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Abstract: In order to keep track of the operational state of power grids, the world’s largest sensor
system, smart grid, was built by deploying hundreds of millions of smart meters. Such a system
makes it possible to discover and make quick response to any hidden threat to the entire power
grid. Non-technical losses (NTLs) have always been a major concern for their consequent security
risks as well as immeasurable revenue loss. However, various causes of NTL may have different
characteristics reflected in the data. Accurately capturing these anomalies faced with such a large scale
of collected data records is rather tricky as a result. In this paper, we proposed a new methodology of
detecting abnormal electricity consumptions. We did a transformation of the collected time-series
data which turns it into an image representation that could well reflect users’ relatively long term
consumption behaviors. Inspired by the excellent neural network architecture used for objective
detection in computer vision, we designed our deep learning model that takes the transformed
images as input and yields joint features inferred from the multiple aspects the input provides.
Considering the limited amount of labeled samples, especially the abnormal ones, we used our model
in a semi-supervised fashion that was brought about in recent years. The model is tested on samples
which are verified by on-field inspections and our method showed significant improvement for NTL
detection compared with the state-of-the-art methods.

Keywords: sensor system; smart meter; non-technical loss; deep learning; semi-supervised learning

1. Introduction

By deploying a large number of sensor devices, the smart grid becomes the largest sensor network
in the world. Particularly, China installed nearly 500 million smart meters (SM) by the end of 2017.
The smart meters have greatly improved the information and automation level of the power grid,
and made it possible to identify anomalies. Anomalies, which include meter failure and electricity theft,
are the primary source of non-technical losses (NTL) in the power grid. The NTL cause significant
revenue losses; $58.7 billion dollars are lost each year due to NTL [1]. Further, it also affects the
power system operation because of the uncertainty of the real consumption [2]. Due to the huge scale
of the collected data and the complicated real-world operational environment, the NTL detecting
methods required are excellent in terms of both efficiency and reliability. However, the existing expert
system based approach sometimes is unreliable as it fails to comprehensively exploit the underlying
correlations among different features. Or the other way round, in order to cover extremely diverse
forms of abnormal behaviors, far more field knowledge should be integrated, and sometimes human
efforts are necessary. As a result, efficiency suffers.
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In this paper, we introduced deep learning to help with the detection of NTL as it has already
demonstrated its great potential and capacity in a variety of fields. Neural networks’ hierarchical
structures are designed to automatically extract high level features containing more abstract semantic
information from a large scale of input data. So, in this problem setting where the prominent features
are latent and intertwined with a lot of factors, deep neural networks are just fit for the job in terms of
both efficiency and accuracy. Yet, there are some problems we have to solve:

(a) The quality of collected data is relatively low because of data noise and missing data. As is
often the case in real-world scenarios, the data records may suffer from various types of noises.
Generally, two types of noises are distinguished: feature (or attribute) noise and class noise. Class
noise means the labels assigned to samples are not totally correct, which is likely to happen as
the ground truth labels are given based on the result of on-field inspections in this problem.
In this paper we only focus on the feature noises. Generally speaking, this type of noise can
be summarized as the noise that interferes the mapping from the input x to the output label y,
including slight value disturbance, erroneous data records as well as data out of sync. Missing
data is also a common phenomenon in large-scale sensing systems. Situations get worse when
unavailable data points emerge in high density or even large chunks are missing.

(b) The correlation between labels given by on-field inspection and the original data records is
not intuitional. For those verified customers, we only have general labels denoting whether
anomalies ever occurred in a customers’ history records. There is no further information that
indicates when and how faults or fraudulent events occurred. So we have to find distinct patterns
of positive/negative samples for the classifier/detector. It is better if we can make the data
records more human friendly and distinguishable for ordinary people without the aid of carefully
designed criteria.

(c) The proportion of labeled data is rather small compared to that of the unlabeled. And the
abnormal samples are obviously fewer than normal ones. This fact makes it impossible for us to
treat the problem as a simple supervised classification problem.

In this paper, we first proposed a data transformation method. By analyzing the abnormal cases,
we found that statistical characteristics of the data can better reflect the consumption behaviors of the
electricity users. The method we designed focuses on the feature patterns in a relatively longer term by
utilizing the data in a certain time range. This transformation makes it easier to get features that can
distinguish between normal and abnormal samples. Moreover, the transformed data form naturally
has better noise resistance performance and it can eliminate the difficulties resulting from different
value ranges of different users. We also adopt a semi-supervised model [3] brought about in recent
years. This model does not depend on any presupposed prior distribution of the training data in class
space and proved itself a reliable one by testing it on the real customers’ data.

There is an abundance of previous work about NTL detection or anomaly (fraud) detection
in electricity industry. The approaches can generally be categorized in classification based and
non-classification based solutions. The non-classification based approaches usually use methods like
clustering, statistical analysis, and so on. Ford et al. [4] and Cody et al. [5] forecasted the customers’
energy consumption. If the difference between actual and forecasted consumption exceeds the limit
imposed by the authors, the customer is considered to be committing fraud. Similar ideas are adopted
in [6,7], where researchers first construct the distribution of the historical data collected by meters.
Then a similarity measurement is introduced to find outliers, which are considered fraud or anomaly.
As far as the classification based approaches are concerned, Nagi et al. [8] used extracted features from
historical customer consumption data and trained a support vector machine (SVM) model with them
to detect NTL. Apart from the sole consumption measurements, P. Glauner et al. [9] also utilized the
customers’ geographical location to compute the inspection rate and the NTL rate in its neighborhood.
And other models besides support vector machine (SVM), such as logistic regression (LR), k-nearest
neighbor (kNN), and random forest (RF) are trained to testify the methodology. As for the classifier,
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there also exists works using neural networks (NN) as in [10,11]. However, reference [11] did a
comparison among different algorithms and found out the single gradient boosted machine (GBM)
outperformed any ensemble or any other classifiers.

Our main contributions to these problems are as follows:

• We designed a novel way of visualizing customers’ data records by utilizing more potentially
useful real-time electrical information than sole energy consumption measurements. The new
data format statistically constructs a visual representation of customers’ behavior in a certain time
range and provides a new aspect of viewing their operational states. Such transformation is also
tolerant of slight data error or missing, which is quite common for the sensor systems in industrial
areas. The convolutional based neural network that is universally used in computer vision is then
introduced to extract visual patterns for further classification.

• The inefficient on-field inspection limited the ground truth we can make use of for supervised
training. This work combined a semi-supervised learning method based on consistency loss with
our proposed network architecture to deal with the common situations in real world scenarios
where the training samples are partially labeled. It turns out the consequent overfitting problem
can be addressed pretty well.

2. Data Transformation and Network Design

The major goal of this paper is to detect abnormal energy consumption for a certain customer
from SM data, whatever it is caused by metering failure or fraudulent usage. The data records are from
an electrical information collection system constructed by China Southern Power Grid Co., Ltd. (CSG).

We first extracted features from the electric parameters. Then we did a data transformation and
formed training samples based on those features. An inference network was designed afterwards and
was trained in a semi-supervised fashion considering the fact that the Figure 1 labeled samples are in
the minority.Sensors 2020, 20, x FOR PEER REVIEW 4 of 19 
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(b) The corresponding scatter plots of the same piece of data with load rate being the x-axis. Voltage 
is collected once an hour and each time stamp is the collecting time. 

Figure 1. The power triangle in the AC circuit. S is the complex power and the magnitude of S is called
apparent power. Active power P is represented as the real axis while reactive power is represented
as the imaginary axis of the vector diagram. ϕ is the angle of difference (in degrees) between current
and voltage.

2.1. Statistical Profile

In an alternating current (AC) circuit, electric parameters like voltage, current, etc., are usually
denoted in phasor form. The definition of power is more complex than that in the direct current circuit.

S = VI∗ = |S|∠ϕ (1)

S is the complex power and its magnitude is the apparent power. V denotes voltage in phasor
form and I denotes current in phasor form. And the complex conjugate of I is denoted I∗. ϕ is
the angle of difference (in degrees) between current and voltage. There are also active power and



Sensors 2020, 20, 236 4 of 19

reactive power, whose explanations and correlations with complex power are explained in Table 1 and
Figure 1 respectively.

Table 1. Parameters.

Items Notes

Va, Vb, Vc Voltage on three phases
Ia, Ib, Ic Current on three phases

Active power Power that does work
Reactive power Power that does not do any work

Power factor Cosine of the phase of voltage relative to current

In a power grid, each customer is generally assigned a specific transformer. As the voltage on the
supply side is fixed, the voltage on the customer side should be certain and it is called rated voltage.
Besides, there are maximum power limits for customers that should not be exceeded. The limit is
contracted power (CP) and varies from customer to customer.

Electric parameters are collected at higher frequencies than energy consumption. It not only
contains more information about consumption behavior, but also allows us to detect and respond to
NTL with lower delay.

The abnormal consumption that really matters and would cause NTL is the kind that last for a
period of time. To be specific, anomalies that take on the forms of impulse signals, sudden changes, or
transient data missing, for example, would not make any significant differences to the overall energy
consumption (EC) of a customer, and neither would they cause great NTLs. It is a better choice to take
them as the consequences of communication failure or temporal metering devices’ malfunctioning and
treat the data records from a statistical point of view.

Figure 2 presents the three-phase voltage records from two customers, normal customer A and
abnormal customer B. These two customers are verified by on-field inspections. From the time series
in Figure 2a we can see that for the normal customer A (upper), apart from several sudden drops in
the single-phase voltage, the voltage values for three phases are highly identical for the rest of the
time. However, for abnormal customer B, it is a consistent and almost periodic phenomenon that
voltage on phase c differs significantly from the rest of the phases. From the scatter plot of normal
customer A in Figure 2b, the several outliers correspond to those impulses in Figure 2a and they behave
more like noises in this case. This justifies what was discussed above: focusing on the long term
consumption behaviors would help us draw safer conclusions in this NTL detection problem. It is
not appropriate to just take each row of data records as a training sample. This is why we proposed
our data transformation method. Further experimental comparison between single-collecting-point
samples and our statistics-based data representation will be shown in a later section.

Here, we did not aim to get a precise mathematical representation of the feature distributions.
Rather, we designed a data transformation inspired by kernel density estimation (KDE), a
non-parametric distribution estimation method. In this work, we did a 2-dimensional KDE
transformation of the features obtained in previous section.

The process can be briefly thought of as replacing each discrete point in a scatterplot with a kernel
distribution. The idea of this estimation method is that the positions where the points appear have the
higher occurrence probabilities. So, for the Gaussian distribution we use as basic kernels, the peaks are
where the points are located. The advantage of the distribution profile over a scatter plot is that it gives
more intuitive impression of customers’ behavior patterns during a period of time. With the extension
of time used for statistical analysis, the estimated distribution becomes more plausible and closer to
the scatter plot.

In this work, we used 2-D KDE to reflect the correlation and variation tendency in the space
constructed by two feature indices. As the estimation method is density based, outliers that are rather
sparse would have small pixel values thus contributing little to the visual patterns. Figure 3a shows a
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scatter plot and 2-D KDE profile of the same piece of voltage records data for the afore-mentioned
normal customer A. Darker areas in the estimated profile image represents locations where points
emerge in high densities and outliers in scatter plot on the left side can hardly be observed in the
estimated profile. Technically, the time span needed to generate distribution profile images can vary
from sample to sample. If presented with more detailed event annotations as ground truth, we can
generate more samples with different time durations as a kind of data augmentation. However, in this
situation where specific event logs are not available, it is hard to implement such data augmentations
and a fixed time duration of 10 calendar days is adopted throughout this work.
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customer B. The voltage value on the y-axis is the raw value divided by customer’s rated voltage.



Sensors 2020, 20, 236 6 of 19

2.2. Feature Engineering

The AC voltages and currents are three-phase data. It is fair to treat each of the three phases
equivalently because here we only aim to decide whether anomalies/NTL occurred without having to
know specifically which phase was going wrong. With regard to the voltage and current, the following
features were extracted:

Deviation from rated voltage

VDi =

Vr−Vi
u

Vr
, Vr ≥ Vi

u

0, Vr ≤ Vi
u

, (2)

VD(Vu, Vr) = max(vdA, vdB, vdC), (3)

where Vr is the rated voltage and Vi
u is the i-th phase voltage. As the voltage should remain steady for

a certain customer, the maximum voltage deviation among the three phases from the above formulas
can indicate the degree of how abnormal a customer is.

Unbalance degree of voltage and current on three phases

AVG = mean(SA, SB, SC), (4)

UD =
mean(abs(SA −AVG), abs(SB −AVG), abs(SC −AVG))

AVG
, (5)

where S can either be voltage or current.
Unlike the voltage, there exists no such standard value for the current. However, the discrepancy

of voltage or current values in three different phases should not be too large if the system is running as
expected. After all, any significant value decrease in any phases would directly result in the drop of
EC. Formula (5) well represents the difference of voltage or current in three phases.

Active Power. Although there are many different types of customers and their real-time active
power collected once an hour may vary greatly, we can use the contracted power to normalize it to
make the power feature comparable among customers.

Power factor. This feature is customer-invariant and has the value range from 0 to 1.
Load rate. It indicates the percentage that the power accounts for of the maximum power volume.

The formula is more like an approximation of the apparent powers normalized by the contracted
power. In most of the 2-dimensional distribution profile image channels, we used the load rate as the
reference axis x.

load rate = (|Ia|+ |Ib|+ |Ic|) ∗Vr/CP, (6)

2.3. Generation of Super Images

We used a Gaussian kernel with fixed standard deviation σ and formed images as shown in
Figure 3. Notably, with all the features mentioned above, we can use combinations of them to get short
time distribution profiles of these feature pairs. Seven grey-scale maps are generated altogether as
described in Figure 4. With each of these maps constituting one channel, a super image with seven
channels is obtained and this is the input for the detecting neural network. Multiple samples can be
generated from a customer by having a sliding window of fixed size move along the time axis of a
customer’s data records. The comparison between samples from statistical profile and per-row record
will be shown in later section in terms of separability and final detection performance.

Before feeding the super image to the network, we have to search the bounding boxes of patterns
in each image channel. Position information obtained in this stage serves as auxiliary input for the
network to highlight the position of the pattern objectives. We achieved this goal by setting a pixel
threshold, and pixel values higher than the threshold are included in the bounding box. The choice of
threshold value is listed in Appendix B.
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Figure 4. The generation of the seven-channel super image. Each image channel is generated with a
combination of the data columns shown in the figure. Blue lines indicate the columns of features used
as x-axis data while black lines indicate the column used as y-axis data. The rectangular box in red
is the sliding window that covers a certain time range of data. Here we have another feature named
calculated power factor. This is the power factor we calculated with the power and load rate values.

2.4. Framework

The on-field inspection requires great deal of human efforts, so the number of verified customers is
quite limited. Semi-supervised learning distinguishes itself by utilizing both the labeled and unlabeled
data. There are different fashions of implementing the goal: self-training [12], co-training [13],
transductive SVM [14], graph based methods [15], and generative models [16]. With the development
of deep neural networks, novel models such as generative adversarial nets (GAN) [17] and tons of
its variant versions emerged. The idea of GAN is brilliant and GANs showed their superiority in
various tasks. However, GANs usually require prior knowledge about the label distribution of the
unlabeled samples. There is also other previous research that made significant progress in this branch
of semi-supervised learning, like Virtual Adversarial Training (VAT) [18,19] and ladder network [20].
These methods either explicitly or implicitly depend on prior knowledge about the distribution of labels.
As we have no idea about the label distribution in unlabeled data, we have to utilize semi-supervised
learning in a way that is independent of such prior knowledge. In this work, we used consistency
regularization based techniques [3,21–23] to train our model. Throughout the paper, the ensemble
strategy we adopt is from the mean teacher model [3].

In most cases, overfitting results from the scarcity of labeled training samples. What
semi-supervised learning does is utilize unlabeled samples to prevent overfitting. If there exists
an oracle that can give the labels of unlabeled samples, we can introduce a regularization term to the
optimization objective to constrain the model and make the model give identical predictions with the
oracle. In the mean teacher model, such an oracle is called teacher model in this case. It is obtained by
ensembling the student model. The prediction it yields is called a pseudo label. Although the pseudo
labels are not perfectly correct, as training goes on, the student model becomes better and better and
the pseudo labels are more and more reliable as a result. It is much like a student that would learn well
with the right instructions from the teacher. In turn, a good student would make the teacher improve.
Gradually, both the student and teacher would become excellent in the end. Formula (7) gives the
mathematical forms of how ensembling is implemented. And Figure 5 is the overall framework of
the model.
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current on three phases grows, small disturbance would not have much effect on it. So the unbalance 
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Figure 5. Overview of the entire model structure. The student model and teacher model have the
same network architecture while the parameter values like weights and biases are different. Parameter
values of student model are updated at the end of each training iteration and those of the teacher
model are obtained by ensembling the student model. What triplet loss does is minimize the feature
distances between input with the same labels while maximizing the feature distances of input with
different labels. For the unlabeled samples, labels needed for computing triplet loss are from the teacher
model’s predictions.

2.5. Inference Network

We get the distribution of features to expose their visual patterns for the model to capture.
For this job, convolutional based neural network has already proved its superiority and has achieved
remarkable results in various image recognition and computer vision tasks [24]. Also, there exists
previous work that encoded time series as images to achieve improvement encoding/decoding
problems [25]. For visual object detection problems, there are a series of famous works about two-stage
object detection [26–28]. The regions where objects lie in an image are proposed by bounding boxes
for further classification. Our task shares the same purpose of highlighting the desired consumption
pattern, so these previous works serve as great examples of how to classify objects that occupy only
part of the entire image. Figure 6 gives a detailed example of how we can decide a sample is abnormal
or not. The structure of our inference network is illustrated in Figure 7.
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Figure 6. (a) The distributions of the 2-D points (load rate, current unbalance degree) from a normal
(upper) and an abnormal (lower) customer. (b) The distributions of 2-D points (load rate, power factor)
and (load rate, power) from the same abnormal user. The ranges are marked with red bounding boxes.
Normally, the unbalance degree decreases as the load rate grows as shown in the left in (a). As the
current on three phases grows, small disturbance would not have much effect on it. So the unbalance
degree would turn low and steady. The right figure contradicts this fact. In (b), the power factor
is 1 for the most of the time, but the power data is nearly zero. This is a typical sign of customers
conducting theft.
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Figure 7 is the overall structure of our inference network. Although each statistical profile is
treated as a channel of a super image, the information each of these channels carries, such as pattern
shapes and the regions patterns lie in, are totally different and should be processed separately. Every
channel in a super image goes through a shared network whose internal structure is shown in Figure 6
(right). The internal structure of the shared network is much like that in [27] except that we search
the region of interest here by setting a pixel value threshold to get a rectangular area where the
pattern lies. So there is only one bounding box for an input channel. After obtaining every channel
feature, we concatenate them together to get a final feature representation of an input super image.
The convolutional based network denoted as ‘ConvNet’ used the same set of parameters to extract
graphic information of all the image channels and its detailed architecture is listed in Appendix A
Table A1.

2.6. Ensembling Method and Consistency Loss

Formally, let θ denote the weight parameters in the neural network and θt denote the parameters
at training step t. The ensembling strategy is as follow:

θ′t = αθ
′

t−1 + (1− α)θt, (7)

Then, consistency cost is introduced to minimize the prediction difference between the teacher
and student models:

J(θ) = Ex,η′,η[‖ f (x,θ′, η′) − f (x,θ, η)‖], (8)

where, η is the noise applied to input image.
Apart from the consistency cost, we introduced another loss item, triplet loss [29]. This is originally

proposed for face recognition tasks. However, the goal of face verification is more demanding than
general classification problems and what triplet loss does is to constrain points of same classes to have
consistent embeddings while pushing points of different classes far away in the embedding space. Let
xi, x j be two input samples with index i and j. Let y and h denote the label and extracted features
respectively. Equation (8) is an explanatory formula of how triplet loss works:

lG(i, j) =

‖h(xi) − h
(
x j

)
‖

2
i f yi = y j

max (0, margin− ‖h(xi) − h
(
x j

)
‖

2
) i f yi , y j

(9)
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Additionally, the labels in the formula are not all ground truthed in the labeled data set and the
triplet loss is applied for all the input in a training batch. For those input without labels, we use the
predictions given by the teacher model as pseudo labels.

2.7. Training Algorithm

With the framework and the loss items introduced, the pseudo code of our training algorithm is
presented in Algorithm 1. Notably, the coordinates of bottom left and top right vertices of bounding
boxes are sent to the network as auxiliary input. The Region of Interest (RoI) pooling operation is
executed on the feature maps and the coordinates of bounding boxes are linearly projected on the
feature map. As for our strategy of drawing mini-batches, we separately draw samples from labeled
data set and unlabeled data set by random while maintaining the ratio of 1:3 between labeled and
unlabeled samples.

Algorithm 1. Training algorithm.

Require: xi = input images
Require: L = set of training input indices with known labels
Require: yi = labels for labeled inputs, i ∈ L
Require: bbi = bounding box of sample i
Require: W_u = unsupervised loss weight
Require: fθ(x) = neural network with trainable parameters θ as student model
Require: fθ′ (x) = neural network as teacher model whose parameter θ′ with initial value θ
Require: α = moving average momentum for parameters
Require: η = random Gaussian noise added to the input
for t in [1, num_iterations] do
draw a mini-batch B from labeled and unlabeled samples randomly
fi ← fθ(xi∈B, bbi∈B, η) evaluate network outputs
fi′ ← fθ′ (xi∈B, bbi∈B, η′) evaluate network outputs

Find triplets T of components <i, j, k> in B where yi = y j and yi , y j; yi is the pseudo label given by f ′i if
i < (B∩ L)
loss← − 1

|B∩L|
∑

i∈(B∩L)
yilog fi

+W_u( 1
|{i|i<(B∩L)}|

∑
i<(B∩L)

‖ fi − f ′i ‖
2) +W_u( 1

|T|
∑

i, j,k∈B
lG(i, j) + lG(i, k))

update θ using ADAM optimizer
update θ′ by θ′t = αθ

′

t−1 + (1− α)θt

end for
return θ

3. Results

3.1. Experiment Settings and Metrics

The electric parameters used in our experiment are from real-world SM records. We use the data
from a power company in China to train and validate our model. The detailed information of our
dataset is shown in Table 2. There are 193 verified and 2929 unverified customers in total, among
which 54 of them are labeled as abnormal customers by on-field inspection, whatever the causes are,
and 139 of them are labeled as normal ones. As is introduced in Section 2, data records of a customer
can be transformed into numbers of samples as the sliding window moves along the time axis. Here
we adopt the sliding window of a 10-day time range regardless of the features’ sampling frequency,
and the overlap between windows is five days, that is to say, each image channel of a sample consists
of 240 points if the corresponding feature is collected hourly. As a result, it would make 8797 labeled
training samples and more than 130,000 unlabeled samples in total. However, in order to significantly
cut down time for training, we randomly selected 50,000 samples from part of the unlabeled users.
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In order to justify the generalization ability of our method, we split the verified customers randomly
while maintaining the ratio between the number of customers in training and validation sets, which is
approximately 1:3. This process is repeated for three times. More experiments settings are listed in
Appendix B.

Table 2. Description of data set.

Customer Label Number of Customers Number of Data Records Number of Samples

Normal 139 1,145,832 7685
NTL detected 54 137,112 1112

Unlabeled 2929 16,390,248 132,481

For the detection problem where the negative samples are far more than positive ones, overall
precision is not a suitable criterion to assess the performance of our algorithm. However, the precision
and recall of the positive samples alone would give a direct impression of the detection results.

As is in most binary classification problems where the output is a two-dimensional vector that
gives the corresponding probability of each class the input belongs to, we take the hypothesis with
higher probability as the prediction. In other words, the decision threshold is 0.5. When the threshold
varies, the accuracy and the sensitivity, true positive rate (TPR) and false positive rate (FPR) of the
classifier also change. Generally speaking, classifiers with high TPR and low FPR are excellent for
classification problems.

3.2. Separability

To justify our method of transforming the data, we visualized linear separability of the training
data using a visualization technique called t-distributed stochastic neighbor embedding (t-SNE) [30]. It
non-linearly projects features from high-dimensional space to lower-dimensional space while trying to
maintain their original relative positions. As shown in Figure 8a is the 2-D projection of the 6-D feature
vector (load rate, voltage deviation, voltage unbalance degree, current unbalance degree, power factor,
and power) and each point represents the features at one sampling time stamp in the validation set.
In Figure 8b, we use the same features but take a longer time range of 10 days to form each point in the
figure. Points in Figure 8c are our proposed seven-channel ‘super images’ generated from a 10-day
time range of features.

Obviously, our transformation method makes the classification problem more feasible as the
result in Figure 8a shows that it is nearly impossible to separate samples of different labels. This is an
indication that viewing the data in the longer term is a better solution to address the detection problem.

From Figure 9 we can see that as samples go through the inference network, points of the sample
labels gradually gather together, especially for the abnormal samples which are plotted in orange. This
is further evidence that our data transformation, together with such network structure, works well for
our classification goal.
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is much more that those in (b,c). This is because each sample in (b) contains a certain time range of raw
features in (a).
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3.3. Detection Results

Verified customers were randomly split into a training set and validation set for three separate
times and the training and validation process is carried out based on the data. Detection accuracy was
not suitable to assess our algorithm performance because in this situation where negative samples
are in absolute majority, the overall accuracy would still seem rather high even if our algorithm fails
to find out any positive samples. As a result, receiver operation characteristic (ROC) and area under
curve (AUC) [31] score as well as precision–recall (PR) curves are used as assessment criteria.

Similar to any other anomaly detection scenarios, our data set is quite imbalanced where most of
the data is negative/normal in both training and validation set. So apart from overall performance,
we are particularly interested in our algorithm’s performance on positive/abnormal samples.

Figure 10 and Table 3 give the results from a single run of each train/validation splits. The mean
and standard deviations report of each validation set is available in Appendix C.
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Figure 10. (a) Receiver operation characteristic (ROC) curves (b) precision–recall curves in three
experiment rounds on different training/validation sets.

Table 3. Precision and recall of positive samples.

Experiment # Precision Recall F1-Score Overall AUC Score Positive/Total

Validation_1 0.84 0.74 0.79 0.9379 785/6691
Validation_2 0.97 0.88 0.92 0.9775 744/6476
Validation_3 0.84 0.80 0.82 0.9304 835/6658
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For our NTL detection problem, the characteristics of data records from so many customers are
very different because the variety of types of customers. This fact can be directly reflected in the
detection results shown in Figure 10. For different train/validation splits, differences in terms of ROC
curves, AUC score or precision–recall curves are all non-negligible. This is totally understandable and
we suppose it is due to our random selection strategy: sometimes the customers chosen for training
can well cover most of the abnormal causes of NTL while sometimes the customers for training have
only limited pattern of manifestation. However, all the detection results are pretty good from multiple
perspectives, which demonstrates that this method has its specialties.

Our forward inference network consisted of nine convolutional layers, which is denoted Conv9
in Table 4. We justify that utilizing the unlabeled samples is essential by comparing the results of
models trained with or without the semi-supervised learning strategy in Table 4. Even though we
used some sampling strategy to make sure that in a training batch the ratio of positive and negative
samples was kept constant throughout the experiments, results show that sole labeled training data is
not enough for a model to perform well on a larger and maybe more complicated validation sample set.
To guarantee that our inference network is not the cause of the poor performance of supervised model,
we used a more traditional and reliable architecture, resnet-21. It turns out it still cannot address the
problem that a supervised model basically classifies every sample as negative.

Table 4. Comparison of semi-supervised and supervised learning methods.

Model Label Precision Recall F1-Score

Conv9 +
semi-supervised

Normal 0.97 ± 0.0047 0.98 ± 0.0047 0.97 ± 0.0047
NTL 0.88 ± 0.061 0.81 ± 0.057 0.84 ± 0.056

Conv9 +
supervised

Normal 0.88 ± 0.00 1.00 ± 0.00 0.94 ± 0.00
NTL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Resnet-21 +
supervised

Normal 0.89 ± 0.0047 1.00 ± 0.00 0.94 ± 0.00
NTL 1.00 ± 0.00 0.02 ± 0.0082 0.043 ± 0.017

Semi-supervised learning methods help find a more reasonable decision boundary with the
presence of unlabeled data thus preventing the overfitting problem caused by the limited labeled data.
Figure 11 gives the results when we change the size of labeled data in training set while keeping other
settings unchanged. Generally speaking, the anomaly detection performance gradually increases as
the size of labeled samples grows from 500 to 1500. There is a slight drop in recall rate when the size of
labeled data changes from 500 to 1000, but the precision increased a bit.Sensors 2020, 20, x FOR PEER REVIEW 15 of 19 
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In order to prove that our network architecture is different and more suitable for the detection
problem and especially for our designated data format, we did a comparison with the original mean
teacher model by gradually adding our adaptations. Also, in order to justify the proposed the network
structure, we trained SVMs (with balanced class weights) as the baseline classifier and chose the result
with highest f1 score by ranging the penalty parameters from 0.01 to 1000 (increasing by orders of
magnitude). We used the original mean teacher model and gradually added improvements on top of
it. The results tested on different models are shown in Table 5.

Table 5. Results by different model settings.

Model Label Precision Recall F1-Score

SVM
Normal 0.99 0.94 0.96

NTL 0.67 0.96 0.79

Mean teacher
Normal 0.91 ± 0.00 1.00 ± 0.00 0.95 ± 0.00

NTL 0.88 ± 0.00 0.23 ± 0.025 0.36 ± 0.029

Mean teacher + Triplet loss Normal 0.94 ± 0.0047 0.98 ± 0.0047 0.96 ± 0.0047
NTL 0.72 ± 0.022 0.48 ± 0.022 0.5 ± 0.022

Ours
Normal 0.97 ± 0.0047 0.98 ± 0.0047 0.97 ± 0.0047

NTL 0.88 ± 0.061 0.81 ± 0.057 0.84 ± 0.056

For the general NTL detection goal, it is equivalently important have a high value on both
precision and recall. Extreme result on either single index is obviously not desired. Generally, SVM
does a great job in terms of recalling the NTL samples but the detection accuracy is apparently much
lower. As for following the models, simpler models tend to categorize samples into the class that is
in the majority. An intuitive explanation of such improvement is that triplet loss tries to minimize
the pattern discrepancies among users in a same category while the role RoI pooling plays is that it
highlights where the points cloud is in an image channel and naturally makes the pattern features
more explicit. We can infer that our network architecture does improve the performance of detection.

3.4. Discussion

The major challenges for most of the NTL detection problems are that the anomalies can take
on various forms of manifestations that are hard to capture. Worse still, the number of cases we can
study from is often limited as a result of the labor-consuming on-field inspection. So it not a traditional
anomaly detection problem and it is essential to make use of all the types of data available to get
complete and prominent representations of the input.

Most of the previous works mainly focus on the historical energy consumption data because it has
the most direct relevance to NTL detection problem. However, the types of NTL that can be detected
are bound to be limited by the limited choice of measurements. [4–8] used sole energy consumption
(EC) data. Apart from it, [32] utilized auxiliary databases and [33] made use of credit worthiness
ratings. In [34], researchers tried to gather different features from various types of SM data such as the
quality of measurements, electrical magnitudes, GIS data, and technological characteristics of the SM
besides EC. As for our proposed method, we utilize as many types of electrical parameters we can
access. There are two main advantages of our data transformation method: it focuses on the customers’
long term behaviors rather than single data points; the multi-channel image input makes it possible for
the deep neural networks to automatically extract the underlying correlations among these features.
Besides, our data transformation approach can tolerate slight data distortion or absence. We did not
make use of specific auxiliary data except the most common electrical parameters. Such transformation
provides a new aspect of viewing the electrical parameters.

Furthermore, our proposed approach deals with the situation where there are only a small number
of labeled samples. Table 6 shows the comparison between some of the state-of-the-art approaches and
our proposed approach. All these approaches except ours deal with the problem in the supervised
fashion which took advantage of the abundance of customer class information. Also, Figure 11 shows
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that although the detection performance may suffer with the decrease of the number of labeled samples,
acceptable results can still be obtained. To our limited knowledge, our work is the first to solve the
NTL detection problem with a semi-supervised method.

Table 6. Comparison with the state-of-the-art methods.

Criteria [32] [9] [33] [11] [34] Ours

Data privacy low high high medium medium high

Data types Monthly EC
Monthly EC
and auxiliary

databases

Monthly EC
and auxiliary

databases

Monthly EC
and auxiliary

databases

SM data and
auxiliary
databases

Hourly SM
data

Detection
delay 12 months 12 months 12 months - 90 days 10 days

AUC score 0.56 0.63 0.74 0.84 0.91 0.94

Another advantage of our method is that the time range we need to generate a sample is rather
short compared with other approaches listed in Table 6. The approach in [11] can make judgments
with no delay but actually it is achieved by comparing the current consumption with the average of
consumption in the past, so it is not technically real-time. Apart from [11], the detection delay of our
methods is apparently shorter. This allows us to make quicker responses to the emergent NTL attacks.
For a trained model, we can use a certain range of data records to form our data sample to sufficiently
cut down the detection delay.

As for data privacy, the transformation we did hides the original information that SM collected.
So there is nearly no original information exposed.

There are still some weaknesses or works we have not done sufficiently for now. Even though we
aim to cover as many types of anomalies as possible in the detecting stage, we have not come up with
a solution to explicitly indicate the exact causes of NTLs. Our detection results strongly depend on the
coverage of different forms of NTL attacks used in the labeled training set.

4. Conclusions

This paper presented a thorough methodology for detecting non-technical losses. The transformation
from the data records collected by smart meters into the super images allows us to view the consumption
behaviors of a customer from a statistical perspective in the longer term. The new data format also
provides a different way of extracting features and integrated analysis of more types of features would
have greater potential of detecting a wider range of anomalies. Followed by the prior knowledge free
semi-supervised learning strategy, our method demonstrated its superiority to the supervised learning
in the situation where labeled data is in the minority of the entire data set.

Our method is trained and validated on the real data from a power grid of China. With reference
to some ideas in two stage object detection models, we designed our network architecture to effectively
capture features for classification. Ablation studies in the experimental section demonstrate that our
method in each stage does work and the comparison with the state-of-the art methodologies proves
that our result is rather competitive and our method has its advantages.
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Appendix A. Architecture of the Convolutional Based Layers

Table A1. Architecture of the convolutional based layers.

Input 50 × 50 × 1 (One Channel of a Super Image)

Gaussian noise σ = 0.15
3 × 3 conv. 32 lReLU (α = 0.1) same padding followed by Batch Normalization (BN)

3 × 3 conv. 32 lReLU (α = 0.1) same padding followed by BN
2 × 2 max-pool, dropout 0.5

3 × 3 conv. 64 lReLU (α = 0.1) same padding followed by BN
3 × 3 conv. 64 lReLU (α = 0.1) same padding followed by BN

2 × 2 max-pool, dropout 0.5
3 × 3 conv. 128 lReLU (α = 0.1) same padding followed by BN
3 × 3 conv. 128 lReLU (α = 0.1) same padding followed by BN

2 × 2 max-pool, dropout 0.5
3 × 3 conv. 256 lReLU (α = 0.1) same padding followed by BN
1 × 1 conv. 128 lReLU (α = 0.1) same padding followed by BN
1 × 1 conv. 64 lReLU (α = 0.1) same padding followed by BN

Appendix B. Experiment Settings

Input images. Input images are generated according to the approaches introduced in Section 2.3.
And we set the image resolution to 50 × 50. No augmentation methods are applied throughout the
experiments. And the pixel threshold to search the bounding boxes is 5.
Framework and Devices. Models mentioned in this paper are implemented using Tensorflow 1.0.0.
He initialization [35] is used on all layers. Three 1080ti GPUs are utilized to achieve parallel data
processing, with each GPU device taking a batch of input data of size 36.
Optimizer. Adam optimizer with the parameter betTABLE as 0.9 and beta2 as 0.999. In each iteration
batch input of size 108 (36 × 3) are fed into the network.
Training schedule. Fixed learning rate of 0.003 are adopted throughout the experiments. Unsupervised
loss weight W_u introduced in Algorithm 1 is set to a fixed value of 0.18. And the margin introduced
in Equation (9) is 1.0.

Appendix C.

Table A2. The Mean and Standard Deviations Report of Precision and Recall of Positive Samples (Three
Runs).

Experiment # Precision Recall F1-Score Positive/Total

Validation_1 83.86% ± 0.48% 73.25% ± 0.84% 78.19 ± 0.58% 785/6691
Validation_2 96.93 ± 0.36% 87.68% ± 0.28% 92.07% ± 0.20% 744/6476
Validation_3 83.98% ± 0.21% 79.56% ± 0.31% 81.71% ± 0.19% 835/6658
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