
sensors

Article

Bearing State Recognition Method Based on Transfer
Learning Under Different Working Conditions

Ning Cao 1 , Zhinong Jiang 1,*, Jinji Gao 2 and Bo Cui 3

1 National Defense Key Laboratory of Ministry of Education, Beijing University of Chemical Technology,
Beijing 100029, China; 18811757532@163.com

2 Diagnostic and Self-Healing Engineering Research Center, Beijing University of Chemical Technology,
Beijing 100029, China; gaojinji@263.net

3 College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029,
China; 13146696006@163.com

* Correspondence: jiangzhinong@263.net; Tel.: +86-139-1158-9618

Received: 3 December 2019; Accepted: 27 December 2019; Published: 31 December 2019 ����������
�������

Abstract: Bearing state recognition, especially under variable working conditions, has the problems of
low reusability of monitoring data, low state recognition accuracy and low generalization ability of the
model. The feature-based transfer learning method can solve the above problems, but it needs to rely
on signal processing knowledge and expert diagnosis experience to obtain the cross-characteristics of
different working conditions data in advance. Therefore, this paper proposes an improved balanced
distribution adaptation (BDA), named multi-core balanced distribution adaptation (MBDA). This
method constructs a weighted mixed kernel function to map different working conditions data to
a unified feature space. It does not need to obtain the cross-characteristics of different working
conditions data in advance, which simplifies the data processing and meet end-to-end state recognition
in practical applications. At the same time, MBDA adopts the A–Distance algorithm to estimate
the balance factor of the distribution and the balance factor of the kernel function, which not only
effectively reduces the distribution difference between different working conditions data, but also
improves efficiency. Further, feature self-learning and rolling bearing state recognition are realized by
the stacked autoencoder (SAE) neural network with classification function. The experimental results
show that compared with other algorithms, the proposed method effectively improves the transfer
learning performance and can accurately identify the bearing state under different working conditions.

Keywords: transfer learning; multi-core balanced distribution adaptation; SAE neural networks;
rolling bearing; different working condition

1. Introduction

Modern industrial production technology makes great contributions to improving productivity,
reducing losses, saving natural resources and human resources, reducing the scrap rate, and ensuring
product quality. As a key piece of equipment, rotary machinery is widely applied in important
engineering fields, such as power, electric power, chemical, metallurgy, mining and machinery
manufacturing. Once large-scale mechanical equipment fails, it will cause huge economic losses and
even cause different degrees of casualties. As a key component of rotating machinery, rolling bearings
play an important role in ensuring safe and efficient operation of the machine. The working condition
of the rolling bearing not only affects the operation of the machine itself, but also the subsequent
production. According to statistics, in all rotating machinery faults, bearing failure accounts for about
30% [1]. Therefore, it is of great significance for the continuous production system to realize the state
recognition of rolling bearings. The rapid development of signal analysis and processing technology,
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computer technology and network technology, and artificial intelligence provides technical support for
state recognition and fault diagnosis of rolling bearings.

Early bearing state detection and fault diagnosis methods have used the vibration mechanism
of rolling bearings and signal analysis and processing techniques to extract features, and have then
utilized expert diagnostic experience to achieve bearing fault diagnosis and state recognition [2–7].
These methods laid the foundation for the development of bearing diagnostics. However, these
methods rely too much on feature extraction and expert experience. In recent years, machine learning
and deep learning have achieved good results in the fields of image recognition and natural language
process. More and more scholars have applied them to the state recognition of rolling bearings [8–11].
As a special machine learning, deep learning has the characteristics of nonlinearity, multi-layer and
adaptability. Therefore, it has powerful feature extraction capabilities that can automatically extract
features from original data. Fault diagnosis models of rolling bearings based on deep learning mainly
include convolutional neural networks (CNN) [12,13], long-term short-term memory neural networks
(LSTM) [14,15], deep belief networks (DBN) [16,17], and stacked autoencoders (SAE) [18]. Compared
with other network models in state recognition, SAE networks have noise reduction filtering and
feature extraction functions. In particular, the SAE network with the classification function can achieve
higher state recognition accuracy in small samples, which fully reflects the powerful feature extraction
function and robustness of the method. The above method achieves good results in the state recognition
of the rolling bearing. In practical applications, the working environment of rolling bearings is very
complicated, and the working conditions often change. Under variable working conditions, training
samples and test samples do not meet the same distribution conditions. Therefore, the above method
will no longer apply. How to accurately identify the bearing state under different working conditions
is an urgent problem to be solved.

Since the NIPS Symposium “Learning to Learn” in 1995, transfer learning has attracted more and
more attention in the field of deep learning [19]. As a cross-data, cross-model and cross-task learning
method, transfer learning has achieved the classification of target data by applying knowledge learned
from source data [20]. Yosinski et al. [21] first studied transfer learning of deep learning and pointed
out that transfer learning can solve problems such as less target data and uneven distribution of data.
The feature-based transfer learning method is one of the important methods for transfer learning,
mainly including transfer component analysis (TCA) [22], joint distribution adaptation (JDA) [23]
and balanced distribution adaptation (BDA) [24]. In [25], the variational mode decomposition (VMD)
and semi-supervised transfer component analysis (SSTCA) were proposed to achieve a bearing state
classification under variable conditions. In [26], the subspace alignment (SA) was proposed to minimize
the distribution difference of the domain data. In [27], a least squares support vector machine (LSSVM)
transfer learning strategy based on auxiliary data was used for bearing fault diagnosis under different
working conditions. The above bearing state recognition methods based on transfer learning have
achieved good results, but require feature transformation or feature selection of bearing data.

Inspired by the above research, this paper uses the BDA method to transfer the vibration
characteristics of rolling bearings under variable conditions. However, BDA has the following two
problems: (1) The balance factor µ needs to be obtained by searching in the experiment; and (2) it
needs to obtain some cross-characteristics of different domain data in advance. In order to solve
the above problems, this paper proposes the MBDA method by introducing mixed kernel functions,
which can extract richer features of the data without feature transformation. At the same time, the
balance factor of the kernel function γ is introduced, which directly affects the effect of mixed kernel
functions on data mapping. This paper adopts the A −Distance algorithm to calculate the balance
factor of the distribution µ and the balance factor of the kernel function γ, which effectively minimize
the distribution divergence between different domain data. Then SAE neural network is used to realize
the feature self-learning and state recognition of the rolling bearing.

This paper is organized as follows. Section 2 introduces the basic principle of the BDA algorithm
and SAE neural network, and gives the definition of our new algorithm with the aim to ensure that it
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is understandable. Section 3 gives a flow chart of the bearing diagnostic algorithm for the proposed
method. We performed experiments to show the good performance of the proposed method in the
bearing state identification in Section 4, and a conclusion is presented in Section 5.

2. Basic Theory of the Methodology

2.1. Balanced Distribution Adaptation

As a cross-domain, cross-model and cross-task learning method, transfer learning can effectively
solve the problem of different distributions of source data and target data. Assuming the original space
is X and the class label is Y, the labeled source data and the unlabeled target data are DS = {XS, YS} and
DT = {XT, YT}, respectively, where XS, XT ∈ X and YS, YT ∈ Y. The marginal probability distributions
and conditional probability distributions of source data and target data respectively are P(XS), P(YS/XS)

and P(XT), P(YT/XT). In practical applications, the marginal probability distributions and conditional
probability distributions of source data and target data are not equal, i.e., P(XS) , P(XT) and
P(YS/XS) , P(YT/XT). The goal of transfer learning methods is to minimize the marginal and
conditional distribution discrepancy between source data and target data. BDA as a transfer learning
method can adaptively minimize the marginal and conditional distribution discrepancy between
domains by exploiting a balance factor µ. The formula is as follows:

Distance (XS, XT) = (1− µ)
∥∥∥P(XS), P(XT)

∥∥∥+ µ
∥∥∥P(YS/XS), P(YT/XT)

∥∥∥ (1)

BDA uses the maximum mean difference (MMD) to calculate the distribution difference between
the two domains. The method assumes that there is a mapping function φ, which satisfies P(φ(XS)) ≈

P(φ(XT)) and P(YS/φ(XS)) ≈ P(YT/φ(XT)). Therefore, Equation (1) can be represented as:

Distance(XS, XT) = (1− µ)
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where ns and nt are the number of samples of source data and target data, respectively, and C is the
number of categories.

By further taking advantage of matrix tricks and regularization, Equation (2) can be represented as:
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S.T ATXHXTA = I, 0 ≤ µ ≤ 1
(3)

where the first term represents the marginal and conditional distribution divergences between the two
domains, A denotes the transformation matrix, and λ is the regularization parameter. The constraints
ATXHXTA = I ensure that the transformed data A TX maintain the important properties of XS and XT.
Ins+nt ∈ R(ns+nt)×(nt+ns) is the identity matrix, and H = Ins+nt − (1/ns + nt)11T is the central matrix.
µ ∈ [0, 1] is estimated by searching in the experiment. The calculation formula for each element of the
M0 and Mc is as follows:
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The above non-convex optimization problem is transformed into the trace optimization problem
by the Lagrange multiplier method, and the specific process will not be described.

2.2. Multi-Core Balanced Distribution Adaptation

BDA has the following two problems: (1) it is inefficient to get the balance factor µ; and (2) it
needs to obtain some cross-characteristics of different domain data in advance. In order to solve the
above problems, this paper proposes the MDBA method. The kernel function plays an important role
in the BDA. The effect of a single kernel function in transfer learning is not ideal. Weighted mixed
kernel functions combine the advantages of different kernel functions, but add a new parameter γ.
The formula for weighted mixed kernel functions is as follows:

K′(xi, x j) = γKRBF(xi, x j) + (1− γ)KPloy(xi, x j)

= γ exp
(
−
‖xi−x j‖

2

2σ2

)
+ (1− γ)

[(
xi · x j

)
+ 1

]d (6)

where KRBF and KPloy are the radial basis function (RBF) and ploynomial kernel (Ploy) function
respectively, and γ ∈ [0, 1] controls the weight of the two kernel function. The formula of KRBF and
KPloy is follows:

KRBF(xi, x j) = exp

−‖xi − x j‖
2

2σ2

 (7)

KPoly(xi, x j) =
[(

xi · x j
)
+ 1

]d
(8)

MBDA adopts A−Distance to empirically estimate γ and the specific process is as follows:

(1) Use SVM to train two-classifiers h to distinguish source data from target data and obtain the loss
value err(h);

(2) Calculate A−Distance between source data and target data, and the formula is as follows:

A(XS, XT) = 2(1− 2err(h)) (9)

(3) Calculate the balance factor γ, and the formula is as follows:

γ =
APloy(X′S, X′T)

ARBF(X′S, X′T) + APoly(X′S, X′T)
(10)

where X′S and X′T respectively represent source data and target data after kernel mapping.
ARBF(X′S, X′T) and APloy(X′S, X′T) represent the values of A−Distance. The larger the value is, the
greater the difference between source data and target data after the kernel mapping, so the weight
of the corresponding kernel function is smaller, and vice versa.

The balance factor µ plays an important role in minimizing the marginal and conditional
distribution discrepancy between the domains. BDA evaluates the µ by searching its values in
experiments, but it is not an effective solution. In order to effectively adjust the marginal and
conditional distribution of the importance on different tasks, we estimate the balance factor µ by
adopting A−Distance, and its formula is as follows:

µ =
AMarginal(X′S, X′T)

AMarginal(X′S, X′T) + AConditional(X′S, X′T)
(11)

where AMarginal(X′S, X′T) represents the A−Distance value of the marginal probability distribution for
source and target domains, and AConditional(X′S, X′T) represents the A−Distance value of the conditional
probability distributions for the source and target domains. When µ→ 0 , it means that there is a big
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difference between source data and target data. Therefore, the marginal distribution adaptation is
more important, and vice versa.

2.3. Stacked Autoencoder Neural Network

2.3.1. Autoencoder

As one of the classic models of neural networks, the autoencoder consists of two stages of encoding
and decoding. Its structure is shown in Figure 1. The autoencoder converts the original data of the
high-dimensional space into the coding vector of the low-dimensional space by encoding, and then
reconstructs the coding vector into the original data by decoding. The specific implementation process
is as follows:

• Coding phase: the information is transmitted from front to back.

h1 = f (z1)

z1 = w1x1 + b1
(12)

where, assuming the input layer is X = {x1, x2, . . . xn}, the subscript in the formula indicates that
there are n training samples, w1 and b1 are the weight and bias of the encoding layer, respectively,
and f (∗) is the excitation function, which is usually a sigmoid or tanh function.

• Decoding phase: the information is transmitted from the back to the front:

x̂1 = f (z2)

z2 = w2h1 + b2
(13)

where x̂1 is the output value of the decoding layer, w2 and b2 are the weights and bias of the
decoding layer, respectively, and w2 = wT

1 .
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As can be seen from the above process, the autoencoder belongs to unsupervised training.
The training process of the autoencoder is to find the network parameters to minimize the reconstruction
error on the training set D. The reconstruction error is generally the quadratic cost function, and the
expression is as follows:

JAE =
∑

x∈D
L(x̂1, x1)

L(x̂1, x1) =
1
N ‖x̂1 − x1‖

2
(14)
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where X̂ is the predicted value, N is the number of samples, and L is the reconstructed error function.
When the reconstruction error is small enough, the compressed feature vectors of the encoding layer
retain most of the information of the original data.

2.3.2. Stack Autoencoder Neural Network

The SAE neural network is a deep neural network composed of multiple autoencoders. The basic
principle is that the output of the previous autoencoder is used as the input of the latter autoencoder.
Its structure is shown in Figure 2. Compared with the autoencoder network, the SAE neural network
is more expressive and can extract more abundant features from original data. The encoding process
of an m-layer SAE neural network is as follows:

a(l) = f
(
z(l)

)
z(l+1) = w(l,1)a(l) + b(l,1)

(15)

where a(l) is the output value of the lth encoding layer; w(l,1), b(l,1) is the weight and bias of the lth
encoding layer; and z(l) and z(l+1) are the input value of the lth layer and the l + 1th layer, respectively.
The SAE neural network transmits information from the back to the front at the decoding process:

a(m+l) = f
(
z(m+l)

)
z(m+l+1) = w(m−l,2)a(m+l) + b(m−l,2) (16)

where a(m) is the activation value of the deepest hidden unit, and w(n−l,2), b(n−l,2) are the weight and
bias of the decoding layer. The SAE network structure is as follows:Sensors 2020, 20, x FOR PEER REVIEW 7 of 13 
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The training process of the SAE neural network with classification function includes two stages:
model pre-training and model fine-tuning:

• Model pre-training. The SAE neural network is constructed and the network model parameters
are initialized through the unsupervised layer-by-layer training mode. Through pre-training, all
hidden layers are obtained, and the features learned at each layer represent different levels of
data characteristics.

• Model fine-tuning. Add a classification layer at the top of the SAE network and fine-tune the
pre-training parameters to implement the classification function. Fine-tuning training takes all
the layers of the SAE neural network as a whole model to train. At each iterative training, each
parameter of the model is optimally adjusted. Therefore, fine-tuning training can improve the
performance of SAE deep neural networks.
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In this paper, the quadratic cost function and the cross-entropy cost function are used as the
objective function of the first and second stages. The quadratic cost function is elaborated in Section 2.3.1,
and the cross-entropy cost function is as follows:

z j
i =

ehθ, j(xi)∑C
j=1 ehθ, j(xi)

(17)

J[θ] = −
1
N

N∑
i=1

C∑
j=1

{
yi = j

}
log

(
z j

i

)
(18)

where z j
i is the predicted probability that the xi belongs to category j, hθ, j(xi) represents the jth value

of the output vector, and θ is neural network parameter. The SAE neural network can automatically
extract features and has powerful feature expression capabilities. In fault diagnosis, the SAE neural
network has the functions of noise reduction filtering and feature extraction.

3. Bearing State Recognition Method and Process under Different Working Conditions

The algorithm flow of the bearing state recognition method based on transfer learning under
different working conditions is shown in Figure 3.   
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The specific implementation process is as follows:

1. Calculate the spectrum of labeled bearing data and unlabeled bearing data, and normalize the
amplitude to the range of [0, 1]. Because the signal’s spectral amplitude is symmetrical about
the origin, the positive frequency part is used as feature vectors. This not only ensures that
information is not lost, but also reduces the number of calculations. The positive frequency
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domain amplitude of labeled bearing data is used as labeled source data, and the positive
frequency domain amplitude of unlabeled bearing data is used as unlabeled target data.

2. Map labeled source data and unlabeled target data in (1) to the same feature space by using the
MBDA algorithm.

3. The training process of SAE is also a feature self-learning process, which can further extract
features. The training process of SAE includes two parts: unsupervised pre-training and
supervised fine tuning. Unsupervised pre-training is used to initialize network parameters, and
supervised fine-tuning implements classification by adding a classification layer on top of the
network. Labeled source data after spatial mapping in (2) are used as training samples to train the
model, and finally the training model is obtained. Unlabeled source data after spatial mapping in
(2) are input into the model, and the rolling bearing state recognition results are obtained.

4. Experimental Verification

4.1. Experimental Data

The experimental data are from the bearing data center of the Case Western Reserve University
Laboratory. In this experiment, the SKF6205 drive end bearing vibration data is used as experimental
data. Four different rotational speeds and different motor loads represent different working conditions
A, B, C and D. Each working station includes four states: normal state (NS), internal raceway fault (IF),
external raceway fault (OF) and ball fault (BF). The detailed information of the experimental data is
shown in Table 1.

Table 1. Vibration signal parameter table for experimental data.

Different Working
Conditions

RPM
(r/min)

Motor Load
(W)

Fault Diameter of IF,
OF and BF (mm) Fs (kHz) Number of

Samples

A 1730 2.25 0.1778

12

1500
B 1750 1.5 0.3356 1500
C 1772 0.75 0.5334 1500
D 1797 0 0.7112 1500

In Table 1, the fault diameter of IF, OF and BF indicates the diameter of a bearing inner raceway
fault, outer raceway fault and ball fault. This paper constructs data sets under single and multiple
working conditions, as shown in Table 2.

Table 2. Sample sets composition of rolling bearings under different working conditions.

Sample Sets Source Data Target Data Source Data
Sample Number

Target Data
Sample Number

Single/single conditions B A 1500 1500
Single/multiple conditions BC A 3000 1500

Multiple/multiple conditions CD AB 3000 3000
Single/multiple conditions BCD A 4500 1500

Where A(T)-B(S) indicates that the source data (training data) is from working condition B, and the
target data (test data) is from working condition A; A(T)-BC(S) indicates that source data (training data)
is from working condition BC, and target data (test data) is from working condition A; AB(T)-CD(S)
indicates that source data (training data) is from working condition CD, and target data (test data) is
from working condition AB; A(T)-BCD(S) indicates that source data (training data) is from working
condition BCD, and target data (test data) is from working condition A.
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4.2. Model Performance Analysis

In the experiment, source data (training data) and target data (test data) are selected from single or
multiple working conditions data sets. Taking A(T)-B(S) as an example, labeled source data B(S) is used
to train the SAE neural network, and unlabeled target data A(T) is input into the model to obtain the
bearing state. Training samples after fast Fourier transform (FFT) are normalized, and the amplitude
of the positive frequency part is taken as a feature vector to train the SAE network. In the experiment,
the normalized positive frequency part of the vibration data is used as the feature vector. This not only
ensures that information is not lost, but also reduces the number of calculations. Generally, at neural
network structure, the higher the number of network layers, the stronger the network expression
ability. However, when the number of network layers is too large, it is difficult to train the model.
After the previous experiments, this paper uses a three-layer SAE network model, the structure of the
network is set to 64-32-16, bath_size is set to 100, and the number of iterations is 200. In the experiment,
the normalized positive frequency part of the vibration data is used as the feature vector. This not
only ensures that information is not lost, but also reduces the number of calculations. Under the four
working conditions A(T)-B(S), A(T)-BC(S), AB (T)-CD (S) and A (T)-BCD (S), the curves of bearing
state recognition accuracy of this method are shown in Figure 4.
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Figure 4a–d are graphs showing the state recognition accuracy of test data (target data) and training
data (source data) under four working conditions, respectively. The trend of the accuracy of training
data (source data) and test data (target data) is synchronized. Therefore, there is no over-fitting. In the
case of single/single conditions A (T)-B (S), the state recognition accuracy of the test data almost reaches
100%. In the case of single/multiple conditions A (T)-BC(S) and A (T)-BCD(S), the state recognition
accuracy of the test data is 98.50% and 96.86%, respectively. In the case of multiple/multiple conditions
AB (T)-CD (S), the state recognition accuracy of the test data reaches almost 90.50%. The experimental
results show that the MBDA-SAE method can obtain higher state recognition accuracy under variable
working conditions.

4.3. Analysis and Comparison of MBDA and other Algorithms

In order to prove the advantages of the MBDA method, this paper introduces traditional transfer
learning methods such as the TCA, JDA and BDA methods. The results after different transfer learning
methods and SAE networks under variable working conditions are shown in Table 3. As can be seen
from the above table, the state recognition accuracy of the MBDA-SAE method is higher than that of
the TCA-SAE, JDA-SAE, and BDA-SAE methods. The reason is that the multi-core kernel function
has a good advantage in dealing with the imbalance between source data and target data. JDA-SAE
and BDA-SAE methods take the difference of marginal distribution and conditional distribution as
objective functions, so their state accuracy is higher than the TCA-SAE method. Compared to the
JDA-SAE method, the BDA method adds a balance factor obtained by searching in experiments to
balance the marginal distribution and conditional distribution. The BDA-SAE method achieves higher
state recognition accuracy at the expense of efficiency.

Table 3. Bearing state recognition accuracy under different methods (%).

Different
Methods/Sample Sets A(T)-B(S) A(T)-BC(S) AB(T)-CD(S) A(T)-BCD(S) Average

Accuracy

TCA-SAE 75.00 69.00 62.00 54.00 65.00
JDA-SAE 92.00 77.00 69.52 69.00 76.88
BDA-SAE 96.99 88.00 83.10 77.00 86.27

MBDA-SAE 100.00 98.50 96.86 90.50 96.47

5. Conclusions

In this paper, we propose a rolling bearing state recognition method based on a WDBA-SAE
neural network under different working condition data. The following conclusions have been obtained
through experiments:

(1) This method depends on BDA theory, and constructs a weighted mixed kernel function to map
different working condition data to a unified feature space, which effectively minimizes the
distribution divergence between different working conditions data. The MDBA method does not
need to obtain the cross-characteristics of different working conditions data in advance, which
simplifies data processing.

(2) This paper adopts the A−Distance algorithm to calculate the balance factor of the distribution
and the balance factor of the kernel function. It can adaptively balance the importance of
the marginal and conditional distribution and the importance of different kernel functions,
and improve efficiency.

(3) The MDBA method was compared to other transfer learning methods, such as TCA, JDA and
BDA. In the case of a single/single condition A (T)-B (S), the accuracy of the bearing state
recognition methods based on the JDA-SAE, BDA-SAE and MDBA-SAE methods reached more
than 90%. However, the diagnostic accuracy based on the TCA-SAE method is 75%. In the
case of multiple/multiple conditions AB (T)-CD (S), the state recognition accuracy of the method
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proposed in this paper reaches more than 90%. However, the accuracy of other methods is less
than 80%. Therefore, the advantages of this method are more obvious under multiple/multiple
conditions. Experiments showed that the MDBA method can better recognize the unknown state
of rolling bearings under variable working conditions.

The follow-up work of this article is as follows:

(1) During the deep neural network training process, multiple experiments are required to determine
better hyperparameters (such as the number of network layers, the number of neurons, the
number of iterations, etc.), and then the setting of the hyperparameters will be studied;

(2) The features extracted from the multi-layer network feature space will be visualized;
(3) This article only studies bearing-related faults, and subsequent studies will distinguish other

faults, such as unbalanced loads and broken rotor bars.
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