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Abstract: Single frequency real-time kinematic (RTK) positioning is expected to be the leading
implementation platform for a variety of emerging GNSS mass-market applications. During RTK
positioning, the most common source of measurement errors is carrier-phase cycle slips (CS).
The presence of CS in carrier-phase measurements is tested by a CS detection technique and
correspondingly taken care of. While using CS prone measurement data, positioning reliability is
an area of concern for RTK users. Reliability can be linked with the CS detection scheme through a
least squares (LS) adjustment process. This paper proposes a CS detection framework for reliable
RTK positioning using single-frequency GNSS receivers. The scheme uses double differenced
measurements for CS detection via LS adjustment using a detection, identification, and adaptation
approach. For reliable positioning, the procedure to link the detection and identification stages
is described. Through tests conducted on kinematic data, internal and external reliability are
theoretically determined by calculating minimal detectable bias (MDB) and marginally detectable
errors, respectively. After introducing CS, the actual values of MDB are found to be four cycles,
which are higher than the theoretically obtained values of one and two cycles. Although CS detection
for reliable positioning is implemented for single-frequency RTK users, the proposed procedure is
generic and can be used whenever CS are detected through statistical tests during LS adjustment.

Keywords: cycle slip detection; least squares adjustment; minimal detectable bias; RTK; reliability

1. Introduction

Nowadays, highly precise positioning and navigation solutions are obtained by using carrier-phase
based positioning techniques such as real-time kinematic (RTK) positioning [1]. High precision is
achieved once the initial phase ambiguities, inherent with carrier-phase observations, are resolved [2].
However, owing to signal blockage by obstacles and receiver motion, the continuous tracking of GNSS
carrier-phase signals between two consecutive measurement epochs might get interrupted. Such a
tracking loss, termed as a cycle slip, introduces a bias in carrier-phase measurements. As a consequence
of cycle slips (CS), carrier-phase ambiguities need to be resolved again to avail RTK positioning
accuracy. Single-epoch ambiguity resolution is very challenging in RTK because of receiver dynamics
and the time-sensitive nature of the kinematic solution. Therefore, instead of resolving ambiguities
again, it is beneficial if CS are detected and the corresponding measurements are taken care of [3,4].
CS detection techniques are able to perform better for dual-frequency receivers due to their ability to
eliminate ionospheric effects on measurements. However, single-frequency receivers occupy more than
60% share of the current GNSS receiver market [5]. Coupled with the demand for higher positioning
accuracies for commercial users, the focus has now shifted to using single-frequency receivers for
providing accurate and precise navigation solutions for the mass market [6–8]. Single-frequency
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differential positioning is expected to be the primary tool for a plethora of consumer applications in
areas as varied as geomatics, precision agriculture, location-based services, internet of things, and
mHealth [9].

For the wide variety of RTK commercial applications, quality control of received data in real-time
positioning is an area of concern [10,11]. This is due to GNSS data being subjected to measurement
errors such as CS, which, if not detected, significantly degrade overall system performance [12]. Quality
control involves the estimation of variances, quality tests of significance on variances, and possibly
other checks [13]. In geodesy, the quality of a navigation solution can be catered to by the least squares
(LS) adjustment theory. The LS adjustment theory deals with an optimal combination of unknown
measurements, together with the combination of unknown parameters [14–16]. Using this theory, it has
been established that, given the availability of redundant measurements, measurement biases can be
detected by using statistical tests in connection with the adjustment of networks [17]. For positioning
using code-pseudoranges, several receiver autonomous integrity monitoring (RAIM) techniques have
been developed for GNSS data quality monitoring based on adjustment theory [18–20]. Measurement
quality control is practiced by assessing, detecting, and isolating failure situations through a fault
detection and exclusion procedure [18]. By applying RAIM techniques, the quality of the position fix
can also be quantified during the design procedure. In this respect, the important aspects to consider
are the quality of the position fix result under nominal conditions (precision) and the sensitivity of the
position fix to undetected model errors (reliability) [21]. Although RAIM was traditionally designed
for systems utilizing code-phase measurements for positioning, these techniques have recently been
applied to CS detection in carrier-phase based positioning schemes [22]. This CS detection approach
can be further extended to incorporate the evaluation of reliability in position fixing.

The concept of reliability was introduced by Baarda [14] in the context of statistical testing for
outlier detection during LS adjustment for the determination of the navigation solution. As per
definition, the strength of a system model depends on the level of confidence one has in the outcomes of
the statistical tests. This confidence is monitored by the reliability of the fix [23]. Specifically, reliability
refers to the ability of the system to detect measurement outliers (internal reliability) and the effect
that undetectable outliers have on the estimated values derived from these measurements (external
reliability) [23,24]. Internal reliability is defined in terms of minimal detectable bias (MDB) [23]. These
are the biases that may be found with a certain probability in the outlier test. External reliability is
defined in terms of the marginally detectable error (MDE) [11]. It is the influence of undetected bias on
the final result of a geodetic adjustment. The statistical testing procedure presented in [14] was broken
down into three parts, namely, detection, identification, and adaptation (DIA) by Teunissen [25]. It is
seen that to determine the reliability of a position fix, the statistical tests in detection and identification
steps are interrelated [14,23,25].

For single-frequency receivers, statistical testing during LS adjustment was used for CS detection in
references [22,26–31]. All the implemented schemes were able to detect CS for an MDB of one cycle [9].
However, none of the mentioned schemes have discussed MDE, whereas it is recommended that the
reliability measure of a differential position fix should be expressed in terms of external reliability [11].
Similarly, the relationship between the statistical tests during detection and identification is not
considered; as a result, the reliability of the position fix cannot be asserted for any of the CS detection
techniques for single-frequency receivers. This paper aims to bridge this void by presenting a detailed
procedure to detect CS and determine a reliable position fix for single-frequency RTK positioning. The
process is led by the DIA procedure. The chosen level of reliability is achieved by deriving decision
thresholds in detection and identification stages through equating their non-centrality parameters
determined from their respective probability density function (PDF). The proposed framework is
tested on two kinematic datasets, and theoretical values of MDB and MDE are obtained. After CS are
introduced in carrier-phase measurements, it is seen that they can be detected and a reliable position
fix is obtained given the magnitude of CS is four cycles or more. It is observed that although the
theoretical value of MDB is one to two cycles, the actual values are slightly higher. This is mainly
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attributed to the value of detection and identification thresholds determined from the chosen level of
significance in the local test.

The proposed framework provides an in-depth procedure for incorporating the concept of
positioning reliability with CS detection for single-frequency receivers. The flow of the paper is as
follows. Section 2 discusses the CS detection algorithm for single-frequency RTK positioning. The
single-frequency RTK positioning model developed for this research is introduced, followed by the
LS adjustment and CS detection process through the DIA framework. In Section 3, the concept of
positioning reliability is introduced, and the process of determining a reliable position fix by exploring
the relationship between decision thresholds in the statistical tests for detection and identification is
presented. Section 4 presents the results of the proposed framework. It describes the experimental
setup, choice of parameters, and the magnitude of detected CS both theoretically and in practice. The
discussion is concluded in Section 5.

2. CS Detection for Single-Frequency RTK Positioning

2.1. Single Frequency RTK Model

The code-phase and carrier-phase measurements, for a receiver r, at an epoch t, can be expressed
as a pseudorange observation (in units of meters) as follows [1,2]:

ρs
r(t) = Rs

r(t) + c(δtr(t) − δts(t)) + Is
r(t) + Ts

r(t) + ερ
φs

r(t) = Rs
r(t) + c(δtr(t) − δts(t)) − Is

r(t) + Ts
r(t) + λsAs

r + εφ
(1)

where ρs
r(t) and φs

r(t) represent the measured code and carrier-phase observable for satellite s; Rs
r(t) is

the geometric distance between the receiver and the satellite; c is the speed of light; δtr(t) − δts(t) is
the clock bias representing the combined offsets of the receiver clock δtr and satellite clock δts with
reference to system time t; Is

r and Ts
r represent delays associated with signal transmission through

ionosphere and troposphere, respectively; λs is the wavelength of carrier signal and is taken as
1/L1 for single-frequency; As

r = Ns
r + δr − δs is the phase ambiguity parameter and is a sum of

the carrier-phase ambiguity Ns
r (in cycles) and the instrumental receiver and satellite phase delays

δφr − δφs (in cycles); and ερ and εφ are the code and carrier-phase noise terms including the multipath
noise. For Equation (1), it is assumed that the following corrections are taken care of by the receiver
software [2]: satellite clock correction to cater for the difference between satellite vehicle (SV) time,
time group delay correction, and relativistic correction.

In RTK, the double difference (DD) model is generally used for positioning. A DD measurement
is obtained by differencing measurements between base b and rover r receivers and differencing the
resulting values between two satellites [1]. DD is done with respect to a reference satellite, which is
generally chosen as the one with the highest elevation. Considering both code-phase and carrier-phase
measurements for satellites J and K, at same carrier frequencies, the DD at an epoch t, taking J as the
reference satellite, is given as

ρJK
br = RJK

br + IJK
br + TJK

br + ερ
φJK

br = RJK
br − IJK

br + TJK
br + λNJK

br + εφ
(2)

The advantage of DD is that it removes common errors and biases at both ends of the baseline such
that the initial carrier-phase ambiguities are integer in nature. If the baseline is short (approximately
<10 km), the atmospheric effects on measurements in Equation (2) can be ignored [1,2], and Equation (2)
simplifies as [2]

ρJK
br = RJK

br + ερ
φJK

br = RJK
br + λNJK

br + εφ
(3)
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The method of LS will be used for RTK positioning. Considering the base to be at a known
position, the observation equations are linearized about baseline Xbr. For M satellites, assuming that
the first satellite is chosen as reference, from Equation (3), the linearized DD code and carrier phase
equations can be written as follows [32]:


δρ12

br
...
δρ1M

br

 =


(
−112

r

)T

...(
−11M

r

)T

δXbr =[UM−1]δXbr (4)


δφ12

br
...
δφ1M

br

 =


(
−112

r

)T
λ 0 0

... 0
. . . 0(

−11M
r

)T
0 0 λ



δXbr
N12

br
...

N1M
br

 =
[

UM−1 Λ M−1

]

δXbr

N12
br

...
N1M

br


where for k = 2, 3 . . . , M the terms in Equation (4) are defined as

δρ1k
br = change in DD code-phase observable

δφ1k
br = change in DD carrier-phase observable

δXbr = size (3× 1) vector for change in baseline such that

δXbr = [δxbr, δybr, δzbr](
−11k

r

)T
is the three-dimensional unit vector from base to rover such that [33]

(
11k

r

)
=

[
∂R1k

r
∂xr

∂R1k
r

∂yr

∂R1k
r

∂zr

]
and

∂R1k
r

∂xr
=

∂
∂xr

[
R1

b −Rk
b −R1

r + Rk
r

]
UM−1 = size (M− 1) × 1 vector of unit vector
ΛM−1 = size (M− 1) × (M− 1) diagonal matrix of wavelength λ

For single-epoch single-frequency RTK positioning, the linearized code and carrier–phase
equations are combined to form the LS model [32].

δρ12
br

...
δρ1M

br
δφ12

br
...
δφ1M

br


=

[
U O
U Λ

]
δXbr
N12

br
...

N1M
br

 (5)

For the RTK LS model in Equation (5), the size of the measurement vector (the left side of
Equation (5)), is 2M− 2. The redundancy of an LS model is determined by the number of measurements
minus the number of unknowns. For unresolved ambiguities, the redundancy of the model is M− 4.
The redundancy increases to 2M− 5, once ambiguities are resolved as integers.
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DD observation equations are correlated. The variance-covariance (VCV) matrix for the M− 1 set
of DDs is given by size (M− 1) × (M− 1) matrix with 2 at diagonal and 1 elsewhere as follows.

QDD,M−1 = 2σ2


2 1 · · · 1
1 2 1
...

...
. . .

...
1 1 2

 (6)

Assuming zero correlation between code and carrier observations, the measurement VCV matrix
Qδ for the single frequency RTK model is given by

Qδ =

 2σ2
ρQDD,M−1 0M−1

0M−1 2σ2
φQDD,M−1

 (7)

where 0M−1 is a size (M− 1) × (M− 1) matrix of zeros; σ2
ρ and σ2

φ are the variances of code-phase and

carrier-phase noise, respectively. These values are assumed to be a priori known and are set at 1 m2

and (0.01 + 1 ppm) m2, respectively.

2.2. Least Squares Adjustment

The functional model for LS adjustment is based on a linearized Gauss—Markov model of
geodetic adjustment for m measurements and n unknowns. The functional model can be written as
follows [17,34]:

y = Ax + v (8)

where y is the size m× 1 measurement vector; A is the full rank m× n geometry matrix determined
from observation equations; x is the size n× 1 unknown vector with n ≤ m; v is the size m× 1 residual
or measurement noise vector assumed to be distributed with zero mean such that E(v) = 0. Assuming
a correct measurement model, observational residuals indicate the extent to which the measurements
agree with each other. The examination of LS residuals for the detection of erroneous data is one of the
most important and effective means for quality control of geodetic networks [13].

To properly weigh observations in the adjustment process, the dispersion in measurements needs
to be specified [23]. Therefore, the stochastic model for y is defined with its expected value (mean) and
dispersion (variance) as

E(y) = Ax
D(y) = σ2

0Qy
(9)

where Qy is the size m×m VCV matrix for observations; σ2
0 is the a priori variance of unit-weight and

plays an important role in outlier detection [16,24].
Using LS, the best linear unbiased estimate of the unknown vector x is given as x̂ [15,35]:

x̂ =
(
ATQ−1

y A
)−1

ATQ−1
y y =

(
ATPyA

)−1
ATPyy (10)

where Py = Q−1
y is the cofactor or weight matrix for observations.

After LS adjustment, the measurement residual v̂ is given as

v̂ = y−Ax̂ (11)

Using the Gauss error propagation law, the residual VCV is given as a size m ×m matrix Qv̂v̂
as follows:

Qv̂v̂ = Qy −ATQx̂x̂A (12)
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where Qx̂x̂ =
(
ATPyA

)−1
is the size n× n VCV matrix for x̂.

LS adjustment is capable of estimating σ2
0 from observations. This estimated σ̂2

0 is known as the a
posteriori variance of unit weight.

σ̂2
0 =

v̂TPyv̂

m− n
(13)

An adjustment is said to be correct if the a priori and a posteriori variances of unit weight are
statistically equal [2,16].

2.3. Detection, Identification, and Adaptation (DIA) Approach

CS detection is conducted using DIA approach [21,23,35]. CS are treated as outliers in carrier-phase
measurements, and their presence is tested based on the theory of hypothesis testing in linear models
using generalized likelihood ratio tests [17]. For CS detection, the null hypothesis H0 is assigned to the
situation where the measurements are free of CS. The alternate hypothesis Ha refers to the situation
when the measurements are contaminated by CS. The generalized likelihood ratio-test helps to choose
one hypothesis over the other based on the ratio of their likelihoods. For decision making, the choice
of threshold T is based on system design parameters and its value is numerically determined from the
PDF of measurements. In geodesy, the probability associated with the threshold, beyond which the
occurrences of test-statistics are marked as outliers, which is called the level of significance α [11]. The
situation where the magnitude of outliers is so small that the data containing outliers is accepted as
having none is termed as a Type II error and represented by β [11]. Correspondingly, the probability of
successful outlier detection is determined by the power of the test γ = 1− β.

2.3.1. Detection

For CS detection, the mean-shift measurement model is employed where the presence of a
measurement outlier shifts the measurement mean [23,36]. In the case of a cycle slip, the bias or
mean-shift is proportional to the magnitude of the slip whereas its variance remains the same. Thus,
for the alternative hypothesis Ha, the measurement model can be written in the following way:

y = Ax + c∇+ v (14)

where c is a known vector of the size 1× q, which takes the form (0, . . . , 0, 1, 1 . . . 1)T where the presence
of 1 indicates the location of CS contaminated measurements; ∇ is an unknown error vector of size
q× 1 with q being the dimension of outlier [23]. Subsequently, both the null and alternate hypotheses
are described as follows:

H0 : y ∼ N
(
Ax, σ2

0Qy

)
Ha : y ∼ N

(
Ax + c∇, σ2

0Qy

) (15)

To test whether the adjustment model is correct, an overall model test or global test (GT) is carried
out to check the validity of H0 with respect to Ha. The GT uses variance tests such that the adjustment
is assumed to be correct if the a priori and a posteriori variances of unit weight are statistically equal.
Assuming σ2

0 to be equal to 1, the variance test determines the proximity of σ̂2
0 to unity [11,16,24,35].

The formulation of the hypothesis test for detection would thus become [16,24]

H0 : σ2
0 = σ̂2

0
Ha : σ2

0 , σ̂
2
0

(16)

The test-statistic is, therefore, written as [16,35]

Tm−n =
σ̂2

0

σ2
0

=
v̂TPyv̂
m− n

(17)
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Thus, the test statistic is derived from the weighted sum-of-squares of LS residuals divided by
the redundancy m− n. The test statistic has a Fisher or F-distribution distribution such that the null
hypothesis will be rejected when [11,16,23,24]

Tm−n > Fα(m− n,∞, 0) =
χ2
α(m− n, 0)

m− n
(18)

where α is the chosen level of significance; F(m− n,∞, 0) is the central F-distribution with an m− n
degree of freedom for the numerator and an∞ degree of freedom for the denominator [24]. The equality
on the right side of Equation (18), χ2

α(m− n, 0), is the equivalent central chi-square distribution with an
m− n degree of freedom. This equality exists on the base of the relationship between F-distribution
and χ2 distribution. The chi-square test is traditionally used for fault detection in RAIM. Figure 1
shows this situation for six degrees of freedom. If H0 is rejected and Ha is accepted, a measurement
inconsistency is detected and the outlying measurement must be identified and eradicated.
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2.3.2. Identification

Once an error is detected, the potential source of error is identified and removed through a local
test (LT). For the classical one-dimensional case (one error per adjustment), an outlier can be identified
using the test statistic

Tq=1 = w2 =

(
cTPyv̂

)2

cTPyQv̂v̂Pyc
(19)

When square root is taken, Equation (19) forms Baarda’s w-test used in geodesy [14,23]

w =
cTPyv̂√

cTPyQv̂v̂Pyc
(20)

The w-test has a standard normal distribution under the null hypothesis. For a chosen level of
significance α0, a model error is detected when |w| > Nα0/2(0, 1). This situation is shown in Figure 2.
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Figure 2. Probability density function (PDF) of the unbiased and biased normal distributions in the
local test.

For this framework, the usual practice of data snooping in geodesy, i.e., to check each individual
observation set for potential outliers, is used. For an observation i, the test statistic wi reads as

wi =
cT

i Pyv̂i√
cT

i PyQv̂v̂Pyci

(21)

By scanning through the whole data set, the test statistic wi, which returns the largest value,
pinpoints the observation which is most likely corrupted with a gross error. Its significance can be
measured by comparing it with a critical value. The ith observation is suspected to be biased when

|wi| ≥
∣∣∣w j

∣∣∣ for all i and
∣∣∣w j

∣∣∣ > Nα0/2(0, 1) (22)

where α0 is the level of significance of the local test. The subscript 0 indicates that it is for LT for
the identification of outliers. Baarda’s w-test only makes a decision between the null and a single
alternative hypothesis where the rejection of H0 automatically implies the acceptance of Ha, and vice
versa [37]. In general, the w-test is unable to detect small outliers. However, small outliers have little
effect on the solution [38].

2.3.3. Adaptation

Once all the sources of model error are identified, remedial action needs to be taken to get the
null hypothesis accepted. The adaptation phase refers to the effective handling of the outlier such that
the adjustment is satisfactory. For the proposed framework, to facilitate adaption of null hypothesis
through LS adjustment, the measurement identified as an outlier is eliminated.

3. Reliable Positioning

To obtain consistent high-precision positioning results with GPS carrier-phase measurements,
errors unspecified in the functional or stochastic model should be correctly detected and removed
or otherwise handled at the data processing stage [39]. Reliability refers to the system’s capability
to detect such errors and to estimate the effects that they may have on the position. Reliability is
measured by stating the size of error that might remain undetected with a specified probability [11].
Both internal and external reliability are distinguished in this respect. The internal reliability of a GNSS
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positioning solution is its ability to detect outliers for the chosen level of significance and power of
test. External reliability informs of the impact of undetected errors on estimated positions [40]. A high
internal reliability implies that small errors can be detected. High external reliability implies that
statistically undetectable outliers have very little effect on the final position [11]. Reliability is driven
by accuracy of observations, adjustment redundancy, and satellite geometry [16,23,35].

To ensure that the model error c∇ is reliably detected, with the same probability by both the
overall model test and the w-test, the B-method of testing is used [14,35]. In this method, the F-test
of the detection step and the w-test of the identification step are linked with each other. Given that
λ(αm−n, m− n,γm−n) is the non-centrality parameter of the Tm−n statistic for GT and λ(α0, 1,γ0) is the
non-centrality parameter for the Tq=1 statistic for LT, the parameter λ0 is given as

λ0 = λ(α, m− n,γm−n = γ) = λ(α0, 1,γ1 = γ) (23)

The procedure is to make a choice for α0 and γ0 and calculate λ0 and α from the given relationship.
This choice of equal values for the non-centrality parameter λ = λ0 and power γ = 1− β in both tests
implies that a certain model error can be found with the same probability by the F-test and the w-test.
Both tests will, therefore, have the same reliability. Therefore, an adjustment is unreliable if after a GT
failure, the LT does not fail because there is an inconsistency between the two tests, i.e., H0 is accepted.
For a chosen value of α0 for the LT, the procedure for determining values for α and the corresponding
threshold in the GT is given in Table 1 [14,24,35,41]. It should be noticed that Step 1 is chosen at the
design stage of the system whereas Steps 2 to 5 are conducted on an epoch by epoch basis. The values
in Step 3 are derived from the monograms given in [14].

Table 1. Determining the threshold for the global test.

S.No. Step Parameter Procedure

1 Choose α0,γ Done once at the design stage
2 Determine Redundancy 2M− 5 Calculated from number of visible satellites
3 Determine λ0 Equation (23)
4 Find α Monogram [14]
5 Determine Tm−n Equation (18)

3.1. Internal Reliability

Internal reliability is defined as the error that can be detected by the generalized likelihood ratio
test with a probability of correct detection being γ0 = 1 − β0. It is expressed in terms of minimal
detectable bias (MDB). By definition, the MDB of an alternative hypothesis is the smallest outlier that
can lead to the rejection of a null hypothesis for the given probability level α0 and β [37]. Since for the
proposed framework, it is assumed that only one observation is corrupted by CS at a single epoch, the
following expression can be given for the MDB ∇ as [16,42]

|∇| =

√
λ0(α0, 1,γ1)

cTPyQv̂v̂Pyc
=

δ0√
cTPyQv̂v̂Pyc

(24)

where δ0 is the shift in mean for the two hypotheses. The value for δ0 can be determined as [43]

δ0 = N1−α0/2(0, 1) + N1−β0(0, 1) (25)

It is seen that varying α0 and β = β0 directly affects the reliability statement, so whenever an MDB
is quoted, it should relate to both α0 and β0 [11]. Unless the data has a very large number of outliers,
any level of significance α0 from 0.1% to 5% is expected to lead to identical results [11]. On the other
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hand, since the MDB indicates the magnitude of outliers that can be found with a reasonable certainty,
in order for the MDB to be a meaningful figure, γ has to be fairly large [11].

3.2. External Reliability

It is recommended that the reliability measure of a differential position fix should be expressed in
terms of external reliability [11]. External reliability is defined as the influence of undetected bias c∇
on the final results of a geodetic computation or adjustment. It is expressed in terms of a marginally
detectable error (MDE) [11]. The MDE, computed for all observations, is viewed as a measure of the
capability of the network to detect blunders with probability γ [16]. A positional MDE is the effect
of an undetected observational bias, with a magnitude that corresponds to the size of MDB, on the
computed position [35,40,44]. The positional MDE can be determined as [40]

∇x̂ =
(
ATPyA

)−1
ATPyc∇

= Qx̂x̂ATciPy(MDB)
(26)

External reliability is assessed by the largest horizontal positional MDE [11].
The framework to assess whether a position fix is reliable is represented by the flow chart in

Figure 3. When there are no CS in measurements, H0 for GT is true, the solution is deemed reliable,
and the reliability parameters, i.e., the MDB for all visible satellites and the MDE values, are evaluated.
For this scheme, LT is carried out for fault identification only if H0 of the GT is rejected, and only the
observation with the largest value of wi is tested and possibly rejected. However, once the GT fails, but
no CS are identified in local test, the solution is deemed unreliable and the position fix is computed.
The status as to whether the solution is reliable or not, and the case when the former is true, the MDB
and MDE values, as well as the position, are displayed at the user front end.
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4. Experimental Setup, Results, and Discussion

4.1. Data Collection

For testing purposes, base and measurement data were obtained through two HUACE® CHC I80
RTK receivers. Although the receiver is capable of receiving dual-frequency measurements, only L1
carrier-phase and C/A code observations are used. To reduce the multipath effect on measurements
and still maintain a strong satellite geometry, an a priori elevation mask of 10◦ is applied for all
measurements. Data were collected in the football field of Beihang University at a sampling frequency
of 1 Hz for two kinematic scenarios. The details about the data are given in Table 2. For both the
situations, a total of 9 GPS satellites was available. The rover path for both the scenarios is given in
Figure 4 [45] where the white dot marks the reference position, i.e., the base location and the green
curve plots the trajectory. Data from both receivers were acquired in HUACE propriety format. It was
converted to RINEX format for post-processing. For both scenarios, base and rover data were checked
to be CS-free using teqc® [46]. There was no atmospheric abnormality on both days [47] and hence it
was safe to assume that Equation (3) and the following single-frequency RTK model in Equation (5)
could be used. For data processing, the highest elevation satellite was chosen as a reference for
DD measurements.

Table 2. Details of datasets used for testing.

Dataset Date
(DD-MM-YY) Day of Year Number of

Epochs

Baseline
Length

(Meters)

Visible
Satellites (PRN)

Reference
Satellite
(PRN)

1 27-07-2019 208 258 3 to 66 1,3,8,11,17,18,19,22,28 28
2 31-07-2019 212 906 0.5 to 140 1,3,8,11,17,18,22,28,30 1
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4.2. Choice of Parameters

The number of GPS satellites visible over Beijing within a 24 h duration is shown in Figure 5
for 31 July 2019 [48]. As seen, the minimum and maximum number of GPS satellites varies from 6
to 11 over the course of an entire day. CS detection takes place once ambiguities are resolved, and,
corresponding to the satellite availability, the measurement redundancy varies as (7,9,11,13,15,17).
From the procedure to assess the reliability of the position fix given in Table 1, the thresholds for
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detection and identification stages are determined. The values are listed in Table 3 for two values:
α0 = 0.1% (99.9% level of confidence) and α0 = 1% (99% level of confidence). Either of these values is
recommended in literature [14,16,17,35]. The recommended value of β = 80% was chosen [11,23].Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 
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Table 3. Variation of the global test parameter α against α0 and the redundancy using the chi-square test.

Redundancy α0=0.1%,Tq=1=2.58,λ0=17.07 α0=1%,Tq=1=3.29,λ0=11.67

α Tm−n α Tm−n

7 0.02 4.765 0.1 7.041
9 0.035 5.411 0.125 7.493

11 0.05 5.892 0.15 7.901
13 0.06 6.163 0.175 8.278
15 0.07 6.409 0.2 8.634
17 0.08 6.634 0.25 9.299

4.3. Results

Both datasets were evaluated for CS detection and the values of MDB and MDE were determined.
A single CS was introduced midway between the datasets and was checked through the DIA procedure.
The results were analysed one by one for each dataset.

The MDB values for Dataset 1 are plotted in Figure 6 for α0 = 1%. The MDB values at epoch
150 and mean MDB are given in Table 4. The values are given in floating-point format as they are
derived mathematically; however, the number of CS is always an integer. Hence the actual value of
MDB is the ceiled number. It is seen that, theoretically, the MDB values remain between one and two
cycles. It is seen that as α0 increases, the value of MDB decreases due to the decrease in magnitude
of non-centrality parameter in Equation (24). This means that theoretically a smaller magnitude of
CS can be detected if the level of significance is lowered. Figure 7 presents the MDE for an analysis
of the external reliability for α0 = 1%. Both the horizontal and vertical MDE values are plotted for
illustration. As the number of satellites as well as the observable satellites remain the same during
the entire course of observations, the horizontal positional MDE will remain around 0.43 m and the
vertical positional MDE will remain around 0.79 m. This implies that a CS equal in magnitude to the
MDB for a particular satellite would cause a positioning error equal to the MDE values quoted, i.e., for
dataset 1, the occurrence of an undetected marginally detectable error in the measurements would
cause a horizontal positioning error of 0.52 m in about 80% of fixes.
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Table 4. Minimal detectable biases (MDBs) for observable satellites in Dataset 2.

SV
α0=0.1% α0=1%

MDB Epoch 150
(Cycles)

Mean MDB
(Cycles)

MDB Epoch 150
(Cycles)

Mean MDB
(Cycles)

1 0.994 0.994 0.822 0.822
3 1.373 1.376 1.136 1.138
8 1.236 1.234 1.022 1.021
11 0.959 0.959 0.793 0.793
17 1.032 1.032 0.854 0.855
18 1.123 1.123 0.929 0.929
19 1.454 1.453 1.202 1.202

22 0.952 0.952 0.787 0.788
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Dataset 1 was tested for CS of Magnitude 1 to 4 at epoch 150 on PRN 17 for α0 = 1%. It was
observed that CS of Magnitude 1 and 2 were not detected. Figure 8 depicts the situation when CS of
Magnitude 3 and 4 are introduced. As seen from the figure, the magnitude of residuals and w-test
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values are less than the threshold; however, after the introduction of CS, the values increase with the
increase in w-test values being more profound. It can be seen from the figure that for CS of Magnitude
3, although the w-test values for PRN 17 were the highest, they were less than the threshold for
identification. Thus the w-test is able to identify CS from the shift in w-test values. It should be noted
that the CS are not removed after epoch 150; hence the offset in residuals and w-test values can be seen
after identification. For CS of Magnitude 3, the chi-square test failed from epoch 160; however, as seen
from the upper plot in Figure 8, the w-test values remained less than the threshold and no CS were
identified. For CS of Magnitude 4, both the detection and identification stages identified the CS at the
correct instant. Thus, for PRN 17, although the theoretical MDB value was two cycles, it is actually
found to be four cycles for reliable RTK positioning.
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Figure 8. w-Test values for PRN 17 (dataset 1), α0 = 1%.

For Dataset 2, considering α0 = 0.1%, 1%, the MDB values at epoch 450 and mean MDB are given
in Table 5 while the MDB values are plotted in Figure 9. PRN 11 is observed at the base at epoch 13;
hence its MDB value starts from zero. As soon as the measurement joins the LS adjustment, the MDB
reduces for all satellites. The number of visible satellites remains constant till epoch 658, and it changes
to (8,9,7,9) for epoch (659,660,661,662); hence the peak is observed at epoch 661. This is clear from
Figure 10, which shows the number of visible satellites for the rover for Dataset 2. It must be taken into
consideration that the number of DD equals the number of visible satellites minus one. For the chosen
value of α0, the result can be interpreted as follows:

Table 5. MDBs for observable satellites in Dataset 2.

SV
α=0.1% α=1%

MDB Epoch
13 (Cycles)

MDB Epoch
450 (Cycles)

Mean MDB
(Cycles)

MDB Epoch
13 (Cycles)

MDB Epoch
450 (Cycles)

Mean MDB
(Cycles)

3 1.1973 1.164 1.163 0.9902 0.962 0.963
8 1.2701 1.280 1.284 1.0504 1.062 1.059

11 0 0.954 0.968 0 0.801 0.789
17 1.6028 1.544 1.549 1.3256 1.281 1.277
18 1.0235 0.996 0.993 0.8465 0.821 0.823
22 1.0024 0.988 0.988 0.8290 0.817 0.817
28 1.0053 1.026 1.022 0.8728 0.846 0.848
30 1.1922 1.216 1.231 0.9860 1.004 1.006
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When CS detection is carried out with a level of significance of 1% on a large dataset (906 fixes), a
bias of two cycles in the DD observations for PRN 17 would be detected in about 720 (=80%) of the
fixes, assuming no other sources of error are present.

The MDE plot to analyze external reliability for Dataset 2 is given in Figure 11. Since MDE
depends on MDB, it is seen that for the case of α0 = 1%, the MDB is higher and, correspondingly, the
MDE is higher than the situation when α = 1%. It is seen that as long as nine satellites are visible,
the horizontal positional MDE remains around 1.12 and 0.92 m for the cases when α = 0.1% and
α = 1%, respectively.
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For Dataset 2, at epoch 450, CS varying in magnitude from 1 to 4 cycles were introduced for
α0 = 1%. All the tracked satellites were checked for the minimum size of CS that could be reliably
detected. Similar to Dataset 1, it was found that although the theoretical MDB varies between one and
two cycles, in practice the CS of this magnitude could not be detected. Although for some satellites,
CS of Magnitude 3 could be detected, but it was at a later epoch. CS of size 4 could be detected and
identified for all PRNs. Table 6 lists the residual and w-test values for PRN 3 and PRN 11 at the
epoch before and after CS of Magnitude 4 cycles. It is observed that after CS occur, the w-test values
increased for all DD values. This is due to aggregately processing all signals through the LS adjustment
process. CS contaminated measurements are identified by the largest w-test value. The shaded values
for corresponding satellites after the occurrence of CS indeed show that their w-test value is largest
and hence CS can be identified. In addition, it is observed that the residual for the CS contaminated
satellites is also the highest. Figure 12 depicts this situation for PRN 3.

Table 6. Residuals and w-test values for CS introduced at epoch 450 for Dataset 2, α0 = 1%.

SV Epoch CS Introduced in PRN 3 CS Introduced in PRN 11

Residual w-Test Residual w-Test

PRN 3
449 −0.0343 0.1524 −0.0343 0.1524
450 0.3548 2.8005 0.2150 0.2617

PRN 8
449 0.0671 0.0872 −0.067 0.0872
450 0.1631 0.9327 0.1348 0.3346

PRN 11
449 −0.1334 0.4538 −0.1334 0.4538
450 −0.0944 0.3007 0.6576 2.8105

PRN 17
449 −0.0340 0.2049 −0.0340 0.2049
450 0.0428 0.8047 0.2563 0.7351

PRN 18
449 −0.0623 0.0383 −0.0623 0.0385
450 −0.0214 0.1300 0.0171 0.9653

PRN 22
449 −0.0407 0.0910 −0.0407 0.0910
450 −0.2876 1.4620 0.1296 0.2869

PRN 28
449 −0.0377 0.1127 −0.0377 0.1127
450 0.0748 0.7290 0.0195 0.9795

PRN 30
449 −0.0937 0.2775 −0.0937 0.2775
450 −0.2933 1.8384 0.1703 0.0549
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5. Conclusions

A framework for CS detection and determination of a reliable position fix for single-frequency
RTK receivers is presented in this paper. The scheme uses DD measurements to detect CS during an LS
adjustment. Once detected, CS-contaminated measurements can be eliminated from the adjustment
model and position fix, along with reliability parameters MDB and MDE being computed. From the
reliability assessment of the proposed scheme on two dynamic datasets, it is seen that MDB depends
on the level of significance α0 chosen in the LT and the number of observed satellites. MDB increases
as α0 decreases. However, the choice of α0 = 0.1% and α0 = 1% does not affect the MDB significantly.
MDB increases as the number of visible satellites decreases. In addition, although theoretically the
MDB is one or two cycles for the chosen values of α0 and β, in practice it is four cycles for the two
scenarios. This can be attributed to measurement noise which was ignored while developing the
single-frequency RTK model in Equation (5). MDB can be decreased and detection can be improved
by lowering the value of α0 in the LT, which lowers decision thresholds for both the tests. However,
it was seen that this causes false flags and several measurements were incorrectly identified as CS.
Therefore the recommended values of α0 = 0.1% and α0 = 1% were retained. Also, it is less likely to
have very small cycle slips (e.g., one to two cycles) in the data and it is usually hidden in the higher
noise levels in kinematic navigation with low-cost equipment [49].
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