
sensors

Article

Integrate Point-Cloud Segmentation with 3D LiDAR
Scan-Matching for Mobile Robot Localization
and Mapping

Xuyou Li, Shitong Du *, Guangchun Li and Haoyu Li

College of Automation, Harbin Engineering University, Harbin 150001, China; lixuyou@hrbeu.edu.cn (X.L.);
lgc_67@hrbeu.edu.cn (G.L.); 2012071507@hrbeu.edu.cn (H.L.)
* Correspondence: dushitong@hrbeu.edu.cn

Received: 28 November 2019; Accepted: 27 December 2019; Published: 31 December 2019 ����������
�������

Abstract: Localization and mapping are key requirements for autonomous mobile systems to
perform navigation and interaction tasks. Iterative Closest Point (ICP) is widely applied for LiDAR
scan-matching in the robotic community. In addition, the standard ICP algorithm only considers
geometric information when iteratively searching for the nearest point. However, ICP individually
cannot achieve accurate point-cloud registration performance in challenging environments such
as dynamic environments and highways. Moreover, the computation of searching for the closest
points is an expensive step in the ICP algorithm, which is limited to meet real-time requirements,
especially when dealing with large-scale point-cloud data. In this paper, we propose a segment-based
scan-matching framework for six degree-of-freedom pose estimation and mapping. The LiDAR
generates a large number of ground points when scanning, but many of these points are useless and
increase the burden of subsequent processing. To address this problem, we first apply an image-based
ground-point extraction method to filter out noise and ground points. The point cloud after removing
the ground points is then segmented into disjoint sets. After this step, a standard point-to-point
ICP is applied into to calculate the six degree-of-freedom transformation between consecutive scans.
Furthermore, once closed loops are detected in the environment, a 6D graph-optimization algorithm
for global relaxation (6D simultaneous localization and mapping (SLAM)) is employed. Experiments
based on publicly available KITTI datasets show that our method requires less runtime while at the
same time achieves higher pose estimation accuracy compared with the standard ICP method and
its variants.

Keywords: ICP; ground point; dynamic environments; segmentation; closed loops; 6D SLAM

1. Introduction

Localization and mapping are crucial tasks for autonomous mobile robot navigation in unknown
environments. GPS is one of the widely used solutions for localization, while it suffers from some
drawbacks, such as multi-path effect, latency, which limit its application in the city areas and indoor
environments [1]. Pose estimation based on inertial navigation systems (INS) and visual sensors
has been widely studied over recent decades. INS estimates pose information through integrating
acceleration and angular velocity, which are subject to unbounded accumulation errors due to bias and
noise from inertial sensors [2]. Vision-based methods can obtain robust and accurate motion estimation;
however, they are vulnerable to ambient lighting conditions [3]. As an active sensor, the LiDAR is
invariant to light. On the other hand, a typical 3D LiDAR, such as Velodyne VLP-16, can acquire
environmental information at around 10 Hz scanning rate with a horizontal field of view (FOV) of 360
degrees and 30(±15) degrees in the vertical direction. High resolution allows the LiDAR to capture

Sensors 2020, 20, 237; doi:10.3390/s20010237 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20010237
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/1/237?type=check_update&version=2

Sensors 2020, 20, 237 2 of 23

a large amount of detailed information in an environment with long ranges. These advantages make
LiDAR widely used in robot systems [4].

Point-cloud registration is the basis of the LiDAR-based robot system for localization and mapping.
Given two adjacent point-cloud scans with different poses, the goal is to find the transformation
that best aligns these two scans [5]. LiDAR-based point-cloud registration methods, also called
scan-matching, are generally divided into three categories: point-based methods, feature-based
methods and distributions-based methods [6]. The typical point-based method is the iterative closest
point (ICP) [7], which iteratively calculates the point correspondences. In each iteration, ICP minimizes
a distance function to calculate the transformation between two points clouds according to the
selected closest points. Point-to-point ICP uses the point-to-point distance for calculating the closest
points, which is the most popular method in the ICP family due to good performance in practice.
Many variants of ICP have been proposed (point-to-plane ICP, Generalized-ICP (GICP) [8] for example)
to improve the precision, efficiency and robustness of the algorithm.

In addition to point-based methods, scan-matching can also be performed by extracting some
low-level attributes in a point cloud. Low-level attributes are geometric features that do not contain
semantic information such as normal, intensity, planar surface, edge and some custom descriptor.
These methods first automatic extract feature by geometric attributes. Then, feature points are used to
find the point correspondences between scans [9]. Lidar Odometry and Mapping (LOAM) achieves
a high pose estimation accuracy by extracting edge and plane features [10]. Feature points-based
methods find corresponding points by extracting feature points. However, many feature descriptors
are designed for applying to specific environmental conditions. Moreover, this method achieves
poor estimation accuracy in environments with low geometric information, such as highways [11].
Another category is distribution-based methods. The Normal Distribution Transform(NDT) represents
points as a set of Gaussian probability distribution. Instead of working directly on points,
this method iteratively calculates point-to-distribution or distribution-to-distribution correspondences
and minimizes a distance function in each iteration step [12].

Although there are many excellent point-cloud registration algorithms, the pose estimation
suffers from error accumulation in long-term or large-scale scene [13]. A solution is to combine
feature-based mapping(e.g., edge-based [14]) with point-based scan-matching algorithm which can
limit this accumulation error. Simultaneous localization and mapping (SLAM) method has been shown
great success over the past decade [15]. It uses the scan or image data to create a globally consistent
representation. Commonly, simultaneous localization and mapping (SLAM) consists of two parts,
the frontend and the backend. The frontend involves data association and sensor pose initialization.
In the backend either filtering methods or pose-graph-optimization methods are used. This process
aims to obtain a globally consistent mapping. Currently, graph-based optimization is the most popular
technology in the SLAM field. In a graph-based network, nodes represent robot poses at different
locations, and edges correspond to neighbor relations between them [16].

In this work, we propose a segment-based scan-matching framework for six degree-of-freedom
pose estimation and mapping. There are four contributions in this paper. First, a 2D image-based
ground points extraction method is introduced as a preprocessing step for ICP matching. LiDAR
acquires a large number of 3D points while scanning the surrounding scene, which contains many
ground points. The computation of the closest points is an expensive step in the standard ICP algorithm,
which does not meet real-time requirements. Ground points on flat roads contain little geometric
information while the standard point-to-point ICP algorithm only considers the point-to-point
Euclidean distance for searching for closest points. Hence, these ground points can cause large
corresponding point errors. Furthermore, Ground point extraction is also a key step in point-cloud
segmentation. Secondly, point cloud after removing the ground points is then grouped into many
clusters. By clustering, some outliers that do not have common attributes are removed. After this
step, these different clusters are merged into a new point cloud. Compared to the original point
cloud, the ground points of the new point cloud are removed and some false ground points and noise

Sensors 2020, 20, 237 3 of 23

points are also filtered out. This will greatly increase the efficiency and accuracy of ICP matching.
Thirdly, we extended the work of the 6D SLAM by combining the segmentation algorithm which
has improved the pose estimation accuracy and efficiency with respect to the standard 6D SLAM.
On this basis, a systematic evaluation based on urban, country and even highways with both absolute
and relative error metrics is presented. The results validate that removing ground points can indeed
improve the pose estimation accuracy of ICP and 6D SLAM. It also demonstrates that 6D SLAM
performs better in pose optimization for point clouds without ground points with respect to raw
point cloud. Furthermore, we also analyzed the possible error sources in different scenarios in detail.
In addition, the effective evaluation of standard ICP variants and 6D SLAM in KITTI benchmark
enriches the application research of these algorithms which can be considered to be a supplement to
the performance of these methods in highly dynamic and complex scenarios.

The remainder of the paper is organized as follows. In Section 2, we summarize related works
in ground points extraction, ICP, SLAM and segment-based localization and mapping methods.
In Section 3, the proposed algorithm is described in detail. Experimental results are presented in
Section 4. The paper ends with discussion in Section 5 and conclusion in Section 6.

2. Related Work

There is an increasing body of scholarly work regarding localization and mapping with
LiDAR-based method. In this section, we present a brief literature review that is related to our
current work.

The point cloud obtained by LiDAR contains many ground points, which poses a challenge to
the classification, registration and tracking of subsequent point-cloud processing. Therefore, ground
points removal is important in the point-cloud preprocessing step. The typical approach is Bounding
Box Filter [17]. Points can be excluded from a rectangular bounding region through using this filter.
The volume of the box is specified by defining the maximum and minimum coordinate values in the
x,y,z directions. For example, in a coordinate system with z-axis up, ground points can be filtered
out by setting the appropriate minimum coordinate value of the z-axis. This method is simple and
easy to understand but parameters need to be adjusted according to different scenes and where the
lidar is installed. Na et al. [18] computed local features with normal and gradient, then ground points
were extracted by performing region growing. However, this method increases the computational
burden which cannot meet real-time requirements. In [19], a probability occupancy grid-based ground
segmentation method is proposed which can run online in different traffic scenarios. Shan et al. [20]
projected point cloud onto a range image then extracted ground points by calculating the neighborhood
relationship between adjacent scan lines. It is obvious that the neighborhood relationship on the 2D
image is easier to calculate. At the same time, operating on 2D images enables a fast segmentation for
each scan.

Point-cloud segmentation based on machine learning is also a mature research area.
Pomares et al. [21] compared 23 state-of-the-art machine learning-based ground point extraction
methods (e.g., SVM and KNN) through the MATLAB Classification Learner App which shows
a promising ground extraction accuracy. Hackel et al. [22] developed a supervised learning framework
for point-wise semantic classification. Feature descriptors considering neighborhood relationships
are input into a random forest classifier, which can accurately and efficiently segment the semantic
attributes of the scene, such as ground, cars, and traffic lights. However, traditional machine learning
methods rely heavily on hand-crafted feature descriptors. In recent years, deep learning technologies
have been applied to the field of 3D point-cloud processing. Velaset et al. [23] segmented the
ground and non-ground points by employing a convolutional neural network (CNN) framework.
Qi et al. [24] proposed the first deep learning network (PointNet) which directly consumes raw point
clouds. PointNet differs from other frameworks in that it only uses fully connected layers to extract
features instead of CNNs. Although traditional machine learning or currently popular deep learning
frameworks achieves excellent segmentation performance, these supervised learning methods require

Sensors 2020, 20, 237 4 of 23

pre-labeled data sets to train the model. In addition, the GPU must be used to speed up the training
process. All these limit the application of learning-based methods.

Iterative closest point (ICP) is the most popular method in point-cloud matching. The most mature
and widely used method is the point-to-point ICP method, which uses the point-to-point distance
for calculating the closest points [7]. There are also many variants of ICP, such as point-to-plane
ICP and GICP [8]. The former uses the point-to-plane distance to search for the closest points,
while the latter unifies the point-to-point and point-to-plane iterative closest point algorithms into
a probability framework. These two methods need to calculate the tangent plane of each point, while
the point-to-point ICP algorithm performs directly on the raw points. Obviously, the point-to-point
ICP algorithm is simple and more efficient. Non-geometric information has been also integrated into
scan matching to improve the accuracy and efficiency of point-cloud registration. Huhle et al. [25] took
color information as an additional dimension on the Normal Distributions. Although this method
improves the accuracy of point-cloud registration, the color information is not often included in the
raw point-cloud data. Algorithms that only deal with 3D point-cloud coordinates are obviously more
general and practical.

In [26], the authors first segmented a single scan into three different semantic categories,
i.e., floor, object and ceiling points. After this step, ICP-based transformation was estimated for
each individual semantic segment. Since the introduction of semantic information, the corresponding
points are only searched within the same semantic category, which greatly improves the possibility of
searching for the correct corresponding point while at the same time accelerates the convergence of the
ICP. However, the algorithm only uses the gradient relationship between adjacent points to segment
the scene, which cannot satisfy complex scenes. In addition, the hand-crafted classifier cannot be
extended to outdoor scenes. Inspired by [26], Zaganidis et al. [11,27] integrated semantic information
into Normal Distributions Transform (NDT) instead of ICP for point-cloud registration. The method
differs from [26] in the semantic segmentation. The method in [27] partitioned the point cloud into
sharp edges and planar surface patches according to smoothness while deep learning framework is
applied to semantic segmentation in [11]. However, deep learning requires large-scale training data
sets, which limits its application in the field of point-cloud registration.

SLAM technology has been widely applied to the robot community in recent years. In the backend,
either filter-based methods or pose-graph-optimization methods are used. This process aims to obtain
a globally consistent mapping. There are many popular techniques in filter-based methods, such as
the Extended Kalman filter [28] and Particle Filters [29]. The differences between these methods
mainly focus on sensors, dynamic modes and state-estimation algorithms [30]. However, the main
drawback is that the filtering strategy updates probability distributions through time without the
convergence guarantee, and suffers from computational complexity or large amounts of particles [31].
In cases where it is difficult to obtain uncertainties and sensor models, these values are often guessed
by researchers.

Pose-graph-optimization methods currently have greater advantages in the SLAM over
filtering-based methods. Borrmann et al. [32] proposed a 6D SLAM framework that uses ICP to register
all scans until convergence. Once closed loops are detected, a GraphSLAM for global relaxation is
employed. This algorithm does not require additional point features such as normal, nor does it
require high-level features. In [20], a lightweight and real-time six degree-of-freedom pose estimation
framework called LeGO-LOAM, is presented. LeGO-LOAM first projects the point cloud into a 2D
image. Then, the point cloud is further segmented into the ground and non-ground points. Feature
point extraction and matching and error functions are used to estimate six degree-of-freedom pose.
In addition, a pose-graph SLAM is also integrated into to obtain more accurate results. LOAM does
achieve high pose estimation accuracy at the same time meeting real-time operations. However, feature
points-based methods may lead to inaccurate registration and large drift in environments with low
geometric information, such as highways.

Sensors 2020, 20, 237 5 of 23

3. Methodology

3.1. System Overview

The architecture of the system is shown in Figure 1, which can be divided into six main modules:
point reduction, point-cloud projection, ground points removal, segmentation, ICP and pose-graph
optimization (6D SLAM). We first apply an octree-based data structure to reduce the 3D point cloud.
An image-based ground point removal method is then introduced. The point cloud after removing the
ground point is further segmented into disjoint sets. After this step, a standard point-to-point ICP is
applied to calculate the six degree-of-freedom transformation between consecutive scans. In addition,
once closed loops are detected in the environment, a 6D graph-optimization algorithm for global
relaxation is employed. Our system features a right-handed coordinate system with the z-axis pointing
upwards and the x-axis in forward direction. The detailed algorithm principle of each modules will be
introduced in the following sections.

Figure 1. Overview of the proposed LiDAR localization and mapping system architecture.

3.2. Point Reduction

The high resolution of the LiDAR acquires large-scale data when scanning. For example, Velodyne
HDL-64E can generate 1.8 million range measurements per second. Therefore, to process a huge
amount of 3D data points efficiently, point-cloud storage and reduction are crucial steps. Octree
is a spatial data structure used to describe three-dimensional space which enables efficient storage,
compression and search of 3D point cloud. As shown in Figure 2, 3D space is assumed to be a cube and
the root node represents a cubic bounding box that stores all points of a point cloud, i.e., 3D coordinates
and additional attributes such as reflectance. The octree divides the space into 8 parts, and each node
is a part. The sum of the volumes represented by the eight child nodes is equal to the volume of the
parent node. In this work, we use an octree-based point-cloud reduction method which is described in
detail in [33].

Figure 2. The sparse datastructure of octree.

Sensors 2020, 20, 237 6 of 23

3.3. Projection into 2D Range Image

Since the subsequent ground points removal and segmentation algorithms are based on 2D
range images, we first need to obtain the cylindrical range image. The widely used LiDAR such
as the Velodyne family acquires the environmental information by horizontal and vertical scanning.
For example, the 16-channel VLP-16 has a horizontal field of view of 360 degrees and 30(±15) degrees
for the vertical field of view. If the horizontal azimuth angle θh is set to 0.2◦and we know from the
datasheet that the vertical resolution θv is 2◦, the corresponding resolution of 2D range image is 1800
by 16. Given a point P = (x, y, z), the corresponding 2D range image is calculated by:

h = arctan(
x
y
) ∗ 57.3

v = arctan(
z√

x2 + y2
) ∗ 57.3

r =
v + vb

θv

c = bh− 90
θh
c+ hs

2

d = I(r, c) =
√

x2 + y2 + z2

(1)

where h and v are the horizontal and vertical angles of P in the LiDAR coordinate system, cf. Figure 3.
vb represents the maximum vertical field of view of the LiDAR. For the VLP-16, vb = 15. In addition,
hs = 1800 refers to the horizontal resolution while bc indicates the corresponding number is rounded
down. By projecting, each 3D coordinate point P is represented by a unique pixel I(r, c)of the image.
For the 2D range image, each row of the range image has the same vertical angle θv, i.e., the same scan
lines. Each column indicates points with the same horizontal angle and different scan lines.

Figure 3. Velodyne LiDAR coordinate system.

3.4. Ground Removal

Ground point extraction is a key step in point-cloud processing. In this part, we adopt
an image-based ground point extraction method which is similar to [34]. Liu et al. [13] used Equation (2)
to extract ground points which is based on an intuitive understanding that the differences in the
z-direction between two adjacent points from the same column is much smaller than x and y directions,
When the LiDAR scans the ground. However, this assumption is applicable only for ground vehicles.
For 3D mobile robots, such as drones, the sensor attitude with respect to the ground must be considered.
Moreover, the algorithm traverses points of m rows from the bottom of the image. If αi is smaller than
a threshold θ, This corresponding point is considered to be the ground point. However, the user must
set different m values and threshold θ according to the installation height of the LiDAR.

Sensors 2020, 20, 237 7 of 23

αi = arctan

 δc
z,i√

δc
x,i ∗ δc

x,i + δc
y,i ∗ δc

y,i

 (2)

where δc
x,i, δc

y,i, δc
z,i indicate the differences in x-, y-, and z-direction between two adjacent points from

the cth column.
Therefore, in this work, we introduce a more robust and efficient approach. Algorithm 1 depicts

the algorithm that we use to extract ground points. First, the 2D range image is converted to an angle
image based on Equation (2) (line 2). After conversion, each pixel of the angle image is represented by
the corresponding αi. Next, a Savitzky–Golay filtering algorithm [35] is applied to the angle image
(line 3). This aims to smooth the data and remove noise. After this step, we traverse each pixel from
the bottom left of the filtered image. Whenever a non-labeled pixel is encountered, a breadth-first
search (BFS) based on the pixel is carried out (line 7–15). The basic idea is BFS starts from the pixel,
and find 4 neighborhood from the up, down, left, and right pixels. If the difference between the pixel
and its 4 neighborhoods falls into the threshold γ, the pixel is added to the queue, i.e., it is assigned to
the ground point (line 12–15). Please note that Label=1 refers to the ground point class. This procedure
stops utile the whole connected component receives the same label. Intuitively, this algorithm starts
from the bottom left of the image which is generally considered to be a ground point. We assign
a label to this point (line 11). BFS is then employed to continuously expand the search until all points
belonging to the same label (Label=1) are found. This algorithm traverses all points of the entire image,
hence we do not have to manually select m for different hardware platforms.

Algorithm 1 Ground points extraction

Input: Range image R, ground angle threshold γ, Label=1, windowsize
Output: L
1: function GROUNDPOINTEXTRACTION(R,Label,L,γ,windowsize)
2: A=CreateAngleImage(R)
3: S=ApplySavitskyGolaySmoothing(A,windowsize)
4: L=zeros(Rrows × Rcols)
5: for r=Srows; r ≥ 1; r−− do
6: for c = 1; c ≤ Scols; c ++ do
7: if L(r, c) = 0 then
8: queue.push(r,c)
9: while queue is not empty do

10: r,c=queue.top()
11: L(r,c)=Label
12: for (rn, cn) ⊂ Neighborhood(r, c) do
13: g=S(r, c)− S(rn, cn)
14: if f abs(g) < γ then
15: queue.push(rn, cn)
16: end if
17: end for
18: queue.pop()
19: end while
20: end if
21: end for
22: end for
23: end function

Sensors 2020, 20, 237 8 of 23

3.5. Segmentation

To further remove noise points and outliers, we use the algorithm in [34] to segment the range
image after removing the ground point. The idea of this algorithm is similar to the ground points
extraction. The method of deciding whether points belong to the same label is shown in Figure 4.
As right figure in Figure 4 depicts, β can be used to segment the point cloud if the appropriate threshold
ε is set. we assume the one with a relatively long distance between OA and OB is d1 (‖OA‖) and the
other is d2 (‖OB‖), then, β is calculated:

β = arctan
‖BH‖
‖HA‖ = arctan

d2 sin θ

d1 − d2 cos θ
(3)

where θ is the horizontal azimuth angle or vertical resolution which is described in Section 3.3.
The pseudocode of the algorithm is presented in Algorithm 2. The algorithm differs from

Algorithm 1 in input images, the criteria for classification, and the number of labels. Rng represents the
image which is directly projected by the point cloud but does not include the ground points. Since the
ground point is a category, Algorithm 1 has only one label. However, the segmentation includes many
categories. Therefore, the label is automatically incremented by 1 when a cluster is completed.

Algorithm 2 Segmentation

Input: Range image Rng, segmentation threshold ε, Label=1

Output: L

1: function LABELRANGEIMAGE(Rng,Label,L,ε)

2: L=zeros(Rng
rows × Rng

cols)

3: for r = 1; r ≤ Rng
rows; r ++ do

4: for c = 1; c ≤ Rng
cols; c ++ do

5: if L(r, c) = 0 then

6: queue.push(r,c)

7: while queue is not empty do

8: (r,c)=queue.top()

9: L(r,c)=Label

10: for (rn, cn) ⊂ Neighborhood(r, c) do

11: d1 = max(Rng(r, c), Rng(rn, cn))

12: d2 = min(Rng(r, c), Rng(rn, cn))

13: if arctan d2 sin α
d1−d2 cos α > ε then

14: queue.push(rn, cn)

15: end if

16: end for

17: queue.pop()

18: end while

19: Label=Label + 1

20: end if

21: end for

22: end for

23: end function

Sensors 2020, 20, 237 9 of 23

Please note that after the segmentation algorithm is implemented, the 2D image grouped into
many sub-images can be easily converted into sub-segments which are represented by 3D coordinate
points. We aim to use the segmentation algorithm to remove noise and outliers. Therefore, these
different clusters are then merged into a new point cloud. Compared to the original point cloud,
the ground point of the new point cloud is removed and some noise and outlier points have also
been filtered out. Finally, a standard point-to-point ICP algorithm is then applied to calculate the six
degree-of-freedom transformation between consecutive scans. The specific calculation process will be
described in the next section.

Figure 4. Left: O represents the center of the LiDAR while OA and OB are two laser beams that also
represent the distance between the obstacle and the laser sensor. If β > ε, where ε is a threshold, the
two points are considered to be the same cluster. Right: An intuitive example which illustrates the
relationship between the β and whether the two points belong to the same object. The blue dotted line
is an example that shows C and D belong to the same object and β is larger than the angle in the red
dotted line where E and F are from two different objects.

3.6. ICP and 6D SLAM

In this part, point-to-point ICP and a globally consistent scan-matching algorithm are used to
calculate six degree-of-freedom pose. In addition, we also compared our result with the standard
point-to-planar ICP method and Bounding Box Filter-based point-to-point ICP that first removes the
ground point by Bounding Box Filter and then performs ICP algorithm. The concept of ICP is simple:
given an initial guess, it calculates the point correspondences iteratively. Please note that an initial
guess is not strictly needed when performing ICP-based scan-matching for LiDAR-based odometry.
In fact, the ICP algorithm can be run assuming that the initial rotation and translation are zero as soon
as the sensor dynamics is not too fast with respect to the frame rate. In each iteration, ICP minimizes
a distance function to calculate the transformation between two points clouds according to the selected
closest points. The distance function of point-to-point ICP is defined as:

E(R, t) =
Nm

∑
i=1

Nd

∑
j=1
‖si − (Rdj + t)‖2 (4)

where Nm and Nd are the number of points in the source point cloud S and target point cloud D.
Point-to-plane ICP minimizes the sum of the squares of the distances between the source points

and the tangent plane of the target points. This specific formula is as follows:

Topt = arg min
T

N

∑
i=1

((Tsi − di)ni)
2 (5)

where N is the number of points, and ni is the normal vector corresponding to the target point. T is the
rigid transformation between the source and the target points. Compared with the point-to-point ICP,
point-to-plane ICP calculates the tangent plane of the point. Therefore, it can achieve better results

Sensors 2020, 20, 237 10 of 23

in environments with low geometric information. However, it needs to calculate the normal vector,
which will reduce the efficiency. Hence, point-to-point ICP is used in this work.

ICP obtains a trajectory by calculating the pose between two adjacent scans and then constantly
updating it. However, the pose estimation suffers from error accumulation in the long-term or
large-scale scene. To address this issue, the pose estimation result of the ICP is input into the 6D SLAM
framework, i.e., globally consistent scan-matching [32], once closed loops are detected. It is available in
3DTK-The 3D Toolkit [36]. 6D SLAM is similar to the point-to-point ICP method but taking into account
all scans instead of only two adjacent scans. It solves for all poses at the same time and iterates like in
the original ICP. It is actually a pose-graph-optimization method and uses the Mahalanobis distance to
represent the global error of all poses. The specific formula is:

W = ∑
j→k

(Ēj,k − Ej,k)
TC−1

j,k (Ēj,k − Ej,k)

= ∑
j→k

(Ēj,k − (Xj − Xk))
TC−1

j,k (Ēj,k − (Xj − Xk))
(6)

where j and k represent scans of the SLAM graph, Ej,k is the linearized error metric and (Ēj,k, Cj,k)

is the Gaussian distribution. Xj and Xk are two connected nodes in the graph which represent the
corresponding poses. we give only a brief overview here and a detailed description is given in [32].

4. Experimental Results

4.1. Experimental Platform and Evaluation Method

To evaluate the performance of the proposed algorithm, we test our method in the KITTI
benchmark [37]. The datasets are acquired with a vehicle equipped with a Velodyne HDL-64E laser
scanner, stereo color video cameras and a high accuracy GPS/INS for ground truth. It contains
11 sequences training data sets, which provide ground truth and 11 test data sets without ground truth.
These sequences include three types of environments: urban with buildings around, the country on
small roads with vegetations in the scene, and the highway where roads are wide, and the vehicle
speed is fast. The HDL-64E has a horizontal FOV of 360◦and 26.9◦Vertical FOV with 64 Channels
whose range reaches 120 m. All data in our experiments are processed on a desktop computer with
an i7-7700 3.60 GHz CPU and both algorithms are implemented in C++ and executed in Ubuntu Linux.

The proposed method is evaluated using the absolute metric proposed in [38] and KITTI
metric [37], respectively. The absolute metric computes absolute root-mean-square error (RMSE)
of translation rotation errors according to Equation (7) to (11)

∆Tabs,i =

(
∆Rabs,i ∆tabs,i

0 1

)
= Tr,iT−1

e,i , (7)

where Tr,i and Te,i represent the pose matrices of ground truth and estimated pose, respectively in
ith frame. Furthermore, the absolute translation error eabs,i and rotation error ∆θabs,i are computed by
Equation (8) and Equation (9), respectively.

eabs,i = ‖∆tabs,i‖ (8)

∆θabs,i = fθ(∆Rabs,i), (9)

Sensors 2020, 20, 237 11 of 23

where ‖ · ‖ indicates Euclidean metric. Then the root-mean-square error(RMSE) of absolute translation
errors and absolute rotation errors are calculated by

σt =

√
1

n + 1

n

∑
i=0

e2
abs,i (10)

and

σr =

√
1

n + 1

n

∑
i=0

∆θ2
abs,i (11)

4.2. Results

In this section, we analyze the results of four modules including ground point removal,
segmentation, ICP and 6D SLAM. To test the robustness and accuracy of the proposed method
to different scenarios, the results of four typical data sequences including urban with buildings around,
the country on small roads with vegetations in the scene and a highway where roads are wide, and the
vehicle speed is fast are presented.

4.2.1. Ground Points Removal

We compared Bounding Box Filter with the ground point extraction method used in this paper,
i.e., Algorithm 1. For Bounding Box Filter, points can be excluded by designing a rectangular bounding
region. The box is specified by defining the maximum and minimum coordinate values in the x,y,z
directions. Ground points can be filtered out by setting the appropriate minimum coordinate value of
z-axis. According to the installation height and range of the Velodyne HDL-64E laser scanner, the box
is set as:

− 120 < x < 120

− 120 < y < 120

− 1.1 < z < 120

(12)

where x, y, z refer to 3D point coordinates and the unit is the meter.
As for Algorithm 1, ground angle threshold γ and windowsize are set to 5 degrees and

7, respectively. Here, we only qualitatively compare the accuracy of ground point extraction.
Two scenarios, including the urban and the highway, are selected to test our algorithm. Please
note that Figure 5a,b are the visual inspection from Bounding Box Filter, where only non-ground points
are presented. For our method, i.e., Figure 5c,d, ground points and non-ground points are displayed
in different colors, where the yellow part indicates the ground point and the pink is non-ground
points. As shown in Figure 5, two methods have achieved similar accuracy. However, when the same
parameters of Bounding Box Filter are applied in sequence 01, a large number of ground points are not
removed cf. Figure 6a,b.

To help identify ground points, the corresponding real scene is shown in Figure 7. If we want
to use the box filtering method to remove all the ground points of Figure 6, the parameters must be
changed. Instead, our method achieves the desired results with the same threshold, although some
ground points have not been completely removed (blue arrows in Figures 5c,d and 6c,d). The next
section will show that these outliers will be removed after using segmentation.

Sensors 2020, 20, 237 12 of 23

(a) Top view (b) Perspective view

(c) Top view (d) Perspective view

Figure 5. Comparison between Bounding Box Filter-based method and the algorithm used in this paper.
The above images are a certain frame point cloud of sequence 07 which is collected on the urban.
(a) ground removal results using the box filtering method from a bird’s eye view. (b) the corresponding
perspective views. Please note that only non-ground points are displayed in (a,b). (c,d) are the results
from our method. The yellow part indicates the ground point and the pink color are non-ground points.

(a) Top view (b) Perspective view

(c) Top view (d) Perspective view

Figure 6. The same as Figure 5, but these images are from sequence 01 which is acquired on a highway.

Sensors 2020, 20, 237 13 of 23

Figure 7. A photo showing the scene corresponding to the point clouds seen in Figure 6.

4.2.2. Segmentation

To further remove noise points and outliers, we use the method in [34] to segment the range image
after removing the ground point. Please note that after the segmentation algorithm is implemented,
the 2D image grouped into many sub-images can be easily converted into sub-segments which are
represented by 3D coordinate points. By using the segmentation algorithm, those points with the same
attributes are assigned to the same labels and the entire point cloud is divided into many sub-segments.
We aim to use the segmentation algorithm to remove noise and outliers. Therefore, these different
clusters are then merged into a new point cloud. The clusters with fewer than 30 points will be
discarded which are most likely to be noise and outliers. Figure 8 shows visual results after running
segmentation algorithm. Compared to Figure 5c,d and Figure 6c,d, the ground points of the new point
cloud are removed and some false ground points (blue arrows) have also been filtered out.

(a) Top view (b) Perspective view

(c) Top view (d) Perspective view

Figure 8. Some results come from the new point cloud, which is merged by different clusters. (a) The
visual inspection of sequence 07 from a bird’s eye view. (b) The visual inspection of sequence 07 from
perspective views. (c,d) are the corresponding results from se01.

4.2.3. Comparison of Trajectory Results

In this part, four different scenarios from the KITTI dataset are selected to test the robustness,
accuracy and efficiency of the proposed method. We compare the proposed method (SE+PTP) with the

Sensors 2020, 20, 237 14 of 23

standard point-to-point ICP algorithm (PTP), the Bounding Box Filter-based ICP method (BBF+PTP),
and the point-to-surface ICP method (PTS). Here, BBF+PTP-based method refers to a method that
first uses Bounding Box Filter to remove ground points which is then input a standard point-to-point
ICP framework. Furthermore, once closed loops are detected, 6D SLAM is used to improve pose
estimation accuracy.

Figure 9 compares the 2D trajectory and 3D absolute translation and rotation error of the sequence
01 which is collected on the motorway. As Figure 9a(1) shows, SE+PTP achieves similar performance to
BBF+PTP on the first part of the sequence and is slightly better than PTP and PTS. This shows that ICP
can find the correct corresponding points with higher probability by removing ground points. On the
second part, i.e., Figure 9a(2), SE+ICP is inferior to others but keep similar performance to PTP and
PTS. Figure 10a shows the visual inspection corresponding to the Figure 9a(2). PTP and PTS exhibits
low-precision in Figure 9a(3) while SE+PTP still maintained within a certain accuracy which can also
be seen from Figure 9b(1). Figure 10b shows an example of a point cloud corresponding to Figure 9a(3).
Figure 10b contains less geometric and semantic information relative to Figure 10a. This causes PTP and
PTS to fail here. Although BBF+PTP does not suffer from large errors here, it finally failed to estimate
the pose due to the lack of geometric and semantic information which caused the BBF+PTP-based
algorithm to think that the vehicle stayed in place without moving. In contrast, SE+PTP is more robust,
which is mainly due to the introduction of the segmentation algorithm. However, our method still
cannot accurately estimate the pose of se01. Because there are too many moving vehicles running with
high speed.

-1400

-1200

-1000

-800

-600

-400

-200

 0

 200

 400

 0 300 600 900 1200 1500 1800

(1)

(2) (3)z
 [

m
]

x [m]

Ground Truth
PTP

BBF+PTP
PTS

SE+PTP

(a) Trajectory comparison

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 200 400 600 800 1000

(1)P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(b) Translation error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000

(1)R
o

ta
ti
o

n
 e

rr
o

r
[d

e
g

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(c) Rotation error

Figure 9. Trajectory and translation as well as rotational error comparison of seq01. (a) the trajectory
comparison between different ICP. (b) the translation error. (c) the rotational error.

(a) (b)

Figure 10. (a) The visual inspection corresponding to the Figure 9a(2). (b) The visual inspection
corresponding to the Figure 9a(3).

The absolute translation and rotation error of corresponding sequences to ground truth are given
in Table 1, which shows SE+PTP is superior to other methods. An intuitive conclusion is drawn from
Table 1 is both BBF+ICP and SE+ICP have improved the accuracy of pose estimation relative to the
standard ICP method. This is the result that the segmentation algorithm removes those ground points

Sensors 2020, 20, 237 15 of 23

and noise points. Table 1 also demonstrates the performance of 6D SLAM in different scenarios. 6D
SLAM does improve the accuracy of point-to-point ICP alone, cf. PTP and PTP+6DSLAM of se09 in
Table 1. The reason is 6D SLAM taking into account all scans instead of only two adjacent scans which
limits this accumulation error. Although the position accuracy of PTP+6DSLAM in se14 is similar to
PTP, the rotation error has been eliminated. However, PTP+6DSLAM shows worse results than PTP
in the urban scene (se07). This is because se07 contains a lot of dynamic vehicles which can cause
larger error. The performance of standard 6D SLAM may degrade in a high dynamic environment.
In contrast, since SE+PTP+6DSLAM includes a segmentation algorithm, which removes the noise
points caused by dynamic objects to a certain extent. Consequently, SE + 6DSLAM achieves excellent
results. Another issue that must be noted is the performance of PTS+6DSLAM degrades compared
to PTS. This problem is caused by the 6DSLAM algorithm itself. Since 6D SLAM is similar to the
point-to-point ICP method but taking into account all scans instead of only two adjacent scans. It solves
for all poses at the same time and iterates as in the original ICP. Hence, 6D SLAM is more suitable for
point-to-point ICP.

In addition, we also compared the execution time of the programs in Table 2. Compared with PTP
(point-to-point ICP), point-to-plane ICP (PTS) needs to calculate the normal vector, which increases
the computational. In addition, SE+PTP largely reduces the calculation time compared to standard
point-to-point ICP (PTP) due to the ground point removal. For se01, although SE+PTP takes more time
than BBF+ICP, cf. se01, the accuracy is much higher. In summary, this experiment of se01 shows that the
proposed method can assist ICP to estimate the pose more accurately and efficiently in an environment
with low geometric information.

Table 1. Results of the proposed method (SE+PTP) compared with point-to-point ICP (PTP), BBF+ICP
and point-to-plane ICP on the KITTI dataset using absolute metric. *+6D SLAM refers to 6D SLAM
is used in the corresponding method. Since sequences 01 does not contain closed loops, 6D SLAM is
not employed on sequences. n.a. in this table indicates the corresponding method is not available. terr

represents RMSE(root-mean-square error) of absolute translation error, while rerr represents RMSE of
absolute rotation errors.

Method se01(Highway) se07(Urban) se09(Urban+Country) se14(Country)
tabs [m] rabs [deg] tabs [m] rabs [deg] tabs [m] rabs [deg] tabs [m] rabs [deg]

PTP 183.8600 6.7351 7.0136 3.4204 61.6887 8.8175 12.3578 3.1265
BBF+PTP 543.1686 12.0947 6.7612 3.7937 30.5351 4.8372 4.3729 3.0239

PTS 261.8181 22.4791 10.9247 3.6953 27.0114 5.0372 2.3129 2.0502
SE+PTP 49.0841 4.4752 3.8886 2.7021 27.4586 4.7811 5.5984 4.4430

PTP+6DSLAM n.a. n.a. 30.5522 15.9400 39.4745 5.4160 12.6070 1.6986
BBF+PTP+6DSLAM n.a. n.a. 8.6707 3.2422 24.7700 4.5936 3.5380 1.6498

PTS+6DSLAM n.a. n.a. 30.5522 15.9400 39.4745 5.4160 12.6070 1.6986
SE+PTP+6DSLAM n.a. n.a. 3.0454 2.6856 18.5825 4.1382 1.0114 0.8563

Table 2. Total program running time of every sequence with different methods. Please note that the
time of point-cloud projection, ground point removal and segmentation have been included in SE+PTP.
Only the time before using 6D SLAM is given here.

Sequences Number of Scans PTP(s) BBF+PTP(s) PTS(s) SE+PTP(s)

se01 1101 534.9202 235.6870 1518.7555 351.6523
se07 1101 256.9504 199.3139 962.3334 191.0013
se09 1591 592.2633 368.2708 2000.6465 311.0511
se14 631 242.4361 183.1523 774.3427 132.9431

Figure 11 compares the trajectory error from an urban scene. The first row is some results
without using 6D SLAM. Overall, the start and end positions of the trajectory from SE-PTP are
perfectly coincident, while other methods suffer from significant accumulative errors, cf. Figure 11a.
As Figure 11b,c depicts, from the starting point to scan325, PTS presents smaller translation and rotation
error than other methods. However, at scan325 (Figure 11a(1)), which is a crossroad, the accuracy

Sensors 2020, 20, 237 16 of 23

of PTS drops rapidly. Starting from scan560, which corresponds to arrow 2 in Figure 11a, the error
of BBF+PTP and PTP increases rapidly. In contrast, the error produced by SE+PTP has not changed
significantly. Figure 12 are the visual inspections corresponding to the Figure 11a(1,2) which shows
that the big error at the corner is caused by the lack of geometric information and the existence of many
dynamic objects. As Table 1 shows, SE+PTP achieves better performance compared with PTP, BBF+PTP
and PTS, while PTS has larger error with respect to other methods. This shows that point-to-point ICP
is more suitable for urban environments, and removing ground points can indeed improve estimation
accuracy and efficiency (se07 in Table 2).

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

 210

-180 -150 -120 -90 -60 -30 0 30 60 90

(1)

(2)

z
 [

m
]

x [m]

Ground Truth
PTP

BBF+PTP
PTS

SE+PTP

(a) Trajectory comparison

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 200 400 600 800 1000

P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(b) Translation error

 0

 1

 2

 3

 4

 5

 6

 7

 8

 200 400 600 800 1000

R
o

ta
ti
o

n
 e

rr
o

r
[d

e
g

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(c) Rotation error

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

 210

-180 -150 -120 -90 -60 -30 0 30 60 90

z
 [

m
]

x [m]

Ground Truth
PTP+6DSLAM

BBF+PTP+6DSLAM
PTS+6DSLAM

SE+PTP+6DSLAM

(d) Trajectory comparison

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 200 400 600 800 1000

P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

PTP+6DSLAM
BBF+PTP+6DSLAM

PTS+6DSLAM
SE+PTP+6DSLAM

(e) Translation error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000

R
o

ta
ti
o

n
 e

rr
o

r
[d

e
g

]

3D scan index

PTP+6DSLAM
BBF+PTP+6DSLAM

PTS+6DSLAM
SE+PTP+6DSLAM

(f) Rotation error

Figure 11. Trajectory and translation as well as rotational error comparison of seq07. (a) the trajectory
comparison between different ICP. (b,c) are the translation error and rotational error from ICP. (d–f) are
the corresponding results after applying 6D SLAM.

(a) (b)

Figure 12. (a) The visual inspection of (a)(1) in Figure 11. (b) The visual inspection of (a)(2) in Figure 11.

After using the 6D SLAM, the trajectory has changed significantly, cf Table 1. First, PTP+6DSLAM
and PTS+6DSLAM fail to estimate pose. This is because se07 contains a lot of dynamic vehicles
which eventually leads to the performance degradation of the standard 6D SLAM. In contrast, since
SE+PTP+6DSLAM includes a segmentation algorithm, which removes the noise points caused by
dynamic objects to a certain extent. As a consequence, SE+PTP+6DSLAM achieves excellent results.
The result of BBF+PTP+6DSLAM is slightly worse than before but better than PTP+6DSLAM and

Sensors 2020, 20, 237 17 of 23

PTS+6DSLAM, which shows removing ground points helps the convergence of 6D SLAM. Another
issue that must be noted is PTS+6DSLAM obtains the same result as PTP+6DSLAM, cf. Figure 11d and
Table 1. This shows that 6D SLAM is designed for point-to-point ICP. Overall, compared with other
methods, our method requires the less time and achieves higher accuracy.

We also compared these methods in a complex scene mixing urban area and the country.
As Figure 13a,b show, the translation accuracy of SE+PTP is inferior to PTS before using 6D SLAM
(scan 500 to scan 1200 in Figure 13b). However, it has less rotation error (Table 1) and takes much less
time to run than PTS (Table 2). Table 1 shows SE+PTP achieves similar performance to PTS, while
PTP suffers from large errors, which Demonstrates PTS performs better in unstructured environments,
such as roads and rural areas. In addition, the proposed method can achieve similar performance to
PTS after combining segmentation, but it requires less calculation time. In addition, SE+PTP can better
close the loop than other methods, cf. Figure 13a.

After 6D SLAM, SE+PTP+6DSLAM is superior to other methods in trajectory error and rotation
error, cf. Figure 13e,f. We also find 6DSLAM does improve the accuracy of ICP alone. cf. se09 in Table 1.
The reason is 6D SLAM taking into account all scans instead of only two adjacent scans which limits
this accumulation error. Although the translation error was reduced from 27.0114 to 18.5825, this error
is still rather large, which is caused by the complexity of the scene. Large changes between urban and
villages have led to large errors in the middle of this trajectory (scan 300 to scan 800 in Figure 13e).
Despite this, our algorithm can still close the loop well, cf. Figure 13d.

 0

 100

 200

 300

 400

 500

 600

 700

 800

-200 -100 0 100 200 300 400

z
 [

m
]

x [m]

Ground Truth
PTP

BBF+PTP
PTS

SE+PTP

(a) Trajectory

 0

 15

 30

 45

 60

 75

 90

 105

 120

 200 400 600 800 1000 1200 1400

P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(b) Translation error

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 200 400 600 800 1000 1200 1400

R
o

ta
ti
o

n
 e

rr
o

r
[d

e
g

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(c) Rotation error

 0

 100

 200

 300

 400

 500

 600

 700

 800

-200 -100 0 100 200 300 400

z
 [

m
]

x [m]

Ground Truth
PTP+6DSLAM

BBF+PTP+6DSLAM
PTS+6DSLAM

SE+PTP+6DSLAM

(d) Trajectory

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400

P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

PTP+6DSLAM
BBF+PTP+6DSLAM

PTS+6DSLAM
SE+PTP+6DSLAM

(e) Translation error

 0

 5

 10

 200 400 600 800 1000 1200 1400

R
o

ta
ti
o

n
 e

rr
o

r
[d

e
g

]

3D scan index

PTP+6DSLAM
BBF+PTP+6DSLAM

PTS+6DSLAM
SE+PTP+6DSLAM

(f) Rotation error

Figure 13. Trajectory and translation as well as rotational error comparison of seq09. (a) the trajectory
comparison between different ICP. (b,c) are the translation error and rotational error from ICP. (d–f) are
the corresponding results after applying 6D SLAM.

The last experiment was conducted in a rural environment, which is a vegetated road and contains
little structural information. Please note that this data set is different from the above three groups,
because it is a test data set in the KITTI benchmark which only provides the original LiDAR data but
does not provide ground truth. To quantitatively analyze the trajectory error, we use the trajectory
calculated by the SOFT2 [39] algorithm as the ground truth. SOFT2 is a state-of-the-art stereo visual
odometry based on feature selection and tracking. This replacement is reasonable because the accuracy
of SOFT2 algorithm is ranked fifth on the KITTI benchmark.

Sensors 2020, 20, 237 18 of 23

Figure 14a–c show the performance of SE+PTP is worse than both PTS and BBF+PTP and the gap
between the initial position and the end position is larger, cf. Figure 14a(1). However, compared with
PTP, SE+PTP reduces the translation error from 12.3578 to 5.5984 (Table 1), and the execution time of
the algorithm decreased from 242.4361s to 132.9432 (Table 2). These improvements of performance
are mainly due to the introduction of ground point removal and segmentation algorithms. Although
PTS achieves higher accuracy before 6D SLAM, it consumes nearly 6 times more time than SE+PTP.
The performance of our method has been greatly optimized after 6D SLAM. As shown in Figure 14d(1),
the gap between the starting point and the ending point has been largely reduced. Table 1 reports,
after 6D SLAM, the translation error was reduced from 5.5984 to 1.0114 while the rotation error is
decreased to 0.8563. This shows that our method is superior to similar methods in terms of efficiency
and accuracy.

 0

 20

 40

 60

 80

 100

 120

-60 -40 -20 0 20 40 60 80 100 120

(1)

(2)

z
 [

m
]

x [m]

Ground Truth
PTP

BBF+PTP
PTS

SE+PTP

(1)

(a) Trajectory comparison

 0

 3

 6

 9

 12

 15

 18

 21

 200 400 600

P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(b) Translation error

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 200 400 600

R
o

ta
ti
o

n
 e

rr
o

r
[d

e
g

]

3D scan index

PTP
BBF+PTP

PTS
SE+PTP

(c) Rotation error

 0

 20

 40

 60

 80

 100

 120

-60 -40 -20 0 20 40 60 80 100 120

(1)

(2) (3)

z
 [

m
]

x [m]

Ground Truth
PTP+6DSLAM

BBF+PTP+6DSLAM
PTS+6DSLAM

SE+PTP+6DSLAM

(d) Trajectory comparison

 0

 3

 6

 9

 12

 15

 18

 21

 200 400 600

P
o

s
it
io

n
 e

rr
o

r
[m

]

3D scan index

PTP+6DSLAM
BBF+PTP+6DSLAM

PTS+6DSLAM
SE+PTP+6DSLAM

(e) Translation error

 0

 5

 10

 200 400 600 800 1000 1200 1400

R
o

ta
ti
o

n
 e

rr
o

r
[d

e
g

]

3D scan index

PTP+6DSLAM
BBF+PTP+6DSLAM

PTS+6DSLAM
SE+PTP+6DSLAM

(f) Rotation error

Figure 14. Trajectory and translation as well as rotational error comparison of seq14. (a) the trajectory
comparison between different ICP. (b,c) are the translation error and rotational error from ICP. (d–f) are
the corresponding results after applying 6D SLAM.

Figure 15 shows the point-cloud map of four experiments, which is calculated by
SE+PTP+6DSLAM. To further test the effectiveness of the proposed algorithm, we evaluate the
algorithm using the KITTI metric which calculated the accuracy by averaging relative position and
rotation errors using segmented trajectory lengths. The average relative error of all four experiments
based on the KITTI metrics is given in Table 3. Please note that only the methods with relatively high
accuracy are given here according to Table 1. As shown Table 3, our method achieves higher accuracy.
In addition, PTS is slightly inferior to our method in sequences 09 and 14, which demonstrates that
point-to-plane ICP performs well in rural areas. This can be attributed to the tangent plane calculated
by point-to-plane ICP, which is more robust to unstructured environments. However this also poses
a challenge to computing efficiency. As Table 2 shows, PTS consumes nearly 6 times more time than
SE+PTP. In sum, the proposed algorithm is superior to the ICP method in both accuracy and efficiency.
In addition, our method is more suitable for 6D SLAM.

Sensors 2020, 20, 237 19 of 23

(a) Highway from se01 (b) Urban from se07

(c) Urban+Country from se09 (d) Country from se14

Figure 15. The point-cloud map of four experiments, which is calculated by SE+PTP+6DSLAM. The red
line is the trajectory of the vehicle. (a) se01. (b) se07. (c) se09. (d) se14.

Table 3. Results of the proposed method(SE+PTP) compared with PTS and BBF+PTP+6DSLAM using
relative (KITTI metric) metric, where t represents translation error, while r represents rotation error.
Since sequences 01 do not contain closed loops, 6D SLAM is not employed on this sequence, hence, for
se01, the results before and after 6D SLAM have the same error values.

Method se01(Highway) se07(Urban) se09(Urban+Country) se14(Country)
trel [%] rrel [deg] trel [%] rrel [deg] trel [%] rrel [deg] trel [%] rrel [deg]

PTS 12.0361 0.0245 3.1390 0.0151 4.2922 0.0198 1.4128 0.0101
SE+PTP 3.9835 0.0080 1.5691 0.0136 4.1093 0.0189 3.0411 0.0301

BBF+PTP+6DSLAM 34.0821 0.0127 2.8382 0.0182 4.4884 0.0201 2.1407 0.0122
SE+PTP+6DSLAM 3.9835 0.0080 1.4075 0.0131 3.9607 0.0183 0.9815 0.0143

5. Discussion

The core idea of the proposed algorithm is to develop a highly accurate localization and mapping
module in unknown environments. We have integrated ground point removal and segmentation
modules with the standard point-to-point ICP method. Four experimental results show that both
BBF+PTP and SE+PTP greatly improve efficiency and accuracy when compared with the standard ICP
method(Table 1). As previously discussed, the LiDAR data contains a large number of ground points,
which increase the computational burden as well as the possibility of ICP mismatch. Hence removing
ground points is a necessary step. Compared with BBF + PTP, the introduction of the segmentation
algorithm leads to higher accuracy of SE+PTP. This is the result that the segmentation algorithm
removes those false ground points and noise points. It is worth emphasizing that our method often
closes the loop well. After applying 6D SLAM, we also concluded that 6DSLAM is more suitable for
optimizing point-to-point ICP, especially for the proposed method.

Our experiments also demonstrated some characteristics about ICP and 6D SLAM. First,
the standard point-to-point ICP performs better in urban scene, cf. se07 in Table 1. This is because
the environment contains more structured information, such as buildings. However, it has a large
error in the country, cf. se09 and se14 in Table 1, while the point-to-plane ICP is more robust to these
environments due to the introduction of the tangent plane. Moreover, 6DSLAM does improve the

Sensors 2020, 20, 237 20 of 23

accuracy of point-to-point ICP alone, cf. PTP and PTP+6DSLAM of se09 in Table 1. The reason is 6D
SLAM taking into account all scans instead of only two adjacent scans which limits this accumulation
error. Although the position accuracy of PTP+6DSLAM in se14 is similar to PTP, the rotation error
has been eliminated. However, PTP+6DSLAM shows worse results than PTP in the urban scene
(se07 in Table 1). This is because se07 contains a lot of dynamic vehicles which can cause larger error.
The performance of standard 6D SLAM degrade in a high dynamic environment. Another issue that
must be noted is the performance of PTS+6DSLAM degrades compared to PTS. This problem is caused
by the 6DSLAM algorithm itself. Since 6D SLAM is similar to the point-to-point ICP method but
taking into account all scans instead of only two adjacent scans. It solves for all poses at the same
time and iterates like in the original ICP. Hence, 6D SLAM is more suitable for point-to-point ICP.
Furthermore, it must be noted that the point-to-plane ICP method always produces the same result as
point-to-point ICP after they are input into 6D SLAM, which is because the 6D SLAM framework is
specifically designed for the point-to-point ICP method.

In terms of application scenarios, all methods perform poorly on the highway, which is mainly
due to the lack of rich geometric and semantic information on the highway, cf. se01 in Table 1 and
Table 3. Due to the lack of semantic information, BBF+PTP finally failed to estimate the pose. This leads
to the BBF+PTP-based algorithm to think that the vehicle stayed in place without moving. Hence the
scale of this trajectory is reduced by a certain proportion, cf. Figure 9a. In contrast, SE+PTP is more
robust, which is mainly due to the introduction of the segmentation algorithm. However, our method
still cannot accurately estimate the pose of se01. Because there are too many moving vehicles running
with high speed. Although the proposed algorithm perform better than the other methods in se09,
it still suffers from large errors due to the complexity of the environment, which is a combination of
rural and urban scenes. All methods perform better in the rural environment, i.e., se14, especially
the proposed method greatly improves pose accuracy, which is the reason that se14 contains much
structural information, e.g., this road is surrounded by trees on both sides and few dynamic objects
are contained in this environment. As se14 of Table 1 shows, PTS achieves higher accuracy before 6D
SLAM, which is due to it calculates the tangent plane of the point. However, it consumes nearly 6
times more time than SE+PTP, cf. se14 in Table 2. Moreover, the result of SE+PTP+6DSLAM is better
than PTS.

Dynamic objects such as high-speed vehicles, are the main error sources affecting pose accuracy.
By comparing the locations of errors, we also find that large errors often occur at intersections.
As Figure 12 shows, intersections either lack sufficient geometry or contain a large number of dynamic
vehicles which are the main cause of errors. In future work, we will carry out research based on
dynamic objects removing to further improve the pose estimation accuracy.

6. Conclusions

This paper presented a method for enhancing pose estimation accuracy of 3D point clouds by
properly processing ground point and point-cloud segmentation. Since the ground points are removed,
the proposed method is mainly applied to estimate the pose of ground vehicles. First, a 2D image-based
ground point extraction method is introduced as a preprocessing step for ICP matching. Secondly,
the point cloud after removing the ground points is then grouped into many clusters. By clustering,
some outliers that do not have common attributes are removed. After this step, these different clusters
are merged into a new point cloud. Compared to the original point cloud, the ground points of the
new point cloud are removed and those false ground points and noise points have also been filtered
out, which will greatly increase the efficiency and accuracy of ICP matching. Thirdly, A standard
point-to-point ICP is then applied to calculate the six degree-of-freedom transformation between
consecutive scans. Once closed loops are detected in the environment, a 6D graph optimization
algorithm for global relaxation is employed, which aims to obtain a globally consistent trajectory
and mapping.

Sensors 2020, 20, 237 21 of 23

In addition, we validated the proposed algorithm in four different scenarios including the city,
the country and a highway. To test the proposed algorithm, the accuracy and runtime between our
method and point-to-point ICP, point-to-plane ICP and Bounding Box Filter-based ICP are presented.
Four experimental results show that both BBF+ICP and SE+ICP have improved the accuracy and
speed of pose estimation relative to the standard ICP method, demonstrating that removing ground
points improve the accuracy, efficiency and robustness of pose estimation based on ground vehicles.
Compared with BBF + ICP, the introduction of the segmentation algorithm leads to higher accuracy of
SE+ICP. This is the result that the segmentation algorithm removes those false ground points and noise
points. Furthermore, we also concluded that 6DSLAM is more suitable for optimizing point-to-point
ICP, especially for the proposed method.

In future work, removing dynamic targets of the scene will be fused into this proposed algorithm.
Moreover, since our algorithm does not perform well in environments with less geometric information,
such as highways, future work will integrate semantic information into our method, which is expected
to inevitably improve the efficiency and accuracy of ICP matching.

Author Contributions: Conceptualization, S.D.; Data curation, S.D.; Formal analysis, S.D. and H.L.; Investigation,
X.L.; Methodology, S.D.; Software, S.D.; Validation, S.D. and H.L.; Funding acquisition, G.L.; Supervision, X.L.
and G.L.; Project administration, G.L.; Writing—original draft preparation, S.D.; Writing—review and editing,
G.L., H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China (NSFC) under
Grant 51309058 and the Science Foundation of Heilongjiang Province under Grant E2017015.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using
monocular visual inertial fusion. IEEE Intell. Transp. Syst. Mag. 2018, 35, 23–51. [CrossRef]

2. Pinies, P.; Lupton, T.; Sukkarieh, S; Tardos, J.D. Inertial aiding of inverse depth SLAM using a monocular
camera. In Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy,
10–14 April 2007; pp. 2797–2802.

3. Tong, C.H.; Barfoot, T.D. Gaussian process gaussnewton for 3d laser-based visual odometry. In Proceedings
of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 5024–5011.

4. Barfoot, T.D.; McManus, C.; Anderson, S; Dong, H.; Beerepoot, E.; Tong, C.H.; Furgale, P.; Gammell, J.D.;
Enright, J. Into darkness: Visual navigation based on a lidar-intensity-image pipeline. Robot. Res. 2016, 114,
487–504.

5. Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [CrossRef] [PubMed]

6. Ren, Z.; Wang, L.; Bi, L. Robust GICP-Based 3D LiDAR SLAM for Underground Mining Environment.
Sensors 2019, 19, 2915. [CrossRef] [PubMed]

7. Besl, P.J.; McKay, N.D. A Method for Registration of 3D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256. [CrossRef]

8. Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems,
Zurich, Switzerland, 25–28 June 2009; Volume 2, p. 435.

9. Zhou, Q.Y.; Park, J.; Koltun, V. Fast global registration. In Proceedings of the European Conference on
Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 766–782.

10. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics:
Science and Systems, Cambridge, CA, USA, 12–16 July 2014; pp. 1–9.

11. Zaganidis, A.; Sun, L.; Duckett, T.; Cielniak, G. Integrating Deep Semantic Segmentation into 3D Point Cloud
Registration. IEEE Robot. Autom. Lett. 2018, 3, 2942–2949. [CrossRef]

12. Stoyanov, T.; Magnusson, M.; Lilienthal, A.J. Point Set Registration through Minimization of the L2 Distance
between 3D-NDT Models. In Proceedings of the 2012 IEEE International Conference on Robotics and
Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 5196–5201.

http://dx.doi.org/10.1002/rob.21732
http://dx.doi.org/10.1109/TPAMI.2015.2513405
http://www.ncbi.nlm.nih.gov/pubmed/26731638
http://dx.doi.org/10.3390/s19132915
http://www.ncbi.nlm.nih.gov/pubmed/31266207
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/LRA.2018.2848308

Sensors 2020, 20, 237 22 of 23

13. Liu, H.; Ye, Q.; Wang, H.; Chen, L.; Yang, J. A Precise and Robust Segmentation-Based Lidar Localization
System for Automated Urban Driving. Remote Sens. 2019, 11, 1348. [CrossRef]

14. Opromolla, R.; Fasano, G; Grassi, M.; Savvaris, A.; Moccia, A. PCA-Based Line Detection from Range Data
for Mapping and Localization-Aiding of UAVs. Int. J. Aerosp. Eng. 2017, 38, 1–14. [CrossRef]

15. Durrant-Whyte, H.; Bailey, T. Simultaneous Localization and Mapping (SLAM): Part I the essential
algorithms. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [CrossRef]

16. Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A Tutorial on GraphBased SLAM. IEEE Intell. Transp.
Syst. Mag. 2010, 4, 31–43. [CrossRef]

17. Rusu, R. ; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4.

18. Na, K.; Byun, J.; Roh, M.; Seo, B. The ground segmentation of 3D LIDAR point cloud with the optimized
region merging. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Las Vegas, NV, USA, 2–6 December 2013; pp. 445–450.

19. Luo, Z.; Mohrenschildt, M.; Habibi, S. A Probability Occupancy Grid Based Approach for Real-Time LiDAR
Ground Segmentation. IEEE Trans. Intell. Transp. Syst. 2019, 1–13. [CrossRef]

20. Shan, T. Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on
Variable Terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765.

21. Pomares, A.; Martínez, J.; Mandow, A.; Martinez, M.; Moran, M.; Morales, J. Ground Extraction from
3D Lidar Point Clouds with the Classification Learner App. In Proceedings of the 26th Mediterranean
Conference on Control and Automation (MED), Zadar, Croatia, 19–22 June 2018; pp. 400–405.

22. Hackel, T.; Wegner, Jan D.; Schindler, K. Fast Semantic Segmentation of 3d Point Clouds with Strongly
Varying Density. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 177–184. [CrossRef]

23. Velas, M.; Spanel, M.; Hradis, M.; Herout, A. CNN for Very Fast Ground Segmentation in Velodyne Lidar
Data. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 97–103.

24. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

25. Huhle, B.; Magnusson, M.; Strasser, W.; Lilienthal, A.J. Registration of colored 3D point clouds with
a Kernel-based extension to the normal distributions transform. In Proceedings of the 2008 IEEE International
Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 4025–4030.

26. Nüchter, A.; Wulf, O.; Lingemann, K.; Hertzberg, J.; Wagner, B.; Surmann, H. 3D mapping with semantic
knowledge. In Robot Soccer World Cup; Springer: Berlin, Germany, 2005; pp. 335–346.

27. Zaganidis, A.; Magnusson, M.; Duckett, T.; Cielniak, G. Semantic-assisted 3d normal distributions transform
for scan registration in environments with limited structure. In Proceedings of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017.

28. PiniÉs, P.; TardÓs, J.D. Large-Scale SLAM Building Conditionally Independent Local Maps: Application to
Monocular Vision. IEEE Trans. Robot. 2008, 24, 1094–1106. [CrossRef]

29. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized
Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]

30. Olofsson, B.; Antonsson, J.; Kortier, H.G.; Bernhardsson, B.; Robertsson, A.; Johansson, R. Sensor fusion for
robotic workspace state estimation. IEEE/ASME Trans. Mechatronics 2016, 21, 2236–2248. [CrossRef]

31. Wang, K.; Liu, Y.; Li, L. A Simple and Parallel Algorithm for Real-Time Robot Localization by Fusing
Monocular Vision and Odometry/AHRS Sensors. IEEE/ASME Trans. Mechatronics 2014, 19, 1447–1457.
[CrossRef]

32. Borrmann, D.; Elseberg, J.; Lingemann, K.; Nüchter, A.; Hertzberg, J. Globally consistent 3D mapping with
scan matching. Robot. Auton. Syst. 2008, 56, 130–142. [CrossRef]

33. Elseberg, J.; Borrmann, D.; Nüchter, A. One billion points in the cloud—An octree for efficient processing of
3D laser scans. Int. J. Photogramm. Remote. Sens. 2013, 76, 76–88. [CrossRef]

34. Bogoslavskyi, I.; Stachniss, C. Fast range image-based segmentation of sparse 3D laser scans for online
operation. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Daejeon, Korea, 9–14 October 2016; pp. 163–169.

http://dx.doi.org/10.3390/rs11111348
http://dx.doi.org/10.1155/2017/4241651
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1109/MITS.2010.939925
http://dx.doi.org/10.1109/TITS.2019.2900548
http://dx.doi.org/10.5194/isprsannals-III-3-177-2016
http://dx.doi.org/10.1109/TRO.2008.2004636
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/TMECH.2015.2506041
http://dx.doi.org/10.1109/TMECH.2014.2298247
http://dx.doi.org/10.1016/j.robot.2007.07.002
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004

Sensors 2020, 20, 237 23 of 23

35. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

36. Nüchter, A.; Lingemann, K. 6D SLAM Software. Available online: http://slam6d.sourceforge.net/
(accessed on 31 December 2019).

37. Geiger, A.; Lenz, P.; Urtasum, R. Are we ready for autonomous driving? the kitti vision benchmark suite.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI,
USA, 16–21 June 2012; pp. 3354–3361.

38. May, S.; Droeschel, D.; Holz, D.; Fuchs, S.; Malis, E.; Nüchter, A.; Hertzberg, J. Three dimensional mapping
with time of flight cameras. J. Field Robot. 2009, 26, 934–965. [CrossRef]

39. Cvišić,Igor; Ćesić,Josip; Marković, Ivan; Petrović,Ivan. SOFT-SLAM: Computationally Efficient Stereo Visual
SLAM for Autonomous UAVs. J. Field Robot. 2017, 35, 578–595.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ac60214a047
http://slam6d.sourceforge.net/
http://dx.doi.org/10.1002/rob.20321
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	System Overview
	Point Reduction
	Projection into 2D Range Image
	Ground Removal
	Segmentation
	ICP and 6D SLAM

	Experimental Results
	Experimental Platform and Evaluation Method
	Results
	Ground Points Removal
	Segmentation
	Comparison of Trajectory Results

	Discussion
	Conclusions
	References

