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Abstract: Ship type classification with radiated noise helps monitor the noise of shipping around
the hydrophone deployment site. This paper introduces a convolutional neural network with
several auditory-like mechanisms for ship type classification. The proposed model mainly includes a
cochlea model and an auditory center model. In cochlea model, acoustic signal decomposition at
basement membrane is implemented by time convolutional layer with auditory filters and dilated
convolutions. The transformation of neural patterns at hair cells is modeled by a time frequency
conversion layer to extract auditory features. In the auditory center model, auditory features are first
selectively emphasized in a supervised manner. Then, spectro-temporal patterns are extracted by deep
architecture with multistage auditory mechanisms. The whole model is optimized with an objective
function of ship type classification to form the plasticity of the auditory system. The contributions
compared with an auditory inspired convolutional neural network include the improvements in
dilated convolutions, deep architecture and target layer. The proposed model can extract auditory
features from a raw hydrophone signal and identify types of ships under different working conditions.
The model achieved a classification accuracy of 87.2% on four ship types and ocean background
noise.

Keywords: machine learning; neural network; ship radiated noise; underwater acoustics

1. Introduction

The soundscape of the oceans is heavily affected by human activities, especially in coastal waters.
The increase of the noise level in oceans is correlated with burgeoning global trade with the expansion
of shipping. Automatic recognition of ship type by ship radiated noise is not only affected by the
complicated mechanism of noise generation, but is also affected by the complex underwater sound
propagation channel. The conventional recognition methods based on machine learning generally
include three stages—feature extraction, feature selection and classifier design.

The conventional feature extraction methods for ship radiated noise include waveform
features [1,2], auditory features [3,4], wavelet features [5] and so on. These manually designed features
are limited in their ability to capture variations in complex ocean environments and ship operative
conditions for the use of fixed parameters or filters. Biophysical based models [3,4] are limited to
early auditory stages for extracting auditory features. Auditory features designed from perceptual
evidence always focus on the properties of signal description rather than the classification purpose [6].
These features do not utilize the plastic mechanism and representation at various auditory stages
to improve the recognition performance. Although the noise features or redundant features can be
removed by feature selection methods [7], the inherent problem of manually designed features still
cannot be solved radically.
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Support vector machine (SVM) was used to recognize ship noise using manually designed
features [7]. With the increase of data size, hierarchical architectures have been shown to outperform
shallow models. Spectrogram [8], probabilistic linear discriminant analysis and i-vectors [9] were used
as the input of neural classifiers to detect ship presence and classify ship types. For the application of
deep learning, Kamal [10] used a deep belief network and Cao [11] used a stacked autoencoder. A
competitive learning mechanism [12,13] was used to increase cluster performance during the training
of the deep network. In these works, classifier design and feature extraction were separated from each
other. This has a drawback that the designed features may not be appropriate for the classification
model.

Deep learning has made it possible to model the original signal as well as to predict targets in a
whole model [6,14], to which the auditory system is thought to be adapted. The time convolutional
layer in an auditory inspired convolutional neural network (CNN) [6] provided a new way for
modeling underwater acoustic signals. However, it did not have enough depth to build an appropriate
model to match the expanding acquired dataset. Moreover, the conventional convolutional layer and
the fully connected layer led to numerous parameters.

In this paper, we present a deep architecture with the aim of capturing the functionality and
robustness of the auditory system to improve recognition performance. The key element in the
approach is a deep architecture with time and frequency-tolerant feature detectors, which are inspired
by neural cells along the auditory pathway. The early stage auditory model is derived from the
auditory inspired CNN, in which the time convolutional layer is improved by dilated convolution.
The construction of the deep network refers to inception and residual network [15] in the field of
machine vision, in which some ideas are also found in the auditory pathway. Thus, the frequency
convolutional layers in Reference [6] are improved to increase the depth of the network. At the final
stage, the substitution of the fully connected layer by global average pooling at target layer greatly
reduces the parameters. The main findings of this paper are briefly summarized as follows:

• The proposed convolutional neural network could transform the time domain signal into a
frequency domain that is similar to gammatone spectrogram.

• Deep architecture of a neural network derived from an auditory pathway improves the
classification performance of ship types.

• Auditory filters in convolutional kernals are adaptive in shape during the optimization of the
network with the ship type classification task.

• The classification results of the model are robust to ship operative conditions. The increase of
distance between ships to hydrophone has a negative effect on recognition results in most cases.

This paper is organized as follows. Section 2 gives an overview of auditory mechanisms and the
structure of the proposed model. Section 3 describes details of the model, which include the cochlea
model for ship radiated noise modeling and the multistage auditory center model for features learning
and targets classification. Section 4 includes experimental data description, experimental setup and
results. An overall discussion and directions for future work are concluded in Section 5.

2. Model

2.1. Auditory Mechanisms

Decades of physiological and psychoacoustical studies [16–18] have revealed elegant strategies
at various stages of the mammalian auditory system for representation of acoustic signals. Sound is
first analyzed in terms of relatively few perceptually significant attributes, followed by higher level
integrative processes.

When sound arrives at the ears, the vibration of the eardrum caused by the sound wave is
transmitted to the cochlea in the inner ear via ossicular chain in the middle ear. The cochlea performs
two fundamental functions. First, through the vibration of different parts of the basement membrane,
the cochlea effectively separates the frequency components of sound. The second function of the
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cochlea is to transform these vibrations into neural patterns with the help of hair cells distributed
along the cochlea [18].

The auditory center is one of the longest central pathways in the sensory system. The acoustic
spectrum is extracted early in the auditory pathway at the cochlear nucleus, the first stage beyond
the auditory nerve. Multiple pathways emerge from the cochlear nucleus up through the midbrain
and thalamus to the auditory cortex. Each pathway passes through different neural structures and
repeatedly converges onto and diverges from other pathways along the way [18]. The complexity
structure extracts rich and varied auditory percepts from the sound to be later interpreted by the brain.
Neurons in the primary cortex have been shown to be sensitive to specific spectro-temporal patterns in
sounds [19].

As a result of auditory experience, the systematic long-term changes in the responses of neurons
to sound are defined as plasticity. Plasticity and learning probably occurs at all stages of the auditory
system [20].

By reviewing the process of auditory perception, we can conclude the following four mechanisms
of early and higher auditory stages that are useful for establishing an auditory computational model.

• Auditory processing is hierarchical.
• Neurons throughout the auditory pathway are always tuned to frequency.
• Auditory pathways have different neural structures.
• The auditory system has plasticity and learning properties.

2.2. Model Structure

The nature of the auditory computational model is to transform the raw acoustical signal into
representations that are useful for auditory tasks. In this paper, mechanisms of auditory system are
established mathematically in deep CNN for ship type classification. The model mainly includes the
cochlea model and the auditory center model. A complete description of the specifications of the
network is given in Figure 1.
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Figure 1. Model structure. The model mainly includes cochlea model and auditory center model. In
the time convolutional layer, four colors represent four groups. Dilated convolutions are represented
by parallel lines at equal intervals. The time frequency conversion layer includes permute layer
and max-pooling layer. At the top of the graph, auditory feature recalibration is implemented by
global max-pooling and fully connected layers. Frequency convolutional layers are performed by
Inception-ResNet. The final stage includes global average pooling and softmax layer.
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Based on the research foundation of the human cochlea, a series of multiscale gammatone auditory
filters [21] are used to initial the time convolutional layer with dilated convolutions [22]. Ship noise
signals are decomposed by convolution operation with auditory filters. Inspired by the function of hair
cells, the time frequency conversion layer transforms these decomposed components into amplitudes
of its corresponding frequency components—or its frequency spectrum [18]. We introduce an auxiliary
classifier with the goal of enhancing the gradient and recalibrating the learned spectrum in supervised
manner. Learned spectra are further extracted by deep architecture with inception structures and
residual connections [15] to model the multistage auditory pathway. These layers are defined as
frequency convolutional layers. The resulting feature maps of the last frequency convolutional layer
are fed into a global average pooling layer [23]. Then ship types are predicted in the softmax layer.
During the training of the network, auditory filters and features are subject to classification tasks on
the basis of matching human auditory systems.

3. Methodology

3.1. Cochlea Model for Ship Radiated Noise Modeling

The cochlea model is the first stage of the proposed model, it includes the time domain signal
decomposition of basement membrane and the time frequency conversion of hair cells. The cochlea
model creates a frequency-organized axis known as the tonotopic axis of cochlea.

3.1.1. Time Convolutional Layer with Dilated Auditory Filters

Much is known about the representation of spectral profile in the cochlea [18,21]. The
physiologically derived gammatone filter g(t) is shown in (1).

g(t) = atn−1e−2πbtcos(2π f t + φ), (1)

where a is amplitude, t is time in second, n is filter’s order, b is bandwidth in Hz, f is center frequency
in Hz, and φ is phase of the carrier in radians. Center frequency f and bandwidth b are set by an
equivalent rectangular bandwidth (ERB) [24] cochlea model in (2) and (3).

ERB( f ) = 24.7(4.37 f /1000 + 1) (2)

b = 1.019× ERB( f ). (3)

Convolutional kernels of the time convolutional layer represent a population of auditory nerve
spikes. A series of gammatone filters of different sizes are used to initialize weight vectors of this layer
which forms the primary feature extraction base of the network. This layer performs convolutions
over a raw time domain waveform. Suppose the input signal S(S ∈ RL×N) has N frames, each frame
length is L. As shown in (4), signal S is convolved with kernel km and added to an additive bias bm.
Then, the output puts through activation function f to form the output feature map tm(tm ∈ RL×N).

tm = f (S ∗ km + bm), m ∈ 1, 2, ..., M. (4)

For time convolutional layer that has M kernels, the output T1 = [t1, t2, ..., tM] will be obtained.
We use 128 gammatone filters with center frequencies ranging from 20 to 8000Hz. For 16kHz sampling
frequency, the impulse widths range from 50 to 800 points approximately. These filters are divided
into 4 groups by quartering according to impulse widths. The convolutional kernel widths of the 4
groups are 100, 200, 400, 800 respectively. Thus, the number of parameters is reduced from 128× 800
to 32× (100 + 200 + 400 + 800).

Bigger kernel size means more parameters, which make the network more prone to overfitting.
Dilated convolutions could reduce network parameters, while the receptive fields, center frequencies
and band widths remain unchanged. To give the 4 groups an equal number of parameters, dilation
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rates are 1, 2, 4, and 8 respectively for the 4 groups. The number of parameters in this layer are further
reduced to 128× 100. Figure 2 illustrates the signal decomposition by using underwater noise radiated
from a passenger ship. During the recording period, the ship was 1.95 km away from the hydrophone
and its navigational speed was 18.4 kn.

Figure 2. Signal decomposition of time convolutional layer. Black line at the bottom is the input signal.
Four colors (orange, yellow, green and blue) at the upper and middle parts represent the four groups.
Four capsules at the top represent the outputs of 4 groups. Four colors of straight lines at the middle
part represent dilated convolutional kernels with a dilated rate of 8, 4, 2 and 1.

3.1.2. Time Frequency Conversion Layer

Stronger vibrations of basement membrane lead to more vigorous neural responses, which are
further transformed by hair cells. The amplitude of the decomposed signal can be regarded as a
neural response or frequency spectrum. The proposed time frequency conversion layer transforms the
output of the time convolutional layer into a frequency domain. This is accomplished by a permute
layer and a max-pooling layer. As shown in (5), T1 is permuted to T2 = [τ1, τ2, ..., τN ], where
τn ∈ RL×M, n = 1, 2, ..., N.

T2 = permute(T1). (5)

As shown in (6), the amplitude of τn within regular time bins is calculated as frn(n =

1, 2, ...N, frn ∈ RK×M) by max-pooling along time axis. The output of this layer is Fr = [fr1, fr2, ..., frN ].
Thus, the internal representation of sound is calculated as a spectro-temporal excitation pattern which
provides a clearer picture of sound.

frn = max− pooling(τn). (6)

3.2. Multistage Auditory Center Model for Feature Extraction and Classification

The output of the time convolutional layer is divided into two routes. One route is the time
frequency conversion layer, then directly through the deep neural network to model the multistage
auditory pathway. Another route performs auditory feature recalibration.

3.2.1. Supervised Auditory Feature Recalibration

Given the relatively large depth of the network, the ability to propagate gradients back through
all the layers should be enhanced, especially for time convolutional layer at the front of the whole
network. Therefore, we propose an auditory feature recalibrate block on the basis of the recalibrate
block [25]. This block takes T1 as the input. As shown in (7), global max pooling is used to aggregate
tm across frame length.

rm = max− pooling(tm), m = 1, 2, ..., M. (7)

The output rm(rm ∈ RN) is the amplitude of all the frames in tm. The output of this layer is
R1 = [r1, r2, ..., rM]. It is permuted to R2 = [γ1, γ2, ..., γN ], where γn ∈ RM, n = 1, 2, ..., N. Then, it
is followed with two fully connected layers to capture the dependencies of frequency components.
The activation function of the fully connected layers are Rectified Linear Unit (ReLU) and sigmoid,
respectively. The equation of the two layers are shown in (8):
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fcn = sigmoid(υnReLU(ωnγn)), n = 1, 2, ..., N. (8)

Fc = [fc1, fc2, ..., fcN ] is the output of the fully connected layers, where fcn(fcn ∈ RM) corresponds
to the nth frame. W = [ω1, ω2, ..., ωN ] and U = [υ1, υ2, ..., υN ] are weight vectors of the two layers.
Fc is also divided into two routes. One route is fed directly into a softmax layer to make an auxiliary
classifier. We would expect to increase the gradient signal by adding the loss of the auxiliary classifier
to the total loss of the network. Another route is the auditory feature recalibration shown in (9).

fr′n = fcn × frn, n = 1, 2, ..., N, (9)

where fr′n(fr′n ∈ RK×M) is channel-wise multiplication between fcn and frn. The output of the layer is
Fr′ = [fr′1, fr′2, ..., fr′N ](Fr′ ∈ RK×M×N). This operation can be interpreted as a means of selecting the
most informative frequency components of a signal in supervised manner. The recalibrated auditory
features could establish the correlation between features and categories.

3.2.2. Deep Architecture for Feature Learning

Auditory perception depends on the integration of many neurons along the multistage auditory
pathway. These neurons likely facilitate frequency topological topographic maps of most hearing
region [26]. The proposed frequency convolutional layers perform convolution in both frequency and
time axis to extract spectro-temporal patterns embedded in a ship radiated noise signal.

However, a drawback of a deep network constructed with a standard convolutional layer is
the dramatically increased use of computational resources. Inception-Resnet [15] has been shown
to achieve very good performance in image recognition at a relatively low computational cost. In
this paper, a deep neural network with inception structures and residual connections are introduced
in frequency convolutional layer to perform the auditory task. Multiscale convolutional kernels in
inception block can be interpreted as simulating the different neural structures of auditory pathways.
Inception structures have the ability to learn spectro-temporal patterns of different scales with less
parameters. Residual connections can be interpreted as simulating the convergence and divergence
between different pathways. The architecture allows for increasing the number of layers and units to
form the multistage of auditory system. These layers could also preserve locality and reduce spectral
variations of the line spectrum in ship radiated noise.

We use an global average pooling layer [23] at the final stage to generate one feature map for each
ship type. The resulting vector is fed directly into softmax layer to predict targets. Compared with
fully connected layers, global average pooling layer is more native to the convolution structure by
enforcing correspondences between feature maps and categories. Moreover, there is no parameter to
optimize in global average pooling layer thus overfitting is avoided at this layer.

4. Experiment

4.1. Experimental Dataset

Our experiments were performed on hydrophone acoustic data acquired by Ocean Networks
Canada observatory. The data were measured using an Ocean Sonics icListen AF hydrophone placed
at 144 m–147 m below sea level. Ship radiated noise data were from ships in a 2 km radius while no
other ships were present in a 3 km radius. The duration of the recordings vary from about 5 to 20 min,
depending on navigational speed and position. Each recording was sliced into several segments to
make up the input of neural network. Each sample was a segment of 3 s duration and was divided into
short frames of 1 s. Acoustic data were resampled to a sampling frequency of 16 kHz. Classification
experiments were performed on ocean background noise and four ship types (Cargo, Passenger ship,
Tanker, and Tug). The four ship type categories were designated by the World Shipping Encyclopedia
from Lloyd’s Registry of Ships. About 29 months of data were collected, the first 18 months for training
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and the remaining 11 months for testing. The dataset comprised about 140,000 training samples
(771 recordings) and 82,000 validation samples (449 recordings).

4.2. Classification Experiment

To evaluate the classification performance of the proposed model, we report the classification
accuracy against the previous proposed auditory inspired CNN and manually designed features.
These hand designed features included waveform features [1,2], Mel-frequency Cepstral Coefficients
(MFCC) [3], wavelet features [5], auditory features [7] and spectral [11,27]. Waveform features included
peak-to-peak amplitude features, zero-crossing wavelength features and zero-crossing wavelength
difference features. MFCC features were extracted based on a linear cosine transform of a log power
spectrum on a nonlinear Mel scale of frequency. Auditory features were extracted based on the
Bark scale and masking properties of the human auditory system. Wavelet features contained a low
frequency envelope of wavelet decomposition and entropy of zero-crossing wavelength distribution
density of all levels of wavelet signals. For the calculation of spectral, two pass split window (TPSW)
was applied subsequently after a short time fast Fourier transform. Signals were windowed into frames
of 256ms before extracting features. The extracted features on frames were stacked or averaged to feed
into support vector machine (SVM), back propagation neural network (BPNN) or CNN to classify ship
types. The kernel function of SVM was the radial basis function (RBF). The penalty factor and kernel
parameter of RBF were selected by grid search. The SVM ensemble was performed by the AdaBoost
algorithm. The used BPNN had one hidden layer with 30 hidden units. The structure of CNN from
the bottom up was a convolutional layer with 128 feature maps, a max pooling layer, convolutional
layer with 64 feature maps, max pooling layer and fully connected layer with 32 units. Kernel size was
5× 5 and pooling size was 2× 2. The learning rate was 0.1 and momentum was 0.9. When training the
proposed network, optimization was performed using RMSprop with learning rate 0.001, momentum
0.9, and a minibatch size of 50. The results are shown in Table 1. Our experiments demonstrate
that the proposed method remarkably outperforms manually designed features. Benefiting from
the improvements in the network structure, the accuracy has been greatly improved compared with
auditory inspired CNN.

The confusion matrix of the proposed model on test data is shown in Table 2. The accuracy is at
the bottom right corner. Both the precision and recall of background noise are higher than all ship types.
This result indicates that it is easier to detect ship presence than classify ship types. The confusion
between Cargo and Tanker are larger than other categories. This may be because the two categories
always have similar propulsion systems, gross tonnage and ship size.

Table 1. Comparison of the proposed model and other methods.

Input Model Accuracy(%)

Waveform[1,2] SVM 68.2
MFCC[3] BPNN 72.1

Wavelet,Waveform,MFCC,Auditory feature[7] SVM Ensemble 75.1
Wavelet and principal component analysis[5] BPNN 74.6

Spectral[11] Stacked Autoencoder 81.4
Spectral[27] CNN 83.2

Time domain Auditory inspired CNN[6] 81.5
Time domain Proposed 87.2
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Table 2. Confusion matrix of samples.

Ture
Predicted Background Cargo Tanker Passenger Tug Recall (%)

Background 15824 1 202 20 173 97.56
Cargo 16 13152 2424 560 155 80.65
Tanker 120 1479 13283 881 610 81.13

Passenger 133 356 233 14908 748 91.02
Tug 334 317 590 1098 14083 85.76

Precision(%) 96.33 85.93 79.39 85.35 89.31 87.2

We evaluated the performance of the proposed model on recordings by majority voting.
One recording would be classified to a category to which the most samples in the recording are
classified. The confusion matrix is shown in Table 3. The obtained accuracy is 94.75% at the bottom
right corner. The recall and precision of all categories are improved compared with Table 2. Although
individual samples could be misidentified, we can still make a correct recognition results of the whole
signal by majority voting.

Table 3. Confusion matrix of recordings.

Ture
Predicted Background Cargo Tanker Passenger Tug Recall (%)

Background 50 0 0 0 0 100
Cargo 0 107 9 2 0 90.68
Tanker 0 3 76 2 1 92.68

Passenger 0 0 1 137 3 97.16
Tug 0 0 0 2 56 94.92

Precision(%) 98.04 97.27 88.37 95.80 93.33 94.75

4.3. Operative Conditions Analysis

We analyzed the recognition results and operative conditions together in order to observe how
the accuracy varies with ship operative conditions. Speed over ground (SOG), course over ground
(COG) and distance to hydrophone were analyzed. Different ship types usually had different speeds
and routes. Most ships were northbound, whereas only some passenger ships and tugs went in other
directions. Because of these differences between ship types, it is necessary to analyse each ship type
separately. From Figure 3, we can see that, with the increase of distance between ships and hydrophone,
the recall rate of Cargo, Passenger ships and Tanker decreased. It is hard to find obvious laws about
the influence of SOG and COG. The results indicate that the proposed model is robust to ship operative
conditions. The detection results of passenger ships in each operative condition were obviously better
than for the other ship types. This may be because the samples of a passenger ship are uniformly
distributed in operative conditions and the classification model can fit it better.
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Figure 3. Operative condition and classification results analysis. Four rows from top to bottom
represent Cargo, Tanker, Passenger ship and Tug, respectively. Histograms are the number of samples

under different operative conditions. Yellow and green histograms represent the false negative samples
and true positive samples, respectively. Orange lines are recall rates.

4.4. Visualization

4.4.1. Learned Auditory Filter Visualization

To observe learned auditory filters in the time convolutional layer, we selected one convolutional
kernel (learned filters) from each of the 4 groups. Output feature maps corresponding to the 4 selected
kernels were also extracted. As shown in Figure 4, the training of the network modified the shapes
of these filters. The use of dilated convolution enables the 4 groups to have the same kernel width.
The output feature maps are decomposed signals whose center frequencies are consistent with the
original auditory filters. The dilated convolution can reduce parameters as well as preserve the center
frequency of the auditory filter.
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the time domain sampling points of the filter and decomposed signal.

4.4.2. Learned Spectrogram Visualization

Outputs of the time frequency conversion layer were extracted as a learned spectrogram. It
was compared with the gammatone spectrogram in Figure 5. The frame length and hop time for the
gammatone spectrogram were the same as the kernel size and strides in the time convolutional layer.
Thus, the dimension of the gammatone spectrogram was the same as the learned spectrogram. The
learned spectrogram generated by the network is similar to the gammatone spectrogram. The network
reserved low frequency components in signal and smoothed noises in high frequency components.
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Figure 5. Comparison of learned spectrogram and gammatone spectrogram. (a) Learned spectrogram.
(b) Gammatone spectrogram.

The data visualization method t-distributed stochastic neighbor embedding (t-SNE) [28] was
used to visualize extracted features by giving each sample a location in a two dimensional map. In
Figure 6, the output of the whole network, learned spectrogram in time frequency conversion layer
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and gammatone spectrogram were visualized. As shown in Figure 6a, the last layer constructs a map
in which most classes are separate from other classes. Figure 6b,c are the samples distribution of
learned spectrograms and gammatone spectrograms, respectively. There are larger overlaps between
the classes compared with Figure 6a. The samples distribution in Figure 6b is slightly better than
that in Figure 6c. The results indicate that the proposed model could provide better insight into class
structure of ship radiated noise data. Features extracted by the deeper layer are more discriminative
than those from the shallow layer.

(a) (b) (c)

Background noise Cargo Tanker Passenger ship Tug

Figure 6. Feature visualization by t-distributed stochastic neighbor embedding (t-SNE). Five thousand
samples selected randomly from test data were used to perform the experiments. Dots of different
colors represent different types of ships. (a) Output of the whole network. (b) Learned spectrogram. (c)
Gammatone spectrogram.

5. Conclusions

A deep convolutional neural network with auditory-like mechanisms is proposed to simulate
the processing procedure of an auditory system for ship type classification. The integrated auditory
mechanisms from early to higher auditory stages include auditory filters at basement membrane,
neural pattern transformation by hair cells, spectro-temporal patterns along hierarchical structure,
multiple auditory pathways and plasticity.

The classification experiments demonstrate that the proposed method outperforms manually
designed features and classifiers. This study analyzes the recognition results in a way that is closer
to the real-world scenario. The accuracy of recordings obtained by majority voting is much higher
than the accuracy of segments. The increase of distance between ships to hydrophone has a negative
effect on the recognition results in most cases. The proposed method has robustness to ship operative
conditions. The network could generate a spectrogram that is similar to gammatone spectrogram,
but smooth noises of high frequency components. The auditory filter banks in the network are adaptive
in shape to ship radiated noise.

The proposed method facilitates the development of a smart hydrophone that could not only
measure underwater acoustic signals, but also send alerts if it detects a specific underwater acoustic
event. It will make it easier for researchers to listen to the ocean.
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