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Abstract: The paper presents research related to the functional features of a novel three-layer
circular piezoelectric actuator/sensor. The outer layers of the transducer are made of non-piezoelectric
material. The middle layer comprises two elements—a piezoelectric disk, and a ring made of
non-piezoelectric material. The additional external passive layer has a very important function;
it protects the transducer’s electrical components against damage caused by external factors.
Also, if sparking on the transducer wires or electrodes occurs, this layer prevents fire. So far,
there is no analytical model for such a transducer. Closed-form analytical equations are important
tools for predicting and optimizing the operation of devices. Thus, using both the Plate Theory
and constitutive equations of piezoelectric materials, an analytical formula describing transducer
deflection as a function of electrical loads has been found (electromechanical characteristic of the
transducer). In addition, it is worth noting that under certain assumptions, the developed analytical
model can also be used for two-layer transducers. The tests carried out show satisfactory compliance
of the results obtained through the developed solution with both literature data and numerical
data. Moreover, based on the obtained analytical model, the effect of selected non-dimensional
variables on the actuator performance has been examined. These parameters include dimensions
and mechanical properties of both piezoelectric disk and passive plates and strongly influence the
behavior of the transducer.

Keywords: mechanical engineering; piezoelectric; electromechanical characteristic; circular
piezoelectric transducer

1. Introduction

The first practical application of the piezoelectric phenomenon is attributed to Paul Langevin.
In 1917, he developed the piezoelectric ultrasonic generator which was used to locate submarines.
His invention started the increasingly frequent use of devices using the piezoelectric effect in many
areas of the economy, such as medicine, industry, or transport. The principle of piezoelectric transducers
performance, which may act as actuators [1–3] or sensors [4,5], is based on the conversion of electricity
into mechanical energy, or vice versa. The relationship between the deformation of piezoelectric
materials and an electric field is determined by the constitutive equations [6,7]. These equations form
the basis for determining the electromechanical characteristics of piezoelectric actuators/sensors. On this
basis, it is possible to predict transducer behavior and optimize its parameters. Such knowledge is very
useful, because one can increase the converter efficiency at its design process. This can be achieved,
for example, by obtaining higher transducer deflection when using less input power, often while
reducing the transducer weight or dimensions. At present, before implementing and manufacturing
a real device, the most common methods are numerical methods [8,9] or numerical-analytical
methods [10,11]. However, many scientists, trying to provide more sophisticated design methods,
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develop new closed-form analytical solutions that are important tools for predicting and optimizing
the operation of piezoelectric sensors/actuators.

The methods of obtaining analytical solutions and their form depend mainly on the geometrical
and material features and conditions of mounting or loading the transducer. Most piezoelectric
sensors/actuators usually have a layered structure, which causes some difficulties in determining
their electromechanical characteristics. Interesting results of the analytical modeling of piezoelectric
cantilever converters with equal length of all layers are presented in [12–15]. In [12], a double-layer
transducer was analyzed. In the paper [13], there is the issue of a three-layer converter, whereas
in [14,15], a multi-layer one. Static characteristics of double-layer converters in which piezoelectric
layers have a different length than the passive ones are shown in [16,17]. To obtain the electromechanical
characteristics of the transducers, the authors used the following methods: the elementary theory of
elasticity [12], the energetic method [13,14], the Airy stress function method [15], the beam theory [16],
the Lagrange method [17]. Analytical modeling of two- and three-layer transducers with freely-defined
boundary conditions and geometry was also dealt with in [18–20]. To obtain electromechanical
characteristics, the author [18–20] used the method based on the implementation of piezoelectric
segments into the beam. A similar method was used by the authors of [21] for a two-layer circular
piezoelectric converter. However, with double-layer circular transducers, the method based on Plate
Theory is most often used to determine electromechanical characteristics [22–25]. This approach can
also be used for three-layer [26] or multi-layer [27] circular piezoelectric converters. Additional layers
(a piezoelectric or a passive one) in the transducer can perform various functions, e.g., they allow
an increase in the deflection of the transducer while reducing its dimensions [28].

This article analyzes a novel three-layer circular piezoelectric transducer whose outer layers are
made of non-piezoelectric material. The additional external passive layer protects the transmitter’s
electrical components against damage caused by external factors. Furthermore, if there is sparking
on the transducer wires or electrodes, this layer prevents fire. In the literature, analytical solutions
describing the deflection of such three-layer circular piezoelectric transducers are difficult to find.
Therefore, the main goal of this work is to develop procedures that allow the obtainment of the static
electromechanical characteristics for such transducers.

The analytical solutions and the method of obtaining them are discussed in Section 2. It was
also necessary to verify the correctness of the analytical model, as shown in Section 3. Section 4
presents the analysis of the impact of construction design on the deflection of three-layer circular
piezoelectric transducers.

2. Electromechanical Characteristic of a Three-Layer Circular Piezoelectric Transducer

2.1. Basic Assumptions

The analyzed converter is made up of four different materials arranged in three layers (Figure 1).
The outer layers, of thicknesses t1 and t3, are made of non-piezoelectric material. One of these layers
is the executive element of the transducer, while the other one can act as a protective layer/coating.
The middle layer consists of two components (of the same thickness t2 = t4)—a piezoelectric disk and
a ring made of non-piezoelectric material. In this case, the material of the ring is foam. Its task is
to stabilize the electric wires supplying current to the electrodes of the piezoelectric disk. The inner
radius of the ring is equal to the outer radius of the piezoelectric disk and is denoted as Ro. The outer
radius of all layers is the same and equals R. All disks are fixed to and supported by outer cylindrical
surfaces. The transducer deformation occurs because of the transverse piezoelectric effect (caused by
the action of a V voltage) occurring inside the piezoelectric disk. In order to simplify the mathematical
model, the following assumptions were made:

1. the total thickness of all layers is much smaller than their radius, therefore the Plate Theory [29]
was used to determine transducer deflection;
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2. the thickness of the adhesive layers and electrodes is very small and has no effect on the
transducer deflection;

3. between individual transducer layers there are no slips and the cross-sections remain plane
after deformation.

4. in the piezoelectric disk, only transverse piezoelectric effect occurs.
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2.2. Analytical Description of Transducer Deformation

Figure 2 presents a fragment of the deformed structure of the analyzed transducer with internal
forces occurring in individual layers.
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Based on the small deflection theory of round thin axisymmetric plate [28], and assuming that the
transducer is not subject to any external loads, equations of forces and bending moments (Figure 2b)
can be written as follows:

dNr

dr
+

Nr −Nϕ

r
= 0,

dMr

dr
+

Mr −Mϕ

r
= 0. (1)

where, Nr, Mr—total force and bending moment in the radial direction; Nϕ, Mϕ—total force and
bending moment in the circumferential direction.

It is worth noting that the above equation is valid only on the assumption that shear deformation
and rotary inertia can be omitted [29]. Therefore, in order to be able to use equation 1, the deformation
of the piezoelectric disk caused by the longitudinal and shear piezoelectric effects has been not taken
into account in this paper. Such simplification is used by many researchers, for example by the authors
of the papers [21,24,25].

For the deflected transducer, the radial and circumferential strain–displacement relationships are
as follows:

εri =
dui
dr
− z

d2w
dr2 , εϕi =

ui
r
− z

1
r

dw
dr

, i = 1, 2, 3, 4. (2)

Assuming that the cross-sections of individual layers remain flat after deformation (Figure 2a),
the displacement of the individual layers can be made dependent on the displacement of the lower
layer 1:

for the interval r < Ro:

u2 = u1 −
t1 + t2

2
dw
dr

, u3 = u1 −
t1 + t3 + 2t2

2
dw
dr

(3)

for the interval Ro < r < R

u4 = u1 −
t1 + t4

2
dw
dr

, u3 = u1 −
t1 + t3 + 2t4

2
dw
dr

. (4)

Applying Hook’s law, and taking into account the transverse piezoelectric effect in a piezoelectric
disk, radial σri and circumferential σϕi stresses occurring in individual layers of the transducer can be
written using the following equations:

for the interval r < Ro:

σr1 =
E1(εϕ1ν1+εr1)

1−ν1
2 , σϕ1 =

E1(εϕ1+εr1ν1)
1−ν1

2

σr2 =
E2

(
εϕ2ν2+εr2+d31

V
t2
(1+ν2)

)
1−ν22 , σϕ2 =

E2

(
εϕ2+εr2ν2+d31

V
t2
(1+ν2)

)
1−ν22

σr3 =
E3(εϕ3ν3+εr3)

1−ν32 , σϕ3 =
E3(εϕ3+εr3ν3)

1−ν32


(5)

for the interval Ro < r < R

σr1 =
E1(εϕ1ν1+εr1)

1−ν1
2 , σϕ1 =

E1(εϕ1+εr1ν1)
1−ν1

2

σr4 =
E4(εϕ4ν4+εr4)

1−ν4
2 , σϕ4 =

E4(εϕ4+εr4ν4)
1−ν4

2

σr3 =
E3(εϕ3ν3+εr3)

1−ν32 , σϕ3 =
E3(εϕ3+εr3ν3)

1−ν32


(6)
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where, Ei—Young’s modules; νi—Poisson’s ratios; d31—piezoelectric constant.
Forces and bending moments occurring in individual transducer layers are determined on the

basis of Equations (2)–(6):

for the interval r < Ro:

Nr1 =
t1/2∫
−t1/2

σr1dz, Nr2 =
t2/2∫
−t2/2

σr2dz, Nr3 =
t3/2∫
−t3/2

σr3dz (7)

Nϕ1 =
t1/2∫
−t1/2

σϕ1dz, Nϕ2 =
t2/2∫
−t2/2

σϕ2dz, Nϕ3 =
t3/2∫
−t3/2

σϕ3dz (8)

Mr1 =
t1/2∫
−t1/2

(σr1z)dz, Mr2 =
t2/2∫
−t2/2

(σr2z)dz, Mr3 =
t3/2∫
−t3/2

(σr3z)dz (9)

Mϕ1 =
t1/2∫
−t1/2

(
σϕ1z

)
dz, Mϕ2 =

t2/2∫
−t2/2

(
σϕ2z

)
dz, Mϕ3 =

t3/2∫
−t3/2

(
σϕ3z

)
dz (10)

for the interval Ro < r < R

Nr1 =
t1/2∫
−t1/2

σr1dz, Nr4 =
t4/2∫
−t4/2

σr4dz, Nr3 =
t3/2∫
−t3/2

σr3dz (11)

Nϕ1 =
t1/2∫
−t1/2

σϕ1dz, Nϕ4 =
t4/2∫
−t4/2

σϕ4dz, Nϕ3 =
t3/2∫
−t3/2

σϕ3dz (12)

Mr1 =
t1/2∫
−t1/2

(σr1z)dz, Mr4 =
t4/2∫
−t4/2

(σr4z)dz, Mr3 =
t3/2∫
−t3/2

(σr3z)dz (13)

Mϕ1 =
t1/2∫
−t1/2

(
σϕ1z

)
dz, Mϕ2 =

t2/2∫
−t2/2

(
σϕ2z

)
dz, Mϕ3 =

t3/2∫
−t3/2

(
σϕ3z

)
dz (14)

Resultant force and bending moment are the sum of forces and bending moments occurring in
individual layers:

Nr =
∑
i

Nri, Nϕ =
∑
i

Nϕi, Mr =
∑
i

Mri, Mϕ =
∑
i

Mϕi (15)

where i = 1, 2, 3 for the interval r < Ro; i = 1, 2, 4 for the interval Ro < r < R.
Using Equations (15) and (1), a differential equation of displacement of the lower layer of the

transducer (16) and its deflection (17) is obtained:

d2u1 j(r)

dr2 +
du1 j(r)

r dr
−

u1 j(r)

r2 = 0, (16)

d3w j(r)

dr3 +
d2w j(r)

r dr2 −
dw j(r)

r2 dr
= 0., (17)

where j = I for the interval r < Ro; j = II for the interval Ro < r < R.
The general solution of the above differential equations has the following form:

u1 j(r) =
D1 jr

2
+

D2 j

r
, w j(r) =

C1 jr2

4
+ C2 j ln(r) + C3 j (18)



Sensors 2020, 20, 222 6 of 14

The integration constants are determined from the following boundary conditions (19) (assuming
that the transducer midpoint deflection is limited) and the continuity conditions of the corresponding
fields for r = Ro (20):

u1I(0) < ∞;
dwI(r)

dr
|r=0 < ∞;

dwII(r)
dr

|r=R = 0; wII(R) = 0; u1II(R) = 0, (19)

dwI(r)
dr

∣∣∣r=Ro =
dwII(r)

dr

∣∣∣r=Ro ; wI(Ro) = wII(Ro); u1I(Ro) = u1II(Ro)

Nr1I(Ro) = Nr1II(Ro); MrI(Ro) = MrII(Ro)

, (20)

where Nr1I(Ro) and Nr1II(Ro) are calculated from Equations (7) and (11). The bending moments in
layer 1 are calculated from the below equations:

for the interval r < Ro:

MrI(Ro) = Mr1(Ro) + Mr2(Ro) + Mr3(Ro) + Nr3(Ro)
(t1 + t3 + 2t2)

2
+ Nr2(Ro)

(t1 + t2)

2
(21)

for the interval Ro < r < R:

MrII(Ro) = Mr1(Ro) + Mr4(Ro) + Mr3(Ro) + Nr3(Ro)
(t1 + t3 + 2t4)

2
+ Nr4(Ro)

(t1 + t4)

2
, (22)

where Mri(Ro) and Nri(Ro) are determined using the Equations (7) and (9) (in Formula (21)),
and Equations (11) and (13) (in Formula (22)).

Using the above conditions and the Formula (18), the equation describing the deflection of the
transducer was obtained:

w(r) =


wI(r) =

AI
C , r ≤ Ro

wII(r) =
AII
C , Ro ≤ r ≤ R

, (23)

where:

AI = −3d31E2VRo
2(t1 + t2)

(
1− ν1

2
)2
(1 + ν2)

(
r2

(
1− R2

Ro2

)
+ 2R2 ln

(
R
Ro

))
,

AII = −3d31E2VRo
2(t1 + t2)

(
1− ν1

2
)2
(1 + ν2)

((
r2
−R2

)
+ 2R2 ln

(
R
r

))
,

C =
(
1− ν1

2
)(
ν2

2
− 1

)(
2E1R2t1

3 +
(ν1

2
−1)(FI+(−1+ν2)(2E3t3(FIV+FII)(−1+ν4

2)+FIII))
(ν2−1)(ν32−1)(ν4

2−1)

)
,

FI = E2
(
ν3

2
− 1

)(
ν4

2
− 1

)(
R2
−Ro2

)(
3t1

2 + 6t1t2 + 4t2
2
)
t2,

FII = R2
(
3t1

2 + 6t1t2 + 6t2
2 + 6t1t3 + 6t2t3 + 4t3

2 + 6t1t4 + 6t3t4 + 6t4
2 + 6(t2 − t4)(t1 + t2 + t3 + t4)ν3

)
,

FIII = E4t4
(
3t1

2 + 6t1t4 + 4t4
2
)(
ν3

2
− 1

)(
Ro

2(ν4 + 1) −R2(ν4 − 1)
)
,

FIV = −6Ro
2(t2 − t4)(t1 + t2 + t3 + t4)(1 + ν3).

3. Verification of the Analytical Solution

To check the correctness of the obtained analytical solution, electromechanical characteristics were
developed for transducers with specific geometrical-material parameters and the obtained results were
compared with both literature data and the results obtained by the Finite Element Method (FEM).
Because no information was found in the literature for the exact transducer analyzed in the present
work, based on the analytical solution (23), the characteristics for the transducer shown in Figure 3
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were developed. The solutions for the transducer shown in the figure below were obtained by adopting
(in Equation (23)) the following assumptions: E3 = E4 = 0, t3 = t4 = 0.
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The obtained solution had to be compared to the ones available in the literature. Therefore,
assuming—as the authors of the work did [25]—that the piezoelectric disk is made of Pz26, and the
lower layer made of copper, a deflection curve was prepared (Figure 4). As for geometrical dimensions,
they were respectively: R = 6 × 10−3 m, Ro = 5 × 10−3 m, t1 = 2 × 10−4 m, t2 = 1.5 × 10−4 m. In addition,
the driving voltage was set to 200 V.
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Figure 4. Comparison of deflection curves: solid line—analytical solution (23); dashed line—analytical
solution taken from the work [25] (p. 36), V = 200 V, R = 6 × 10−3 m, Ro = 5 × 10−3 m, t1 = 2 × 10−4 m,
t2 = 1.5 × 10−4 m, Pz26/Cu.

As there was no specific material data for Pz26 and Cu given by authors of paper [25], it was taken
from [29]: E2 = 1/s11 = 7.69 × 1010 Pa, ν2 = −s12/s11 = 0.334, d31 = −1.3 × 10−10 m/V, E1 = 13 × 1010 Pa,
ν1 = 0.34. Comparing the results obtained with the literature data (Figure 4), it can be concluded that
both solutions are approximately equal—the maximum error is 1.3%. This slight difference in results
could be due to the fact that comparative data (dashed line, Figure 4) was obtained by digitizing the
graph from [25].

The analytical solution obtained had to be verified experimentally too. Therefore, the analytical
solution obtained for the unimorph actuator (Figure 3) was compared with the experimental one.
Assuming, just like the authors of [24], the following:

(a) geometrical dimensions: R = 2.54× 10−2 m, Ro = 1.27× 10−2 m, t1 = 5.08× 10−4 m, t2 = 1.127 × 10−4 m
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(b) material data:

• bottom layer made of aluminium; E1 = 70 × 109 Pa, ν1 = 0.33;
• piezoelectric disk made of PZT-5H (Piezo Material Lead Zirconate Titanate); E2 = 1/s11

= 6.06 × 1010 Pa, ν2 = −s12/s11 = 0.289, d31 = −2.74 × 10−10 m/V;

The transducer center point deflection (r = 0) was determined. Furthermore, the deflection was
determined for different values of driving voltages. The obtained results are presented in Figure 5.
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Figure 5. Comparison of the analytical solution (23) obtained for the unimorph actuator with
experimental data [24] (Adapted from Mo, C.; Wright, R.; Slaughter, W.S.; Clark, W.W Behaviour of
a unimorph circular piezoelectric actuator. Smart Mater. Struct. 2006, 15, p. 1102).

Analyzing the obtained results (Figure 5), it can be stated that the analytical solution agrees
with the experimental ones. However, it can be seen that as the applied voltage increases, a greater
discrepancy between theoretical and experimental results is obtained. This may be due to the fact
that it is difficult to achieve a true clamped condition on the outer walls of the real transducer (this is
reported by the authors of experimental studies [24]). The impact of potential support flexibility on the
electromechanical characteristics of the transducer increases as its deflection increases. The deflection
is proportional to the applied voltage, so as the voltage increases, the difference between the results
obtained from the theoretical equations and the experiment increases.

As already mentioned, another way of verification was to compare an analytical solution with
a numerical one. The Finite Element Method is one of the most frequently used numerical methods.
Currently, FEM is used in virtually all fields of science. FEM analyses can be performed for any load
conditions (static, dynamic) and take into account (together with experimental research) frictional and
flow aspects [30–35].

Therefore, using the finite element method, the analyzed three-layer transducer (Figure 1) was
modeled and the obtained electromechanical characteristics were compared with the analytical
solution (23). The deflection of the converter was simulated using the COMSOL Multiphysics
(Comsol Multiphysics GmbH, Berlin, Germany) software [36–38]. A half symmetry axisymmetric
model of the transducer was built using six-node triangular plane elements. A self-adaptive finite
element mesh was used, matching the modeled geometry and physical phenomenon (in the COMSOL
environment this option is called “Physics-controlled mesh”). In addition, the mesh was manually
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condensed at the end of both the piezoelectric disk and the transducer. It is worth mentioning that
when modeling piezoelectric materials using COMSOL software, there is no need to manually choose
a specific type of element (e.g., as it is in the ANSYS Mechanical APDL environment). The finite element
type is selected automatically depending on the modeled physical problem. As for the boundary
conditions (support conditions, electrical load), they have been modeled in a way corresponding to the
actual operating conditions of the transducer (described in Section 2.1).

When analyzing, the following assumptions were made:

(a) geometrical dimensions: R = 6 × 10−2 m, Ro = 5.5 × 10−2 m, t1 = 2.5 × 10−4 m, t2 = t4 = 2.5 × 10−4 m,
t3 = 3 × 10−4 m.

(b) material data:

• bottom layer made of copper; E1= 13 × 1010 Pa, ν1 = 0.34;
• upper layer made of PTFE (Polytetrafluoroethylene); E3 = 0.4 × 109 Pa, ν3 = 0.46;
• piezoelectric disk made of PZT-5H (Piezo Material Lead Zirconate Titanate); E2 = 1/s11

= 6.06 × 1010 Pa, ν2 = −s12/s11 = 0.289, d31 = −2.74 × 10−10 m/V;
• the middle ring made of foam; E4 = 35.8 × 106 Pa, ν4 = 0.383.

(c) applied electrical load: V = −100 V.

The obtained results are presented in Figure 6.
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Based on the obtained results, it can be concluded that both solutions are consistent—the maximum
lapse was 4.1%. In the solution obtained by FEM, slightly lower deflection values are obtained (this fact
was also noted in [25]), which may be due to the fact that the analytical solution assumes that the
cross-section after deformation remains flat.

4. Influence of Geometrical-Material Parameters on the Electromechanical Characteristics of
a Three-Layer Transducer

The performed analyses allowed the determination of the influence of the geometrical and material
parameters (represented as non-dimensional variables) of individual transducer components on its
functional features. The analyses were carried out in two steps. First, the transducer was treated
as a global structure composed of piezo and non-piezoelectric materials. The impact on transducer
deflection of non-dimensional variables such as,
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• the relative thickness of piezo and non-piezo elements: tg = t2/(t1 + t3);
• the elastic moduli ratio of piezo and non-piezoelectric components: Eg = E2/(E1 + E3);
• the relative radius of piezoelectric disk and non-piezoelectric layers: Rg = Ro/R;

were investigated.
These results are graphically represented in Figure 7.
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Figure 7. Influence of the ratio of elastic moduli, the relative thickness and the radius of piezo and
non-piezoelectric materials on transducer deflection: (a) Eg = 0.1, (b) Eg = 1, (c) Eg = 10; ν1 = 0.34,
ν3 = 0.46, R = 0.06 m, t3 = 0.0001 m, V = 100 V.

Then the influence of mutual geometrical and material relations of non-piezoelectric layers on
deformation conditions was analyzed. The following factors were considered:

• the relative thickness of the top and bottom layers: tnp = t3/t1;
• the ratio of elastic moduli of non-electrical layers: Enp = E3/E1.
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It was assumed that the non-piezoelectric ring in the middle layer, made of foam, was used to
stabilize the transducer supply cables. Therefore, in the carried-out analyses’ constant parameters
−t4 = t2, E4 = 35.8 × 106 Pa, ν4 = 0.383—were adopted for this material. In addition, it was assumed
that the reference material is piezoelectric material PZT-5H, for which, E2 = 1/s11 = 6.06 × 1010 Pa,
ν2 = −s12/s11 = 0.289, d31 = −2.74 × 10−10 m/V. The dimensions and material constants of the other
elements were variable and depended on the values of factors (tg, Eg, Rg, tnp, Enp), which were taken
into account when testing the transducer deformation conditions.

Analyzing the results from the first stage, shown in Figure 7, it can be concluded that the
transducer deflection increases with the increase in relative thickness (tg) and stiffness (Eg) of piezo
and non-piezoelectric materials. However, the most important role is played by the relative radius of
the piezoelectric disk and non-piezoelectric layers—Rg. If the values of this parameter are too small or
too large, the transducer’s deflection is very small. In the case where Rg tends to 0 (a piezoelectric
element with a small radius Ro), there is a small elongation of the piezoelectric element, and therefore
a small deflection of the transducer. In the opposite situation, when the radius of the piezoelectric
element is similar to the radius on which the transducer is mounted (Rg tends to 1), the elongation
of the piezoelectric element is blocked by forces occurring in the mounting place, which results in
a decrease in transducer deflection.

With regard to the mutual geometrical–material relations of non-piezoelectric layers and their
impact on transducer deflection, it can be concluded (Figure 8) that:

• the transducer deflection increases as the rigidity of one of the non-electrical components decreases
(Enp decrease);

• an increase in the relative thickness tnp, depending on the ratio of elastic moduli Enp, may cause
an increase or decrease in the transducer deflection value.

As mentioned in Section 2.1, the analytical model omits the influence of the longitudinal and shear
piezoelectric effect on transducer deformation. Such simplification, in some situations, may cause
that the deflection determined with the analytical solution may differ from the actual deflection of the
transducer. Both geometric and material parameters can influence the magnitude of error. Studies on
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two-layer circular transducers have shown that the results obtained through the analytical solution
when using specific elastic moduli ratio [21] or relative thickness [39] of piezo and non-piezoelectric
components differ significantly from the experimental results. Therefore, it is planned to perform
additional experimental and numerical tests that will allow determining the degree of applicability of
the obtained analytical solution.

5. Summary and Conclusions

In summary, a novel piezoelectric transducer is presented in this work, for which a new
analytical model describing its coupled mechanical and electrical properties (a static electromechanical
characteristic) has been developed. The transducer is made of two passive plates forming its outer
layers. Between the passive plates, there is a piezoelectric disk and a ring made of non-piezoelectric
material (e.g., foam). This design protects the electrical components of the converter against harmful
external factors (e.g., high-temperature, chemically active atmosphere). Moreover, if sparking occurs
on the transducer wires or electrodes, the outer layers will prevent fire. Such functional features of the
transducer may allow its use, e.g., as an actuator of the fuel injector control valve in petrol/gas-powered
engines [40], or as an alternative drive (instead of magnetic circuit) for regulators used in anti-lock
braking systems (ABS) [41].

The obtained analytical model, developed based on the Plates Theory and constitutive equations of
piezoelectric materials, allows the prediction of deformations of two- and three-layer transducers with
arbitrarily defined geometrical and material parameters. Furthermore, this model was successfully
verified by comparing the obtained electromechanical characteristics with those available in the
literature [24,25] and with the characteristics achieved through FEM.

The effect of selected non-dimensional variables on the novel transducer performance has also
been examined. These parameters include its dimensions (both relative thickness and relative radii of
piezo and non-piezoelectric components) and mechanical properties (elastic moduli ratio of passive
and piezoelectric plates), which strongly influence the behavior of the transducer.

Both the developed analytical model (obtained as the closed-form analytical equations) and
the analyses performed are important in the process of designing two- and three-layer piezoelectric
transducers. Engineers may use them to predict deflection and to optimize converter performance.
The results presented in this paper can also be used by other scholars as comparative data.

Future work may be focused on obtaining an analytical solution, taking into account the presence
of adhesive layers between the transducer components. Experimental studies to ultimately verify
theoretical works are also planned. The application of the analyzed sensor is also envisaged, for which
the design parameters will be optimized based on the analytical model, in the fuel injector of
a gas-powered engine.
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