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Abstract: Food allergens present a significant health risk to the human population, so their presence
must be monitored and controlled within food production environments. This is especially important
for powdered food, which can contain nearly all known food allergens. Manufacturing is experiencing
the fourth industrial revolution (Industry 4.0), which is the use of digital technologies, such as sensors,
Internet of Things (IoT), artificial intelligence, and cloud computing, to improve the productivity,
efficiency, and safety of manufacturing processes. This work studied the potential of small low-cost
sensors and machine learning to identify different powdered foods which naturally contain allergens.
The research utilised a near-infrared (NIR) sensor and measurements were performed on over
50 different powdered food materials. This work focussed on several measurement and data
processing parameters, which must be determined when using these sensors. These included sensor
light intensity, height between sensor and food sample, and the most suitable spectra pre-processing
method. It was found that the K-nearest neighbour and linear discriminant analysis machine learning
methods had the highest classification prediction accuracy for identifying samples containing allergens
of all methods studied. The height between the sensor and the sample had a greater effect than
the sensor light intensity and the classification models performed much better when the sensor
was positioned closer to the sample with the highest light intensity. The spectra pre-processing
methods, which had the largest positive impact on the classification prediction accuracy, were the
standard normal variate (SNV) and multiplicative scattering correction (MSC) methods. It was
found that with the optimal combination of sensor height, light intensity, and spectra pre-processing,
a classification prediction accuracy of 100% could be achieved, making the technique suitable for use
within production environments.
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1. Introduction

1.1. Role of Powdered Foods in the Food Industry

Powdered foods represent a significant share of the modern human diet, mostly as ingredients in
food products or cooked meals. Powdered food materials can be baked (e.g., cakes), used as seasoning
(e.g., spices), or added to liquids to produce drinks (e.g., powdered milk). Powdered foods can even
be made from basic chemicals, such as water and CO2 [1], and are essential for future endeavours,
such as space exploration [2]. Powders can be defined as, “particulate solid state materials containing
discrete particles of size ranging from nanometres to millimetres” [3]. The properties of food powders
drastically affect the final product quality and consequently the consumer appreciation. In addition,
the primary properties of powders, such as shape and density, have significant effects on product
performance, such as rehydration rates of powdered drinks [4]. Therefore, it is important to monitor
and measure the primary properties of powdered foods to ensure the final food products have the
required performance.

1.2. Powder Food Allergens and Digital Technologies in the Food Industry

In addition to monitoring the powdered food properties it is also important to monitor their
compositions; this is especially the case when they contain known food allergens. Globally, there is
an increase in the number of people with food allergies, and it has been estimated that 4% of the
total world population now suffers from food allergies, with an even higher percentage in infants
and children (8%) [5]. The consequences of food allergies are sometimes debilitating, such as celiac
disease, and can often be life threatening. There are 14 identified major types of food allergens—celery,
cereal containing gluten, crustaceans, eggs, fish, lupin, milk, molluscs, mustard, tree nuts, peanuts,
soybeans, and sulphur dioxide [6]. It is important to state that allergen compounds are mostly just
proteins or proteinaceous materials and can even be found in low concentrations in products such
as fresh fruits and vegetables [7,8]. The majority of allergens listed above can be found in powdered
form and are used as ingredients in food products. Despite the significant advances in medical
treatments for many diseases, there is no cure for food allergies [5]. Although medicines exist to treat
the symptoms of allergic reactions [9], the best method for people with allergies is to ensure they do
not eat food containing these allergens. The current techniques for detecting the presence of food
allergens are all laboratory-based, requiring a significant amount of time from a skilled individual [10].
For better allergen control within food production environments, there is a need for new technologies
to identify materials which naturally contain allergens non-invasively in real-time [11]. Manufacturing
is experiencing the fourth industrial revolution, which is the advanced use of data and Industrial
Digital Technologies (IDT), such as sensors, artificial intelligence, the Industrial Internet of Things
(IIoT), and robotics, to optimise manufacturing processes. Although these technologies are beginning
to see widespread use within discrete manufacturing sectors (e.g., automotive), their adoption within
process manufacturing environments (e.g., food and drink) is lower, due to barriers such as cost and
suitability to operate in challenging industrial environments [12].

1.3. NIR Technology Applications in the Food Manufacturing

Near-infrared (NIR) spectroscopy is an optical method, which uses light with wavelengths
between 780 and 2500 nm, and is a common method for the quality evaluation of food products [13,14].
Examples of its uses within food and drink manufacturing include identifying the chemical composition
of fruits [15,16], vegetables [17,18], and meats [19,20]. NIR spectroscopy has been used to assess
several quality parameters for various powder food types. Examples include using NIR to assess the
geographical origin of flours [21]. In that study, NIR (1100–2000 nm) was used to scan wheat grain and
flour samples, and classification models were built using partial least squares discriminant analysis
(PLSDA), with prediction accuracies of 90–96%. The authentication of various powder samples has been
performed using NIR spectroscopy [22–26]. Cocchi et al. [23] utilised a Vis/NIR system (400–2500 nm)
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to identify traces of bread wheat flour in durum wheat flour using soft independence modelling of
class analogy (SIMCA) classification models. Ghosh et al. [14] used NIR spectroscopy to differentiate
between several cereals (wheat, wheat, oats, spelt, rye, rice, and corn), legumes (soy, white chickpea,
poppy, sesame, chia, rapeseed, sunflower seed), and peanut powder. Principal component analysis
(PCA) was used as an effective unsupervised clustering technique to identify flours from other samples.
In that work, PLSDA was then successfully applied to identify peanut samples from pint nut samples.
Another study by Haughey et al. [15] explored the application of NIR spectroscopy (833–2632 nm)
to determine soya meal adulteration by melamine, a recently reported adulterant in powdered milk,
infant formula, and feed products leading to kidney illnesses and failure. Regression models developed
using partial least squares regression (PLSR) had determination coefficient values (R2) of 89–99%.
Albanell et al. [16] used an NIR technique (1100–2500 nm) to detect low gluten concentrations (0–4.5%)
in several gluten-free flours. Modified PLSR models yielded R2 values of 68.2–96.7% depending on the
adulterant concentration. NIR spectroscopy was also used for determining several quality attributes of
flours, such as gliadin, gluten, protein, and moisture contents [27–30]. Badaró et al. [18] studied the
feasibility of using a portable NIR sensor (900–1700 nm) to detect the presence of different dietary fibres
(psyllium, bamboo, cellulose) added to semolina flour to enhance their nutritional profile. Classification
models developed by the SIMCA technique resulted in 100% classification prediction accuracy, while
R2 values for regression models were as high as 98%. Wesley et al. [19] applied Vis/NIR spectroscopy
(400–2500 nm) to estimate the content of gliadin and gluten content in wheat flour. The regression
models developed by PLSR had R2 values of 78 and 83% for gliadin and gluten, respectively.

1.4. Limitations of Online Applications of the NIR Technology

Although NIR technologies have extensive capabilities for measuring various quality parameters
of food products in production environments, there are numerous challenges that must be addressed.
Ensuring a representative sample of the material to be measured is a critical factor often affecting the
features of the acquired spectra and, consequently, the performance of any classification or regression
models developed [31]. Moreover, in powder foods, variations in physical properties (e.g., particle
size) will significantly affect the chemical information identified by the NIR system [31]. In the case
of diffuse reflectance NIR techniques, light penetrates and scatters inside the material before being
reflected back and received by the detector [32]. Determining the optimal configuration of the NIR
system for rapid and/or online monitoring of quality attributes is not a trivial task and preliminary
experiments are required. It is known that the penetration depth of light into biological materials such
as fruit tissues decreases exponentially. This penetration depth is also much less in the NIR region
(780–2500 nm) than in the visible region (400–780 nm) [33]. Consequently, any factor that affects the
penetration depth should be carefully studied in order to obtain the best configuration for diffuse
reflectance measurements. The optimal height distance between the sensor and sample and the sensor
light intensity are two important parameters that have to be determined experimentally. These factors
are extremely important to consider for NIR systems designed to work in industrial manufacturing
environments, where there may be limitations to the minimum distance the sensor can be located from
the food sample (to avoid contact with the food and potential safety issues). Near-infrared spectroscopy
methods are known to acquire large amounts of spectral data, which need to be pre-processed and
analysed using data processing methods, often referred to as chemometrics [34]. General steps for
using NIR technology are sample preparation, spectral acquisition, spectral pre-processing, followed
by the development of classification and/or regression models [33]. It is known that the pre-processing
method applied before the classification algorithms significantly affects the performance of the
models [35]. Often, noisy or coarse spectra are acquired by the NIR sensors due to environmental
effects (e.g., temperature and humidity), which affects the performance of the models [36]. Therefore,
the acquired spectra should be pre-processed using mathematical techniques before being utilised in the
machine learning models. Common pre-processing techniques include mean centring, Savitzky–Golay,
first derivative smoothing, second derivative smoothing, normalisation, and multiplicative scattering
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correction (MSC) [34,35]. The appropriate pre-processing method is not always consistent and it differs
between sample conditions, data acquisition protocol, and surrounding conditions, such as temperature
and moisture. In addition, some spectra pre-processing methods may be more suitable for specific
classification models and tests must be performed to determine the most suitable pre-processing
methods for a specific application.

This work will focus on the development of an NIR spectroscopy method which utilises machine
learning models to identify different powdered food samples which naturally contain allergens such as
gluten. The work will focus on measurement parameters and data processing methods, which must
be considered when performing measurements in industrial environments. The specific parameters
studied are the height between the NIR sensor and the food sample, the sensor light intensity, and the
spectra pre-processing methods utilised. A host of different powdered food samples will be studied,
including flours, spices, and other materials relevant to the food and drink sector, in addition to a
range of different classification machine learning methods.

2. Materials and Methods

2.1. Raw Materials

In this study, various powdered food materials were tested, some of which naturally contained
allergens and others which were naturally allergen-free and not modified after purchasing. All of
the samples were purchased from local markets in Nottingham, United Kingdom. A complete list
of the materials is available in Table 1. A total of 53 materials were measured in this study. There
were 13 gluten-containing flours, 8 gluten-free flours, 7 types of nuts, 4 animal-based powders, and 3
other powdered food materials (salt and sugars). Samples included several different brands of the
same powdered food type, to determine if this had any effect of the recorded spectra and classification
performance. Each sample was placed inside a 3 cm diameter petri dish. The fine powder samples were
compressed by hand using a second empty petri dish to ensure the top surface was flat. Examples of
the sample materials in petri dishes are shown in Figure 1a. It should be noted that the tested samples
included powders, flakes, and seeds, which have different shapes and would produce differences in
the recorded spectra [13,31]. Although some samples could easily be identified by their visible features
(colour and shape), this was not possible for many, especially the flours (Figure 1a). The recorded
spectral data were divided into two main groups, the Spices Group (SG), which contained 18 different
materials, and the Flours Group (FG), which contained flours, nuts, and other non-spice samples.
The FG contained 35 different materials. A complete description of the ingredients of each type,
adopted from the nutritional labelling, inside the FG is provided in Table 2. Excluding the mixed
herbs, which contained thyme, basil, marjoram, and oregano, any material in the SP contained only the
named spice, either as a seed or ground to a powder.
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Table 1. Materials measured by the near-infrared (NIR) sensor.

Flours Group (FG)
Spices Group (SG)

Gluten-Containing Flours Non-Gluten-Containing Flours Nuts Animal-Based Flours Other

Barley flour
Breadcrumbs
Oatmeal
Oats flour
Rye flour
Spelt flour
Wheat flour (six brands)
Wheat gluten

Buckwheat flour
Brown rice flour
Brown rice flour (organic)
Coconut
Corn flour
Gluten free flour (two brands)
Tapioca flour (organic)

Almond ground
Peanut butter powder (four brands)
Peanut flour (two brands)

Egg white
Egg yolk
Egg whole
Powdered milk

Casting sugar
Icing sugar
Table salt

Artichoke powder
Basil flakes
Black pepper ground
Celery ground
Chili flakes
Cinnamon ground
Cumin ground
Echinacea powder
Fennel seeds
Garlic powder
Ginger ground
Mixed herbs flakes
Hot paprika ground
Mustard powder
Oregano flakes
Thyme flakes
Turmeric powder
White pepper ground

13 8 7 4 3 18
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Table 2. Ingredients of the materials for the flour group (FG) scanned by the NIR sensor.

Material Ingredients

Barley Flour 100% barely flour
Breadcrumbs Wheat flour, salt, yeast
Oatmeal Wholegrain rolled oats
Oats Flour Wholegrain oat flour
Rye Flour Rye flour (organic)
Spelt Flour Spelt flour
Wheat Flour (Brands 1–3) Wheat flour, calcium carbonate, iron, niacin, thiamine
Wheat Flour (Brand 4) Wheat flour, calcium carbonate, iron, niacin, thiamine + ascorbic acid
Wheat Flour (Brand 5) Wheat flour, calcium carbonate, iron, niacin, thiamine
Wheat Flour (Brand 5) Wheat flour, calcium carbonate, iron, niacin, thiamine, raising agents: sodium carbonates, calcium phosphates
Wheat Gluten Powder wheat gluten
Buckwheat Flour 100% buckwheat flour
Brown Rice Flour (Organic) 100% rice flour
Coconut Organic coconut flour
Corn Flour Cornflour
Gluten Free Flour Rice, potato, tapioca, maize, buckwheat, raising agent (mono-calcium phosphate, sodium bicarbonate, thickener (xanthan gum)
Tapioca Flour (Organic) Tapioca flour
Almond Ground Almond ground
Peanut Butter Powder (Brands 1 and 2) Peanut, coconut palm sugar, salt
Peanut Butter Powder (Brand 3) Peanut flour, Palmyra nectar powder, mineral sea salt
Peanut Butter Powder (Brand 4) Roasted peanut, sugar, salt
Peanut Flour 100% peanut flour
Egg White 100% pure egg white powder
Egg Yolk 99.7% Egg yolk powder, 0.3% anti-caking agent
Egg Whole 100% pure powdered whole egg
Powdered Milk Whole milk powder, emulsifier (soya lecithin)
Casting Sugar Cane sugar
Table Salt Salt, anticaking agent: sodium ferrocyanide
Icing Sugar Cane sugar powder
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Figure 1. (a) Examples of different tested food materials, (b) NIR experimental system setup.

2.2. Measurement System and Experimental Procedure

The measurement system used for the experiments is shown in Figure 1b. The system comprised a
3D-printed plastic enclosure especially designed for the study. This included slotted groves at different
vertical levels (1.5 cm apart), so the height between the food samples and the NIR sensor could be
varied. A bespoke holder for the NIR sensor was designed and built to fit into the groves in the plastic
enclosure. The NIR sensor used was a NIRONE S2.0, obtained from Spectral Engines, Oulu, Finland.
This sensor had a compact shape and light weight (25 × 25 × 17.5 mm3, 15 g) making it suitable
for integration with manufacturing technologies, such as robots and conveyor systems. The sensor
contained two tungsten vacuum lamps with a peak power of 1 W and a single element extended
InGaAs detector. The signal-to-noise ratio (SNR) of the sensor was 38.75 dB. The sensor was connected
to the laptop via a USB cable. The sensor had a detection range of 1550–1950 nm and a spectral
resolution of 1 nm, which made the number of acquired wavelengths 401 for each sample measured.
A total of seven different height levels were possible with the holder. However, in this study only six
levels were used, as the lowest level was too close to the sample surface to record a stable measurement.
In this study, the six levels of sensor heights ranged from 1.5 to 10.5 cm. The light intensities used in
the study were 30–90% of the maximum lamp power in 10% increments, resulting in seven levels of
light intensities. Consequently, there were 42 possible combinations for height level and light intensity.
Each sample was scanned for each combination using five replicates. Before scanning the first sample
on a particular day, the sensor was turned on for 10 minutes at a light intensity of 90% to obtain a
uniform absorbance. Moreover, at each height level, a reference spectrum was recorded using a white
reference disk at 90% light intensity and a dark background measurement at 0% light intensity.

2.3. Data Analysis

The relative reflectance for each sample was calculated from the light intensities of the samples
(Is), the reference target (Ir), and the dark (Id) using the following Equation:

Relative re f lectance =
Is − Id
Ir − Id

.
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To overcome the effect of noise, either due to electronic sources or natural variations within
the samples and the experimental environment, the acquired spectra should be pre-processed [33].
The pre-processing techniques implemented in this study were multiplicative scatter correction
(MSC), first derivative smoothing, second derivative smoothing, standard normal variate (SNV),
Savitzky–Golay, mean centring, scaling, and robust auto scaling in addition to using the raw spectra
without any pre-processing. Such methods are effective in reducing the effect of noise on the spectra
quality [37]. Multiplicative scatter correction is designed to reduce the effect of light scattering in
spectroscopic data, whereas first and second derivative are smoothing techniques that are mainly
applied to minimise the random noise and narrow spikes in spectra [34]. Standard normal variate is
based on normalising the rows in the spectra by mean-centring them, then dividing by the standard
deviation [34]. Savitzky–Golay is another smoothing method that uses localised polynomial regression
to reduce the spikes in the spectra [36]. In this study, the window length for the Savitzky–Golay
was chosen as 25. Although multiple different pre-processing methods could be applied to recorded
spectra in series, in this work each method was applied individually to understand its effect on
classification performance.

Principle component analysis (PCA) is an exploratory data analysis method used for dimension
reduction in the case of high dimensional data, where there are more predictors than observations [34,38].
In PCA, the original data is simply transformed into another domain or space, such that the transformed
data, usually called scores, are orthogonal [36]. Additionally, PCA also enables better visualisation of
the transformed data, making it easier to identify clusters of materials with similar properties based on
the recorded spectra. Principle component analysis was performed for each sensor height and light
intensity level combination, such that the principal components (PC) could explain at least 99% of
the variance between the different powdered food samples. As the number of classes or materials for
the FG was relatively high, it was decided to divide the materials into five classes based on either the
origin or the main allergen they contain. The first class was gluten-containing materials, and included
flours made from wheat, barley, rye, spelt, in addition to oatmeal and wheat gluten. The second class
included non-gluten flours, which were flours made from rice, buckwheat, coconut, corn, and tapioca.
The third class included animal-based proteins, which were egg white, egg yolk, whole egg, and milk
powder. The forth class contained nuts (almond, peanut butter powder, and peanut flour). The fifth
class contained caster sugar, icing sugar, and table salt. In the case of the SG, no subgrouping was
performed and there were 18 classes, with each class representing one type of spice.

Classification of samples was conducted using several classification machine learning methods,
including Linear Discriminant Analysis (LDA), K-nearest neighbour (KNN), SIMCA, PLSDA, and feed
forward artificial neural networks (ANN). It should be noted that the classification task was implemented
on both the FG (5 classes) and SG (18 classes). Linear discriminant analysis depends on establishing a
linear classification threshold and each new object is assigned a class after comparing its discriminant
score to the threshold [34]. For the SIMCA method, each class is described by features extracted via
PCA such that the PCs for each class are selected irrespective of the PCs for other classes. This enables
the optimal feature selection for each sample [34]. The PLSDA technique depends on applying partial
least squares regression (PLSR) and assigning the sample to the correct group based on the values of
the predicted dependents (y) values, such that the correct class has a predicted value of 1 or −1 [35].
An ANN is a nonlinear, supervised classification technique [34]. The ANN implemented in this study
comprised three layers, an input layer that had all pre-processed spectral data, a hidden layer with
50 neurons, and an output layer that contained the sample classes. KNN is a nonlinear classifier
that is based on assigning a point to a class whose Euclidean distance to the unknown point is the
minimum [34]. The Euclidean distance was chosen in this study to be 4.
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For all models, data were divided into a training set (75%) and a test set (25%). To increase the
robustness of the deduced classification models, a four-fold cross validation technique was applied only
on the training set of data and the optimal classification model obtained was the one that produced the
minimum classification error. This optimal model was then used with the test data set. Cross validation
is a common technique used when the number of predictors is larger than the number of objects. Thus,
the parameters of the obtained models were such that the number of PLS and PCA components were
optimised [34].

3. Results and Discussion

3.1. Effect of Sensor Height on Spectral Signature of Samples

The relative reflectance spectra for different food materials at different sensor heights and light
intensities showed a similar trend (Figures 2 and 3). Figure 2a–j shows the relative reflectance spectra
for the FG materials, where each sub figure illustrates the relative reflectance at all sensor height levels
and one light intensity (either 90% or 30%). Due to the relatively large number of tested materials,
only five FG materials are shown, with each one representing one sample from the aforementioned
classes. A consistent reduction in the relative reflection was observed around 1780 nm for all samples,
especially when the sensor was close to the sample (Levels 1 and 2). This reduction was related to the
absorption of water, which was present in all samples [39]. This reduction was not clear for sensor
levels beyond H2 (4.5 cm) due to the large level of noise. Additionally, it was found that the intensity
of the acquired spectra decreased as either the light intensity reduced or the distance between the
sensor and the sample increased.

The SG samples in general showed similar absorption peaks to the FG samples (Figure 3). Relative
reflectance spectra are only shown for five materials from the SG in Figure 3 (chili flakes, cinnamon,
cumin, and garlic granules). It was found that light intensity drastically affected the amplitude of the
acquired spectra, as the relative reflectance spectra at light intensity of 30% was around 20% of the
value at the light intensity of 90%. Assuming the air in between the sensor and the sample surface
was a uniform gas, then based on Beer-Lambert’s Law, the intensity of the transmitted light decreased
exponentially with the path length through the absorbing material.
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Figure 2. Relative reflectance for all height levels and the minimum and maximum light intensities,
90% and 30%, for (a,b) wheat flour, (c,d) buckwheat, (e,f) peanut butter powder, (g,h) milk powder,
(i,j) icing sugar. Height levels: H1 = 3 cm, H2 = 4.5 cm, H3 = 6 cm, H4 = 7.5 cm, H5 = 9 cm, H6 =

10.5 cm.
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Figure 3. Relative reflectance for all height levels and the minimum and maximum light intensities,
90% and 30%, for (a,b) chili flakes, (c,d) cinnamon, (e,f) cumin, (g,h) garlic granules, (i,j) hot paprika.
Height levels: H1 = 3 cm, H2 = 4.5 cm, H3 = 6 cm, H4 = 7.5 cm, H5 = 9 cm, H6 = 10.5 cm.

3.2. Effect of Light Intensity on Spectral Signature of Samples

The effect of light intensity on relative reflectance at two height levels, H1 (3 cm) and H6 (10.5 cm),
is shown in Figures 4 and 5 for FG and SG, respectively. For consistency, only the spectra for the same
powdered food samples as Figures 2 and 3 are shown. It is clear that the moisture absorption peak
around 1780 nm had almost disappeared at height H6 for all samples as a result of the more dispersed
signals in the surrounding air. However, at heights closer to the sensor, i.e., H1, it was observed that
the absorption peaks could still be clearly distinguished for all light intensities. In general, the relative
reflectance was proportional to the light intensity for most materials, which follows Beer-Lambert’s law.
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Generally, the higher the light intensity the more reflected light acquired from samples. Thus, using
the sensor at further distances from the sample surface will mostly not help identify some chemical
constituents, especially if only low concentrations of the compounds are present.
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3.3. Effect of Sensor Height and Light Intensity on the Spectra Principle Components

The scatter plots for the PC scores for the five groups of flours samples that illustrated the best
and worst class separation are displayed in Figure 6a,b, respectively. For PCA plots it is desirable to
have clear separation between different classes so they can be distinguished from each other more
easily. The best separation was achieved for height level H4 (7.5 cm) and light intensity 90%, whereas
the worst separation was found to be for height level H6 (10.5 cm) and light intensity 30%. It is noted
that some materials are well separated in the PCA figures such as icing sugar, caster sugar, and nuts,
as a result of the distinguishable composition of such materials. Most nuts contain fatty acids, such
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as saturated fatty acids, poly saturated fatty acids, and monosaturated fatty acids [40], while the
caster or icing sugars solely contain sucrose [41]. However, it was difficult to separate some materials
from others at all heights, especially with a higher sensor level or lower light intensity. Moreover,
with the highest sensor position from the sample (H6 = 10.5 cm) and the lowest light intensity (30%),
the PCs were condensed and represented a situation where identifying the different classes of materials
would be challenging. It was found that height level H4 (7.5 cm) along with a light intensity of 90%
yielded the best separation of different classes based on the PCA scatter plot (Figure 6a). These results
show that different groups were well separated from others, except for almond flour, which was
clustered amongst the gluten-containing flours. Two gluten-free flours were also located within the
gluten-containing flours cluster. As gluten-free flours mainly contain mixtures of flours of rice, potato,
tapioca, maize, and buckwheat, one or more of these individual flours contains common compounds
with gluten-containing flours, such as amino acids including phenylalanine, histidine, isoleucine, and
leucine [42]. It was found that the effect of light intensity was less important than the sensor height to
obtain more separated groups of materials. In a study conducted by Ghosh et al. [24], where several
cereals, legumes, nuts, and oilseeds were measured using an NIR sensor (896–1686 nm), the scatter
plot of PCs yielded a similar trend, where cereals were well separated from nuts. It is worth stating
that with the best combination of height and light intensity shown in Figure 6a, it was possible to
separate most allergen-containing foods from foods which did not include allergens, except for the
two gluten-free flours discussed above. Thus, it is necessary to also depend upon results obtained
from classification models which produce more conclusive results and can be used to quantify the
effects of experimental parameters, such as sensor height and light intensity.

For the SG, the PCA scatter plots at height levels H4 (7.5 cm) and H6 (10.5 cm), along with light
intensities of 90% and 30%, respectively, are presented in Figure 7a,b. The separation of spice samples
showed visibly better results than that for flour groups considering the relatively high number of
classes (18 for the SG). The light intensity affected the separation more than the sensor height, as can be
seen at height levels H1 and H6. Non-separated classes were associated more with light intensities of
30%, with worse results when combining the furthest sensor height with the lowest light intensity.
It was clear that samples like mixed herbs, basil, and oregano were clustered together for most height
levels, as mixed herbs already contain basil, oregano, and thyme. Celery and mustard were the only
materials specified as allergens SG, and both were successfully separated from other samples at the
height of 7.5 cm and light intensity of 90%. According to the UK national health service [43], Echinacea
triggers allergic reactions for children under the age of 12. In this study, Echinacea was clustered with
cinnamon, which illustrates the need to either improve the experimental method (more replicates or
wider wavelength range) or combine the PCA results with classification models.
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3.4. Effect of Sensor Height, Light Intensity, and Pre-Processing Technique on Classification
Prediction Accuracy

Classification results for the test data sets of the flour group for all possibilities of sensor
height and light intensity combination are shown in Table 3 using KNN, PLSDA, SIMCA, and
ANN classification methods. Linear discriminative analysis classification results had much lower
classifciation performance and are not displayed here. The clasification prediction accuracies shown
are stated as values of minimum–maximum and vary dependeing on the pre-processing technique
applied to the spectra. In general, a consistent dependency was found for classification prediction
accuracy on sensor height. The further the sensor was from the sample, the more a considerable
decrease in classification performance was observed. Classification prediction accuracy also decreased
with the lower light intensities at the same sensor height, especially when the sensor was futher
from the samples, which matches the results illustrated with the PCA scatter plots (Figures 6 and 7).
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In addition, KNN generally had the most accurate classification performance over all heights and light
intensities studied, and was affected the least by the different pre-processing technqiues. Classification
prediction accuracies of up to 100% were obtained for most light intensities for the lowest sensor
height (H1 = 3 cm). Furthermore, classification models developed using the KNN method had higher
classification performance than other modelling methods for all sensor height and light intensity
combinations. The reason KNN resulted in the best classification perormance can be attributed to its
simplicity and suitability for multiclass problems [34]. The effect of pre-processing method was more
obvious on further sensor heights, where the classification accuracy range was larger. Classification
results from the ANNs had fairly consistent values for classification prediction accuracies, although
they had the lowest accuracy of all models presented in Table 3. This may be a result of the slightly
lower number of samples per class compared with the number of features [44]. In a study conducted
by Nawi et al. [44], several pre-processing techniques were used on three different datasets before
applying an ANN, and the classification accuracies changed by only a small amount (94.32–99.87%).
PLSDA and SIMCA showed similar classification results that decreased to less than 10% prediction
accuracy with sensor heights greater than 3 cm. In addition, the different pre-processing methods
had significant effects, at all light intensity and height combinations. Classification results obtained in
this study are comparable to those by previous studies. Badaró et al. [28] achieved model prediction
accuracies of up to 100% for detecting the presence of different dietary fibres added to semolina flour
using NIR. Ziegler et al. [45] illustrated that NIR can be used for differetiating between different flours,
such as bread, durum, and spelt, with prediction accuracies up to 100%. Althougth the classification
results presented in this current work are positive and higlight the potential of the techniques, further
work is still required to investigate the effects of other parameters, such as sample particle size and
moisture content and enviromental conditions (e.g., temeprature).

Table 3. Classification prediction accuracy for flour and powder samples at different sensor heights
and light intensities using different pre-processing methods on the recorded spectra.

Light Intensity (%)
Classification Range for the Test Set (Minimum–Maximum) (%)

KNN PLSDA SIMCA ANN

Height Level H1

90 77–97 34–77 34–77 51–54
80 71–100 37–69 37–69 51–54
70 71–100 26–83 37–80 54–57
60 77–100 23–83 31–74 54
50 77–100 17–80 31–80 54
40 80–100 17–74 34–74 37–54
30 74–100 6–66 6–66 43–57

Height Level H2

90 71–97 20–63 3–60 46–54
80 63–97 6–60 6–69 49–54
70 77–100 6–69 6–69 54
60 51–97 9–74 9–74 34–54
50 54–100 3–54 3–54 51–54
40 51–97 6–57 6–57 34–54
30 34–89 3–49 3–46 43–54

Height Level H3

90 46–94 6–54 6–54 43–54
80 40–91 11–57 11–60 37–54
70 40–94 6–57 6–57 34–54
60 51–89 6–57 6–57 34–54
50 31–86 6–49 6–49 34–54
40 31–83 6–54 6–54 34–54
30 31–94 3–46 3–46 14–60
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Table 3. Cont.

Light Intensity (%)
Classification Range for the Test Set (Minimum–Maximum) (%)

KNN PLSDA SIMCA ANN

Height Level H4

90 49–97 6–46 6–54 43–54
80 34–94 3–37 3–40 43–54
70 31–91 6–51 6–51 37–54
60 29–89 6–43 3–49 40–54
50 26–94 3–34 3–34 31–54
40 49–83 3–43 3–43 34–54
30 23–83 3–46 3–40 34–54

Height Level H5

90 17–83 6–49 6–46 34–54
80 26–83 3–46 3–40 34–51
70 29–89 6–37 6–46 26–54
60 29–80 3–40 6–40 34–54
50 40–89 3–46 3–46 26–51
40 23–94 3–37 3–37 34–51
30 20–83 6–31 6–31 31–54

Height Level H6

90 20–89 6–40 6–40 34–54
80 31–83 9–40 9–40 34–54
70 26–77 0–40 0–40 31–54
60 26–69 0–34 0–34 34–60
50 29–74 0–31 0–31 29–57
40 17–69 6–46 6–46 23–54
30 23–66 0–23 0–29 26–43

The classification prediction accuracy results for spices at different sensor heights and light
intensity combinations are shown in Table 4. Results from the ANN models are not shown, as they
had poor classification performance. This was possibly due to the relatively large number of classes
compared with the number of samples, thus not enabling the effective tuning of network parameters
(weights) required to achieve effective models [38]. Linear discriminative analysis and KNN methods
yielded the highest classification prediction accuracies. Again, the classification performance decreased
with increased sensor height, especially for the measurements at lower light intensities. For sensor
heights H1 and H2 (3 cm and 4.5 cm), samples in general were classified correctly (100%), irrespective
of light intensity. Starting from sensor height 6 cm, classification prediction accuracies decreased with
a consistent reduction with lower light intensities. The classification prediction accuracies were found
to be similar when comparing the results from the FG and the SG. Classification results obtained for
spices were similar to those available in other published work using spectroscopic measurements.
Hu et al. [46] used FT-MIR (4000–40,000 cm−1) to assess the adulteration of black pepper by sorghum or
Sichuan pepper, with reported classification prediction accuracies between 98–100%. Anibal et al. [47]
used a UV/Vis (260–600 nm) to detect Sudan dyes in turmeric, curry, mild paprika, and hot paprika,
with resulting classification prediction accuracies up to 99.3%. It is worth stating that PLSDA was
generally more affected by the pre-processing techniques than LDA or KNN, and showed considerably
reduced classification prediction accuracy when the sensor height was greater than 3 cm. PLSDA
mainly depends on using PLS to assign each sample to a class, and thus suffers from the negative
effect of small sample sizes when trying to obtain the optimal latent variables. Additionally, PLSDA
tends to produce lower prediction accuracy in multiclass problems than binary classification [34].
An example of the confusion matrix obtained from the classification analysis is shown in Table 5.
It shows that all groups were classified correctly, except the gluten-containing group, which had 1
sample out of 12 classified as gluten-free. The results illustrate the need for a larger number of samples
to improve the classification prediction accuracies. Due to the large number of classes for the spice
group, the confusion matrix is not shown.
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Table 4. Range of classification prediction accuracies for spice samples at different sensor heights and
light intensities using different methodologies after scanned using an NIR sensor.

Light Intensity (%)
Classification Range for the Test Set (Minimum–Maximum) (%)

LDA KNN PLSDA ANN

Height Level H1

90 39–100 44–89 50–89 <20
80 39–100 44–89 61–89 <20
70 39–100 50–100 50–83 <20
60 39–100 50–100 56–94 <20
50 44–100 44–94 39–83 <20
40 50–100 56–100 22–83 <20
30 61–100 50–94 28–72 <20

Height Level H2

90 61–100 61–100 11–44 <20
80 61–100 61–100 11–67 <20
70 56–100 22–94 17–44 <20
60 33–100 6–94 6–39 <20
50 33–89 11–89 6–39 <20
40 39–100 44–94 6–28 <20
30 44–100 0–72 6–44 <20

Height Level H3

90 28–94 11–94 6–61 <20
80 39–94 17–94 11–56 <20
70 28–94 11–83 0–17 <20
60 17–94 6–78 6–22 <20
50 11–78 6–72 6–33 <20
40 6–56 6–72 0–22 <20
30 11–67 11–67 0–22 <20

Height Level H4

90 44–89 6–83 6–22 <20
80 50–78 28–83 6–22 <20
70 56–72 11–83 0–22 <20
60 33–72 17–83 0–17 <20
50 33–67 17–78 0–11 <20
40 28–61 6–78 0–17 <20
30 6–44 0–50 0–6 <20

Height Level H5

90 17–67 11–61 0–22 <20
80 17–61 6–61 0–28 <20
70 11–72 11–67 0–6 <20
60 22–44 6–61 0–17 <20
50 6–44 0–50 0–6 <20
40 11–33 11–39 0–17 <20
30 0–28 0–33 0–6 <20

Height Level H6

90 22–72 11–78 6–17 <20
80 11–61 6–72 0–22 <20
70 17–61 0–56 0–11 <20
60 17–50 11–56 0–6 <20
50 0–50 0–67 0–6 <20
40 6–50 6–56 0 <20
30 0–56 0–56 0 <20
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Table 5. Confusion matrix for classifying different tested materials in the Flour Group (FG) using the NIR
sensor and K-nearest neighbour (KNN) classifier with standard normal variate (SNV) pre-processing.

Gluten-
Containing

Flours

Gluten-
Free Flours Nuts Animal-Based

Powders

Other
Powder
Samples

Overall
Classification

Gluten-Containing
Flours 11 1 0 0 0

Gluten-Free Flours 0 9 0 0 0

Nuts 0 0 7 0 0

Animal-Based
Powders 0 0 0 4 0

Other Powder
Samples 0 0 0 0 3

94%

The pre-processing methods applied to the recorded NIR spectra in this study played a significant
role in the performance of the classification models. Amongst all applied pre-processing techniques,
SNV and MSC contributed to better classification performance for both FG and SG. Other methods
showed slightly lower prediction performance, including Savitzky–Golay, mean centring, and robust
auto centring. However, first and second derivatives resulted in the lowest classification prediction
accuracy values for the FG and SG. Only the values of classification prediction accuracy for SNV and
the second derivative are shown in Table 6, as these methods had the most extreme effects on the
classification results. For the models deduced from either technique, it is clear that the prediction
accuracy generally decreased the further the sensor was from the sample or with a lower light
intensity at the same height level, which agrees with the general results obtained from Tables 3 and 4.
Additionally, it is shown that the data treated with SNV were less affected by the sensor height than
those treated with the second derivative. SNV provides a sample-by-sample treatment such that the
data will have a zero mean and unit variance, which provides a baseline correction to overcome the
problem of having artefacts or noise in the spectra due to any surrounding or uncontrolled conditions
produced during measurements [34,35,48]. A possible reason for such low performance for derivative
smoothing is the fact that although differentiation might lead to noise removal by minimizing narrow
spikes, it might also increase noise that has not presented in the actual spectra [34].

Table 6. Maximum classification prediction accuracies for flour samples using KNN and spice samples
using Linear Discriminant Analysis (LDA) at different sensor heights and light intensities using SNV
and second derivative pre-processing on the recorded NIR sprectra.

Light Intensity (%)

Maximum Classification Range for the Test Set (%)

Flours Group Using KNN Spices Group Using LDA

SNV Second Derivative SNV Second Derivative

Height Level H1

90 97 94 83 100
80 100 100 83 100
70 100 91 78 100
60 100 94 78 100
50 100 91 78 94
40 97 89 78 89
30 100 77 78 83

Height Level H2

90 97 71 100 50
80 97 63 100 61
70 100 69 100 56
60 97 51 94 33
50 97 54 89 33
40 97 51 100 39
30 83 34 100 44
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Table 6. Cont.

Light Intensity (%)

Maximum Classification Range for the Test Set (%)

Flours Group Using KNN Spices Group Using LDA

SNV Second Derivative SNV Second Derivative

Height Level H3

90 94 46 94 28
80 89 40 94 39
70 91 40 94 28
60 77 51 94 17
50 71 31 78 11
40 74 31 56 06
30 74 31 67 06

Height Level H4

90 83 49 78 44
80 80 34 78 50
70 86 31 61 56
60 69 29 56 33
50 51 26 33 39
40 57 49 33 44
30 49 23 06 11

Height Level H5

90 63 17 56 28
80 69 26 44 17
70 66 29 33 11
60 46 40 39 22
50 43 40 6 28
40 43 23 11 17
30 34 20 11 0

Height Level H6

90 57 20 50 22
80 40 31 22 17
70 46 26 17 17
60 31 34 22 22
50 31 29 33 06
40 31 20 6 17
30 31 23 0 6

4. Conclusions

This work investigated the use of NIR spectroscopy and machine learning models to identify
different powdered food materials which naturally contain allergens, such as gluten. The sensor utilised
was small, low cost and had a low power requirement, making it suitable for use within production
environments. This work specifically focussed on some crucial measurement parameters which ought
to be considered when using NIR in real-world environments. These were the height between the
sensor and the sample, the light intensity of the sensor, and the pre-processing techniques applied to
the recorded spectra. Measurements were made on a range of different powdered food samples, which
were split into two main groups, flours and spices. The work showed that using features extracted
from the recorded spectra with classification machine learning methods was a suitable approach to
identify materials containing allergens, with classification prediction accuracy as high as 100%. It was
found that placing the sensor further than 7.5 cm away and using an illumination power less than 70%
resulted in poor classification performance. This highlights that users should always identify the most
suitable measurement conditions when using these sensors in the laboratory or factory. The study
also concluded that amongst the different machine learning methods utilised, KNN and LDA yielded
a stable performance of classification prediction accuracy under the studied conditions. Moreover,
pre-processing techniques had a significant effect on the classification performance. Methods such as
SNV, MSC, and Savitzky–Golay consistently resulted in a more than 100% increase in classification
prediction accuracy compared with methods like first and second derivatives. Measurements from
the NIR sensor under the optimal combination of sensor height and light intensity resulted in 100%
classification prediction accuracy using KNN and LDA methods. However, future work needs to
be conducted to cover additional factors that would affect the measured spectra and classification
performance. Such factors include the effect of particle size, moisture content, and compositional
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variations in materials, which may vary between brands. Additionally, to develop measurement
systems suitable for real-time data collection within production environments, the ability to perform
measurements on moving materials is desirable. Finally, work should be performed to determine
the capability of the technique to identify powdered materials adulterated with small quantities of
other materials.
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