive measurements for different undersampling factors. All the trained classifiers are then
tested using different set of feature vectors. The classifier giving highest testing accuracy in almost
all the cases is then selected for classification. A comparison of classification accuracies obtained is
presented in next section. It has been found that out of these classifiers, the weighted k-NN classifier
gives highest testing accuracy in almost all the cases, hence is selected for classification purpose in this
work. The process of training and classification using weighted k-NN classifier is shown in Figure 8.

Figure 8. Process of classification of extracted features using weighted k-nearest neighbour
(k-NN) classifier.
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4. Results and Discussion

The bearing vibration data taken from Ladisk are shown in Figure 9 [28]. This database uses
force measurements for determining various bearing faults during the assembly process. The database
consists of six categories of vibration signal. But for simplicity, the experiments were performed on
only four categories of the signal, namely: axial fault, lubricant contamination fault, new bearing
signal, and radial fault. For this, a total of 2,400,000 samples of input signal were taken and were
processed in the segments of length 500. Each segment was equivalent to 0.1 s epoch of the signal.
On these data, all the simulations were done in MATLAB 2017a. For obtaining the features from
original signal, eight filter matrices of size 500× 500 were obtained from the filter coefficients. These
128 order FIR filters were designed to divide the signal bandwidth into eight equal parts. The frequency
of these filters ranged from 10 Hz to 2500 Hz. Therefore, the band of these eight BPFs was divided
as: BPF1 is 10–320 Hz, BPF2 is 321–630 Hz, BPF3 is 631–940 Hz, and so on. These bands were not
independent as the harmonics of a frequency in a band could be found in higher bands as well. For a
single segment of original signal, the filtering by eight band-pass filters generated a single feature
vector of dimension 1× 8. The energy of this feature vector was extracted by computing its 2-norm as
per Figure 6. By repeating this process for all the segments, a feature vector of dimension 4800× 8
was obtained. The feature extraction process was same for compressive measurements with a little
modification in the filtering stage. This process was repeated for the different undersampling factors
under consideration, in case of compressive measurements. For each case, the feature vectors of
dimension 4800× 8 were obtained, as shown in Table 1.

(a) (b)

(c) (d)

Figure 9. Bearing vibration signal taken from Ladisk: (a) signal with axial fault, (b) signal with
contamination in lubricant fault, (c) new bearing vibration signal and (d) signal with radial fault.

To show the effectiveness of the modified filtering stage used for feature extraction from
compressive measurements, over conventional filters, a comparison is presented in Table 2. If the
conventional filters are used then different size filter matrices Bci are required corresponding to
different CS undersampling factors, while using the modified filtering, the Bi matrices designed for
original signal suffice for compressive measurements as well. Only the size of filter matrices need
to be converted as per (5) to obtain B̂i. The comparison of accuracies of these two schemes shows
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that the scheme using modified filtering stage gives higher accuracy compared to the scheme using
conventional m size filters.

Table 1. Training and prediction accuracies of k-NN classifier for feature vectors obtained from original
signal and from compressive measurements for different undersampling ratios.

Signal Type Input Signal
Dimension

Feature Set
Dimension

K-Fold
Testing Accuracy
(%)

Original 240,000 4800× 8 10 99.2

Compressive
measurements for
an under-sampling
factor of

2 240,000 4800× 8 10 98.2

4 240,000 4800× 8 10 97.9

8 240,000 4800× 8 10 94.6

16 240,000 4800× 8 10 93.3

Table 2. Performance comparison of scheme using m-size conventional filters and the proposed scheme.

CS
Undersampling

Dimensions of Filter Matrices Classification Accuracy Using

Conventional Nyquist Modified Filters Conventional Modified
Filters (Bci) Filter (Bi) (B̂i = ϕ× Bi ×ϕ†) Filters (Bci) Filters (B̂i)

2 250× 250 500× 500 250× 250 88.7 98.2

4 125× 125 500× 500 125× 125 85.3 97.9

8 62× 62 500× 500 62× 62 79.4 94.6

16 31× 31 500× 500 31× 31 70.8 93.3

The classification was done separately for all the feature vectors so obtained using several
classifiers. A comparison of accuracies obtained using these classifiers is presented in Table 3. Out of
these classifiers, the weighted k-NN classifier was observed to give higher accuracy and hence was
selected for classification purpose in this work. After dividing the feature vectors into training and
test sets, the classifier was trained on the training set using 10-fold cross validation. The performance
of trained classifier was then tested on test set. The testing accuracies obtained are shown in Table 1.
This table compares the classification accuracies obtained on the features extracted from original
Nyquist rate signal with the features extracted from the compressive measurements for different
undersampling factors. The accuracy obtained on features extracted from original signal was 99.2%.
On the other hand, the proposed method, which directly applied feature extraction and classification on
compressive measurements, was able to achieve comparable accuracies for the different undersampling
ratios considered here. The gain here is in terms of the power saving achieved by using CS acquisition
and by directly extracting features from compressive measurements without reconstructing the original
signal. A comparison of computational complexity is also presented in Table 4. This table compares the
block-wise computational cost of processing the signal using conventional CS and using the proposed
method. Although the cost of acquisition and classification stages are same for the two methods,
but our method outperforms in case of communication, reconstruction, inverse transform and feature
extraction stages compared to the conventional method. The complexity of reconstruction stage used
in conventional method varies with the reconstruction approach used [37]. The complexity of other
stages are calculated as per the description given in [38,39]. This table clearly shows the applicability
of proposed method for the real time machine condition monitoring.
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Table 3. Performance comparison of different classifiers in classifying the features extracted from
compressive measurements.

Classifier
Accuracy for CS Undersampling Factor of

2 4 8 16

Simple Tree 95.4% 94.6% 89.4% 83.0%

Medium Tree 95.6% 95.6% 93.0% 89.4%

Complex Tree 95.6% 95.6% 93.0% 89.4%

Fine k-NN 97.2% 96.4% 94.4% 91.8%

Medium k-NN 97.2% 97.2% 94.2% 92.3%

Cosine k-NN 95.6% 94.8% 89.4% 87.6%

Cubic k-NN 97.2% 97.2% 94.1% 92.0%

Weighted k-NN 98.2% 97.9% 94.6% 93.4%

Linear SVM 95.9% 95.4% 93.8% 92.5%

Quadratic SVM 95.6% 95.6% 93.0% 91.5%

Cubic SVM 96.4% 96.1% 93.0% 91.0%

Table 4. Comparison of traditional compressed signal (CS) approach and proposed method based on
computational complexity

Computational Block
Cost

Conventional CS Approach Proposed Method

CS Acquisition same same

Communication high (transmits measurements) low (transmits status)

CS Reconstruction (e.g., OMP) O(n.m.k) −
Inverse Transform (e.g., IFFT) O(n log n) −
Feature Extraction high: O(n3) low: O(m3)

classification same same

Another performance comparison of the proposed method on this vibration dataset [28] is done
using different sensing matrices like: sampling with the matrix of the form [1 1 1 1 0 0 0 0 0 0 ... ; 0 0 0 0
1 1 1 1 0 0 ...] (i.e., a non random ϕ, but a ϕ with all +1s), (ii) sampling with the matrix of the form [1 0
0 0 0 0 0 0 0 0 ...; 0 0 0 0 1 0 0 0 0 ...] i.e., the 1:4 subsampling matrix and (iii) sensing with RD matrices
[+1 −1 −1 +1 0 0 0 0 0 0 0 0 0 ...; 0 0 0 0 −1 +1 +1 −1 0 0 0 0 0 ...;]. The results are shown in the Table 5,
which shows that RD matrices outperforms the first two cases. Also, the performance of classifier in
classifying the features extracted from original signal as well as from compressive measurements is
compared using the standard measures i.e., sensitivity, positive prediction and F-measure. These are
calculated as per the following equations:

Sensitivity (S) =
TP

TP + FP
× 100, (6)

Positive prediction (P) =
TP

TP + FN
× 100, (7)

F-measure (F) =
2TP

2TP + FP + FN
× 100, (8)
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where, TP stands for true positive, FP for false positive and FN for false negative. The values of
these parameters are computed from the confusion matrices shown in Figure 10. The average results
of these three measures for several iterations have been calculated for each condition separately.
The range of variations of these measures so obtained have been plotted as shown in Figure 11.
This shows that for high undersampling factor like 16, the performance of classifier in classifying the
features extracted from compressive measurements is upto the mark and hence, the proposed method
performs satisfactorily.

Table 5. Performance comparison of proposed scheme using different sampling matrices tested on the
vibration dataset taken from Ladisk [28].

CS
Undersampling

Classification Accuracy Using

Case 1 (Non-Random ϕ) Case 2 (Sub-Sampling Matrices) Case 3 (RD Matrices)

2 91.5% 92.3% 98.2%

4 88.5% 88.7% 97.9%

8 84.0% 85.3% 94.6%

16 79.4% 80.9% 93.3%

(a) (b) (c)

(d) (e)

Figure 10. Confusion Matrices of classification results generated by k-NN classifier for : (a) original
signal, (b) CS undersampling by factor of 2, (c) CS undersampling by factor of 4, (d) CS undersampling
by factor of 8 and (e) CS undersampling by factor of 16.
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(a) (b) (c)

Figure 11. Comparison of classifier performance using: (a) sensitivity, (b) positive-prediction,
and (c) F-measure, in classifying the features obtained from original signal and from compressive
measurements with varying undersampling ratios for different bearing conditions.

5. Challenges and Future Scope

The concept of real time machine condition monitoring is exciting and challenging. Although the
techniques based on CSP are efficiently able to overcome the limitations of conventional method in this
regard. But still there are some challenges that need to be addressed. Here, some of major challenges
in the field are listed along with the associated future scopes.

• The pseudorandom sequence used in the acquisition stage must be good enough in randomizing
the input signal. This aspect can be improved to achieve better performance at higher
undersampling factors.

• The bearing fault classification is a multiclass classification problem. This requires significant
efforts for training and testing the classifiers. So it is very difficult to identify better performing
classifier for this purpose. Some efforts can be done to improve upon this part of problem.

• This work can be further extended to test the proposed technique on other bearing vibration datasets.
• The performance of proposed method degrades to some extent at higher undersampling factors.

Alternate feature extraction process can be sought for achieving satisfactory performance even at
some higher undersampling factors.

• Another future scope of this work is to implement the proposed technique on hardware and
analyzing its performance in real time.

6. Conclusions

The inherent disadvantages of Nyquist sampling technique discourages its use in power
constrained environments like, wireless tele-health monitoring, real time processing, ultrahigh
wideband processing, etc. In such environments, the performance of CS has been found to be promising.
However, the conventional CS requires signal reconstruction, which is very complex and consumes lot
of time and power. So, this framework is not suitable for diagnosing the faults in real time. In this
scenario, CSP based approaches are attractive and challenging to work with, because this approach
tries to solve the inference problems without reconstructing the original signal back from compressive
measurements. This paper proposed an approach based on CSP for monitoring the machinery
condition. Here, the features are directly extracted from the compressive measurements and their
classification has been done using k-NN classifier to diagnose the machinery faults. The performance
of proposed method has been compared with the features extracted from original signal and it has been
found that the proposed scheme performs satisfactory while reducing the computational complexity
to a great extent.
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