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Abstract: In this paper, we focus on data-driven approaches to human activity recognition (HAR).
Data-driven approaches rely on good quality data during training, however, a shortage of high quality,
large-scale, and accurately annotated HAR datasets exists for recognizing activities of daily living
(ADLs) within smart environments. The contributions of this paper involve improving the quality of
an openly available HAR dataset for the purpose of data-driven HAR and proposing a new ensemble
of neural networks as a data-driven HAR classifier. Specifically, we propose a homogeneous ensemble
neural network approach for the purpose of recognizing activities of daily living within a smart home
setting. Four base models were generated and integrated using a support function fusion method
which involved computing an output decision score for each base classifier. The contribution of this
work also involved exploring several approaches to resolving conflicts between the base models.
Experimental results demonstrated that distributing data at a class level greatly reduces the number
of conflicts that occur between the base models, leading to an increased performance prior to the
application of conflict resolution techniques. Overall, the best HAR performance of 80.39% was
achieved through distributing data at a class level in conjunction with a conflict resolution approach,
which involved calculating the difference between the highest and second highest predictions per
conflicting model and awarding the final decision to the model with the highest differential value.

Keywords: human activity recognition; neural networks; ensemble neural networks; model conflict
resolution; smart environments

1. Introduction

Human Activity Recognition (HAR) is a challenging and dynamic research field that has been
attracting significant interest in recent years [1], as human activities are intricate and highly diverse.
Particularly, sensor-based approaches to HAR have become prevalent in pervasive computing,
largely due to advancements with sensing technologies and wireless sensor networks. HAR is
a fundamental component in an extensive range of application areas, including connected health,
pervasive computing, surveillance systems, human computer interaction (HCI), and ambient assisted
living (AAL) in smart home settings. Other notable interest domains include human/object detection
and recognition based on object analysis and processing, for example, tracking and detection [2,3],
computer engineering [4], physical sciences [5], health-related issues [6], natural sciences, and industrial
academic areas [7]. Notably, the progression of AAL technologies is becoming vital, due to the
continuously increasing cost of healthcare provision, the aging population, and the need to support
“aging in place”. In this domain, several dedicated smart home projects have been aimed at AAL
for the elderly and disabled, for example CASAS [8], Gator Tech [9], MavHome [10], DOMUS [11],
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and Aware Home [12]. These environments all employ a large number of sensors that capture activity
data via a range of sensor modalities. They possess the common aim of supporting smart home
inhabitants in carrying out activities of daily living (ADLs) and providing them with non-intrusive,
AAL environments to promote their independence and quality of life. ADL monitoring in smart
environments is an important aspect to consider for assessing the health status of inhabitants, therefore
the automatic detection of these activities is a significant motivation for conducting HAR research [13].
Various sensors are available for the purpose of image object capturing and processing, including
binary sensors, digital cameras, and depth data in image analysis fields [14,15].

Sensor-based approaches to HAR can be deemed generally within two categories: data-driven or
knowledge-driven. Data-driven approaches make use of datasets to learn activity models through
applying machine learning and data mining techniques [16], whereas knowledge-driven approaches
build activity models through exploiting rich prior knowledge in the domain of interest [17]. This work
focuses on data-driven approaches to HAR and addresses the current challenges of their application to
openly available datasets. Within the context of this work, the availability of openly available datasets
prompted focus on data-driven approaches, whilst an awareness of the difficulties in accessing domain
knowledge averted attention away from knowledge-driven approaches. Nevertheless, data quality
is a substantial consideration as data-driven approaches depend on good training data, however,
in the realms of HAR, a shortage of high quality, large-scale, and accurately annotated HAR datasets
exists for recognizing ADLs within smart environments [18]. This work avails of low-quality data
and emphasizes that good practice concerning data preparation can help improve HAR performance.
In relation to this, it has been observed that many machine learning algorithms rely on large amounts
of data during the training phase to achieve the desired generalization capabilities [18].

Ensemble learners have been explored widely, due to their ability to improve machine learning
performance [19], with the main motivation being the desire to improve generalization capabilities [20].
By combining a set of imperfect models, the acknowledged limitations of individual learners can
be more efficiently managed, in that the errors recognized in each component can be minimized as
an ensemble, through the implementation of effective combination approaches [20].

In this paper, contributions include improving the quality of an openly available HAR dataset
for the purpose of data-driven HAR, since it has been observed that data quality is a substantial
consideration for data-driven approaches to HAR, as well as proposing a new ensemble of neural
networks as a data-driven HAR classifier. Furthermore, various approaches to resolving conflicts
that occur between base models in ensemble classifiers are investigated, and the effects of various
data distributions that form the complement class per model are analyzed, as each model in the
ensemble contains unique classes. It has been observed that the various data distributions to generate
the complement class per model greatly impact the number of conflicts arising between the base
models, thus demonstrating that the effective generation of these classes is an important consideration.
The importance of adhering to good data preparation practices is also highlighted, as restructuring
and balancing the data has supported and notably improved HAR performance.

The remainder of the paper is structured as follows. Section 2 provides an overview of HAR and
describes ensemble approaches to activity classification. Following this, Section 3 describes the dataset
used in this study and issues identified with the data. Section 4 provides the methods and materials
implemented. Results are then presented and discussed in Section 5, followed by conclusions and
future work in Section 6.

2. Related Works

This Section presents relevant background information and related works. Section 2.1 provides
information relating to HAR within smart home settings, Section 2.2 describes neural networks with
regards to their recent use for HAR tasks and Section 2.3 describes ensemble learners with particular
consideration to ensemble generation and integration techniques.
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2.1. Human Activity Recognition (HAR)

HAR is concerned with the ability to recognize and interpret human activities automatically
through the deployment of sensors and the processing of the data they generate [21]. Various approaches
to recognizing activities within smart environments have been explored, including the extensive use
of wearable devices [22,23] and video-based approaches [24], which is largely due to the increased
accessibility of these technologies. Nevertheless, these approaches have associated limitations to
consider, including concerns with ethics, comfort, privacy invasion, and obtrusiveness. For example, it
has been reported that many elderly inhabitants in AAL scenarios are often reluctant and unwilling
to continuously adopt the use of body-worn sensors, in addition to expressing reluctance to the
installation of video-based monitoring [25]. Consequently, in an attempt to address the identified
concerns and prevent user acceptance issues, binary sensors deployed in the surrounding environment
are becoming increasingly promising for long-term activity monitoring in the ubiquitous computing
domain, as these devices eliminate the privacy concerns identified with other approaches to HAR,
whilst also being non-invasive to smart home inhabitants [16].

Binary sensors have been used in a recent HAR study conducted by [26] to recognize nine ADLs,
such as cleaning, cooking and sleeping, performed by four smart home inhabitants. The sensors
deployed included motion detectors integrated within, or attached to, smart appliances. These also
incorporated ON/OFF states for cleaning appliances, e.g., a vacuum, ceiling lights, cooking heaters,
TV and PC, as well as OPEN/CLOSE states for kitchen appliances such as the fridge. The chosen classifier
was a Random Forest model which achieved 68% accuracy, however, the researchers suggested this
figure could be increased by applying more effective methods. In addition to this, in [27], binary sensors
were deployed within a home monitoring environment to recognize four basic activity classes, namely
relaxing, preparing a meal, eating, and transitioning from bed to toilet. A Deep Convolutional
Neural Network (DCNN) was proposed for activity classification, where the binary sensor data
generated by four door sensors and 31 passive infrared (PIR) motion sensors were converted into
representative activity images. The images generated were used to train the DCNN model which
obtained an accuracy of 99.36% in recognizing the four ADLs observed in the study. Although this
approach performed significantly well, a greater number of activity classes could have been explored.
Another study conducted by [28] explored the potential of ADL recognition using neural networks
within a smart home setting. Experiments involved the design and implementation of recurrent
(RNN) and convolutional (CNN) neural networks to recognize activities, e.g., cooking, bathing and
sleeping. Data acquired through the deployment of binary sensors consisting of pressure sensors,
reed switches, float sensors and PIR motion sensors, was used to train the various neural network
classifiers, with results showing that the RNN and CNN models significantly outperformed other
common classifiers during comparisons achieving 89.8% and 88.2% accuracies, respectively.

HAR requires a feature extraction stage where a set of features are chosen as inputs to a classification
model in order to represent the activities being detected. Various state-of-the-art features have been
determined for HAR, however, these vary depending on the sensors used to capture activity data.
For example, in the realms of wearable technologies that produce accelerometry data, extracting the
maximum, minimum, and range features are beneficial in differentiating between activities that
comprise movements of varying ranges [29]. Additionally, calculating the signal magnitude area
(SMA) of an accelerometry signal has proven advantageous in differentiating between static and
dynamic activities [30]. Alternatively, considering the vision-based HAR domain, visual objects can be
represented, for example, using local descriptors [31] or calculating the centroids from the contour of
depth silhouettes [32]. In this domain, features are commonly extracted with a template-based approach,
for example, through human silhouette representations, or a model-based approach, i.e., where the
body is defined by a skeleton-based outline with joint points used as feature representation [33].
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2.2. Neural Networks

Neural Networks (NNs) are discriminative models that have been attracting attention recently
and are becoming a popular classifier for activity recognition tasks [34]. The Multilayer Perceptron
(MLP) is a notable type of feed-forward NN often used for activity recognition tasks [35–38]. They are
capable of modelling complex, non-linear relationships and provide an alternative approach to
pattern recognition, which is valuable for application in the HAR domain [35]. NNs require
high computational capacities which had restricted their use previously, however, due to recent
advancements in technology, more complex architectures are being explored with potential to offer
better performance and support [39]. In [37], various approaches to recognizing 11 common ADLs
were explored, including the use of a single hidden layer NN, a deep NN architecture, and a fuzzy
rule-based approach. The shallow NN performed best with an accuracy of 97.72%, followed by the
deep NN approach with 96.59%, with the researchers stating the potential of deep NNs had not
been shown during the study, whilst also stating that this could be due to insufficient amounts of
training data. IN addition to this, in a study conducted by [40], an efficiency investigation was carried
out which compared HAR performance using shallow to deep NN approaches. The shallow NN
outperformed the convolutional neural network (CNN) on the evaluated HAR datasets, with the
shallow NN achieving 99.2% on the WARD data and 96.7% on the UCI_DB data [41], in comparison to
97.7% and 94.2% with the CNN model, respectively. Conclusions of this study stated that the optimal
choice for HAR tasks is the use of shallow NNs with two or three layers, rather than the implementation
of more complex architectures, particularly if the dataset contains a small number of training samples.

2.3. Ensemble Learners

A technique often used to improve classification performance is to combine multiple models
together, i.e., to create an ensemble method, rather than relying on the performance of a single
model [29]. Ensemble learning involves two key considerations: ensemble generation and ensemble
integration [42]. The generation phase includes generating the base models and determining the
size of the ensemble. If the models created are achieved using a consistent induction algorithm,
it is known as a homogeneous approach, whereas a heterogeneous approach involves creating
models using various different algorithms [43]. In [44], a heterogeneous ensemble approach was
implemented to recognize various activities within the CASAS smart home testbeds. The ensemble
included four base classifiers, which included a Hidden Markov Model (HMM), a NN, a Support
Vector Machine (SVM), and Conditional Random Fields (CRF). The results were promising and
revealed performance improvements over the use of a single classification model. Further to
this, [45] implemented an ensemble classification approach to activity recognition using several
heterogeneous base classifiers. The five common base classifiers included an SVM, Decision Tree (DT),
kNN, NN, and Naïve Bayes. Results demonstrated that the ensemble approach, combined through
majority voting, performed extremely well in classifying twelve activities. As for homogeneous
approaches, [46] proposed an ensemble of random forest learners with the aim of generating
a more accurate, stable classifier to recognize activities from the PAMAP physical activity dataset.
Activity recognition performance was very high, and the generalization capability of the produced
classifier had improved significantly. In [47], multiple HMM base models were combined using
a decision templates method to recognize activities collected by a smartphone-embedded triaxial
accelerometer. Their approach addressed the interclass similarity and intraclass variability HAR
challenges, with results showing the ensemble generated performed significantly well with data
representing six activity classes and collected by 30 participants. In addition to this, [48–51] proposed
homogeneous ensemble approaches for HAR. An observation has been made that less research effort
exists on heterogeneous ensembles due to more difficulties arising in controlling interactions between
the various learning processes [43]. More recently, researchers have been exploring ensemble learners
on the basis of deep learning approaches. For example, [52–54] proposed ensemble deep learning
techniques for HAR, which revealed positive results and robustness. Nevertheless, NNs, and more
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specifically, deep learning techniques, require a large number of training samples to enhance their
performance [55].

2.3.1. Ensemble Generation

During ensemble generation, data partitioning is a commonly considered approach aimed
towards diversifying the input data of the base models, so that the subspaces of inputs become
complementary [56]. Boosting and Bagging are two common data partitioning ensemble methods
used to combine multiple classification models that have been trained on different subsets of the
training data [29]. Boosting involves the combination of multiple base classifiers to generate a strong
committee classifier that may provide significantly enhanced performance in comparison to the base
classifiers, achieved through reweighting the misclassified data samples and therefore boosting their
performance [29]. SMOTEBoost and RUSBoost are adaptations of the known AdaBoost approach,
where random undersampling or SMOTE is applied to the base classifiers training data, along with the
reweighting phase in accordance with the AdaBoost algorithm, as demonstrated in a study conducted
by [57]. Both SMOTEBoost and RUSBoost inject a great degree of arbitrariness through generating
or removing instances, resulting in improved robustness to noise [57]. Bagging, on the other hand,
averages the outputs produced by each base model, where each model is trained on different training
sets consisting of data generated through sampling with replacement [42]. Examples of well-known
bagging-based approaches include OverBagging, UnderBagging, and SMOTEBagging. Particularly,
SMOTEBagging has been recommended for handling multi-class imbalanced data problems where the
instances within each bag are significantly diverse [58]. In a recent study [59], two bagging-based hybrid
methods were proposed to deal with imbalanced datasets, namely, ADASYNBagging and RSYNBagging.
The ADASYNBagging approach uses the bagging algorithm in conjunction with the ADASYN-based
oversampling method, whereas the RSYNBagging approach uses the ADASYN-based oversampling
method as well as random undersampling alongside the bagging algorithm. The performances of the
proposed hybrid approaches were compared against UnderBagging and SMOTEBagging techniques
and evaluated on twelve datasets, with promising experimental results obtained. The benefits of the
proposed hybrid approaches were demonstrated, as they outperformed the benchmark methods on
eight of the twelve datasets evaluated. Another approach considered during ensemble generation is to
manipulate the inputs of the base classifiers at a feature level, for example, training the base models on
various different subsets of features [56].

2.3.2. Ensemble Integration

The ensemble integration phase determines how the predictions produced by the base
models should be integrated together to increase performance by obtaining a single outcome [42].
Multiple fusion strategies exist and can be considered at a class label level, a trainable level, or a support
level, according to [55]. The class label fusion technique involves each of the base classifiers voting for
a certain class, then the final output is decided upon through either a majority voting or weighted
majority voting strategy. Majority voting decides on the final output prediction based on the class
that has been chosen most often or unanimously by the base classifiers, whereas weighted majority
voting assigns weights to each model, often based on their performances, where the classifier with the
highest output after weight assignments wins the overall prediction [55]. In a study conducted by [60],
majority voting was implemented to decide upon the final outputs of an ensemble approach based on
AdaBoost. Three weak learners were used, namely a Decision Tree, Logistic Regression, and Linear
Discriminant Analysis (LDA). In addition to AdaBoost, Bagging and Stacking methods were also
explored, with the best performance produced by the Bagging approach. Another study [46] used
weighted majority voting with an ensemble of Random Forest classifiers. Each classifier was assigned
different weights per activity, with the final outcome attained through combining the classification
outcomes from each base model via the weighted votes.
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Fusion techniques at a trainable level consider the chosen fusion weights during the learning
process and implement optimization strategies to increase classification performance whilst also
reducing computation cost [55]. These include weighted summations of hypotheses, where higher
weights are assigned to those with lower error rates and the Dempster–Shafer theory to handle
uncertainty in the decision-making process. In [61] the outputs of various SVM classifiers, trained on
different input feature subsets, were subsequently combined using the Dempster-Shafer fusion rule.
The four-step process included creating decision templates for all training instances, calculating the
proximity between decision templates and classifier outputs, computing the belief degrees for each
output class, and finally, applying the Dempster rule to combine the degrees of belief derived from
each base classifier.

Finally, support function fusion involves computing an output decision score for each base
classifier, which is derived from the estimated likelihood of a class [56]. This estimation can be
computed as an a posteriori probability attained through probabilistic models, using fuzzy membership
functions, or through combining NN outputs according to their performance. In [62], five classifiers
were combined using an average of probabilities fusion method to recognize six activities. This method
used the average of the probability distributions for each base classifier to make a final decision,
achieving the best HAR performance in comparison to a majority voting approach that was also
implemented during this study. Another study [63], implemented a support function fusion where
a Naïve Bayesian fusion method was compared to a majority voting approach to fuse several HMM
base models. The Naïve Bayesian approach involves calculating the posterior probability of the HMM
outputs, which achieved the best activity recognition performance during the study.

After reviewing the literature, we focus on ensemble learning for HAR in this work, due to their
perceived benefits, rather than relying on the performance of a single model. Particularly, an ensemble
of NNs are explored, although, due to a lack of high quality data in ADL datasets and a low quantity
of data, it was decided to employ lighter weight models rather than exploring deeper architectures.
The literature has shown that shallow NNs have previously achieved similar performance to deep NN
architectures for HAR tasks, with provided recommendations to use shallow architectures particularly
in cases where a small number of training samples are available. As outlined, there has been less
effort made with heterogeneous ensembles in the research community due to difficulties existing
in controlling interactions between the various learning processes, consequently, this work focuses
on a homogeneous approach to generating an ensemble of NNs. As stated in [64], one of the crucial
problems to consider with ensemble learning is the combination rule employed to determine a final
class decision amongst the base models. In this work, a support function fusion method is used to
integrate base models, and various approaches to effectively resolve conflicts that occur between the
base models are investigated to determine a final output decision.

In summary, this section contained detailed relevant background information and related
works. The recent potential of NNs for HAR and pattern recognition problems was presented,
which demonstrated that shallow architectures are preferred in scenarios where the dataset contains
a small number of training samples. Ensemble approaches to activity recognition were also discussed
because of their recent performance in the HAR domain. As mentioned, this work focuses on
data-driven approaches to HAR, thus the importance of data quality in relation to those is considered
in Section 3, along with a description of the dataset used to conduct experiments.

3. Dataset for Data-Driven HAR

An overview of the HAR data is presented in this section with an emphasis on the quality of data
acquired. The UCAmI Cup challenge is also described, as the dataset used in this study was derived
from this competition. Section 3.1 outlines details of the original dataset, Section 3.1.1 highlights
the problems identified, and Section 3.2 details the restructured dataset created as a result of the
encountered problems and to demonstrate more realistic capabilities of binary datasets for HAR
in smart environments.
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Data collection is becoming a critical concern among the countless challenges in machine learning,
largely due to limited amounts of training data being available to researchers in their respective
fields and the quality of the data being collected [65]. In the realms of machine learning, it is known
that the majority of effort and time is consumed through preparing the data, which involves data
collection, cleansing, interpretation, and feature engineering [65]. Data quality is an imperative
consideration in applications of data-driven approaches to HAR, as the performance of models are
largely dependent on the quality of training data. Noise can be introduced during data collection by
the participants and/or sensors which adversely affects the performance of data-driven techniques [66].
Common issues include missing or erroneous values and mislabeled data [67]. Data cleansing is known
as the process of removing inconsistencies or errors, such as outliers and/or noise from a collection of
data [68]. According to [66], addressing the presence of outliers and noise is vital as their existence
can substantially influence experimental results produced by data-driven approaches. Nevertheless,
an unclear border is often present between normal and abnormal data, where a considerably large
“gray area” may exist [69]. In supervised learning, noise can transpire at an attribute or class level.
In [70], an effort was made to evaluate the impact of noise on classification performance on 17
datasets, generated within various domains. Each dataset was manually introduced to various levels
of noise to investigate how it affected model performance. Their findings demonstrated that as noise
levels increase, performance decreases, and that attribute noise is generally less harmful than class
noise. Furthermore, [71] compared and evaluated how well several classifiers performed with noisy,
poor quality data. Conclusions stated that robustness to noisy data and classification performance
varied significantly amongst the algorithms observed, with the Random Forest and kNN models
proving most resilient to noise.

The data used in this study was generated for the 1st UCAmI Cup challenge, where participants
were invited to use their tools and techniques to analyze a HAR dataset with the aim of achieving the
highest accuracy on the unseen test set. In [72], the challenge organizers describe the UCAmI Cup
dataset comprehensively. Knowledge-driven rule-based approaches outperformed the data-driven
approaches to the activity recognition problem, with many of the participants reporting issues and
limitations found within the data [73–76]. The approach implemented by [73] involved a domain
knowledge-based solution inspired by a Finite State Machine, achieving 81.3% accuracy. In [74], a hybrid
model was proposed using a hidden Markov chain and logic model. The researchers combined their
knowledge-driven and probabilistic models using a weighted averaging method, however, they
reported that they had expected a better result than 45.0% accuracy on the test set. In addition
to this, [75] used a Naïve Bayes approach with emphasis on location-aware, event-driven activity
recognition. The applied method interpreted events as soon as they became available in real-time,
omitting the need of an explicit segmentation phase, and generated activity estimations using an activity
prediction model. Reported results show mean accuracies of around 68%, with the researchers stating
that given the high number of activity classes, the outcome achieved was reasonable. Another approach
implemented in [76] used various common machine learning algorithms, including a Decision Tree,
Nearest Neighbour, Support Vector Machine, and three ensemble approaches including Random
Forest, Boosting, and Bagging. The researchers reported a training set accuracy of 92.1%, however,
their approach achieved 60.1% on the provided test data which demonstrated poor generalization.
Their suggested cause for the low outcome was the high imbalance of classes in the training set,
and they stated that the training algorithm required more labelled training data to perform better.

3.1. UCAmI Cup Dataset

The HAR dataset was collected over 10 days by researchers in the UJAmI Smart Lab [72].
The UJAmI Smart Lab is divided into five regions: an entrance, a workplace, a living room, a bedroom
with an integrated bathroom, and a kitchen, which measures approximately 25 square meters combined,
as presented in Figure 1. The dataset was captured by a single male inhabitant completing morning,
afternoon, and evening routines, representing 246 occurrences of 24 activity classes, as presented
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in Table 1. The training set consisted of 7 days of labelled data, with the remaining 3 days of data being
provided as an unlabeled test set.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 26 

 

Figure 1. Location of Binary Sensors in the UJAmI Smart Lab [72].  

Table 1. Activity Classes in the UCAmI Cup Dataset [72], where M, A, and E indicate the Morning, 
Afternoon, and Evening routines, respectively. 

ID Name Instances Routine ID Name Instances Routine 

Act01 Take 
Medication 

52 A, E Act13 Leave Smart 
Lab 

33 M, A 

Act02 
Prepare 

Breakfast 63 M Act14 
Visitor to 
Smart Lab 7 M, A 

Act03 
Prepare 
lunch 118 A Act15 

Put waste in 
the bin 75 A, E 

Act04 Prepare 
Dinner 

76 E Act16 Wash hands 22 M 

Act05 Breakfast 78 M Act17 Brush teeth 132 M, A, E 
Act06 Lunch 101 A Act18 Use the toilet 44 M, A, E 
Act07 Dinner 86 E Act19 Wash dishes 13 A, E 

Act08 Eat a snack 12 A Act20 
Put washing 
in machine 20 M, A 

Act09 Watch TV 70 A, E Act21 Work at the 
table 

20 M 

Act10 Enter Smart 
Lab 21 A, E Act22 Dressing 86 M, A, E 

Act11 
Play a 

videogame 28 M, E Act23 Go to bed 30 E 

Act12 Relax on 
the sofa 

85 M, A, E Act24 Wake up 32 M 

A set of 30 binary sensors consisting of magnetic contact switches, PIR motion detectors, and 
pressure sensors were deployed in the UJAmI Smart Lab to capture human interactions within the 
environment, as presented in Figure 1. The two changeable states of the magnetic contact switches 
were open/close, which were attached to, or integrated within, doors and objects, such as the 
medication box. The motion detectors generated and recorded movement/no movement states to 
identify whether an inhabitant had moved in or out of the 7-meter sensing range. Finally, the pressure 
sensors deployed generated either pressure/no pressure states and was present in the bed and the sofa to 
detect any interactions. A comprehensive description of each binary sensor is presented in Table 2.  
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Table 1. Activity Classes in the UCAmI Cup Dataset [72], where M, A, and E indicate the Morning,
Afternoon, and Evening routines, respectively.

ID Name Instances Routine ID Name Instances Routine

Act01 Take
Medication 52 A, E Act13 Leave

Smart Lab 33 M, A

Act02 Prepare
Breakfast 63 M Act14 Visitor to

Smart Lab 7 M, A

Act03 Prepare
lunch 118 A Act15 Put waste

in the bin 75 A, E

Act04 Prepare
Dinner 76 E Act16 Wash

hands 22 M

Act05 Breakfast 78 M Act17 Brush
teeth 132 M, A, E

Act06 Lunch 101 A Act18 Use the
toilet 44 M, A, E

Act07 Dinner 86 E Act19 Wash
dishes 13 A, E

Act08 Eat a snack 12 A Act20
Put

washing
in machine

20 M, A

Act09 Watch TV 70 A, E Act21 Work at
the table 20 M

Act10 Enter
Smart Lab 21 A, E Act22 Dressing 86 M, A, E

Act11 Play
a videogame 28 M, E Act23 Go to bed 30 E

Act12 Relax on
the sofa 85 M, A, E Act24 Wake up 32 M

A set of 30 binary sensors consisting of magnetic contact switches, PIR motion detectors,
and pressure sensors were deployed in the UJAmI Smart Lab to capture human interactions within the
environment, as presented in Figure 1. The two changeable states of the magnetic contact switches were
open/close, which were attached to, or integrated within, doors and objects, such as the medication
box. The motion detectors generated and recorded movement/no movement states to identify whether
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an inhabitant had moved in or out of the 7-meter sensing range. Finally, the pressure sensors deployed
generated either pressure/no pressure states and was present in the bed and the sofa to detect any
interactions. A comprehensive description of each binary sensor is presented in Table 2.

Table 2. Description of binary sensors [72].

ID Object Type States

SM1 Kitchen area Motion Movement/No
movement

SM3 Bathroom area Motion Movement/No
movement

SM4 Bedroom area Motion Movement/No
movement

SM5 Sofa area Motion Movement/No
movement

M01 Door Contact Open/Close
TV0 TV Contact Open/Close
D01 Refrigerator Contact Open/Close
D02 Microwave Contact Open/Close
D03 Wardrobe Contact Open/Close
D04 Cups cupboard Contact Open/Close
D05 Dishwasher Contact Open/Close
D07 WC Contact Open/Close
D08 Closet Contact Open/Close
D09 Washing machine Contact Open/Close
D10 Pantry Contact Open/Close
C01 Medication box Contact Open/Close
C02 Fruit platter Contact Open/Close
C03 Cutlery Contact Open/Close
C04 Pots Contact Open/Close
C05 Water bottle Contact Open/Close
C07 XBOX Remote Contact Present/Not present
C08 Trash Contact Open/Close
C09 Tap Contact Open/Close
C10 Tank Contact Open/Close
C12 Laundry basket Contact Present/Not present
C13 Pyjamas drawer Contact Open/Close
C14 Bed Pressure Pressure/No pressure
C15 Kitchen faucet Contact Open/Close
H01 Kettle Contact Open/Close
S09 Sofa Pressure Pressure/No pressure

3.1.1. Data Challenges

A number of issues were identified with the original binary dataset that hindered the performance
of recognizing ADLs in a smart environment setting. These included:

• Number of classes. The number of classes in the original dataset were very high given the
low number of instances per activity and low amount of data overall. As discussed previously,
data-driven approaches rely on large amounts of good quality data. Furthermore, certain classes
were too closely related to one another to recognize with binary data alone. For example,
the following activities relied on one door sensor: entering the smart lab, leaving the smart lab,
and having a visitor to the smart lab. Binary sensors are limited in inferring activities in that
they provide information at an abstract level [77], therefore Act08 eating a snack was difficult
to distinguish compared to Act03 prepare breakfast, Act04 prepare lunch, and Act05 prepare
dinner, as these activities all used similar sensors. Thus in order to capture activities at a finer
level, the presentation and interpretation of binary data often requires further knowledge of the
environment [78]. This issue was discussed by a UCAmI Cup participant in [75], where conclusions
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had stated that their achieved activity recognition performance was reasonable given the large
number of activity classes present in the dataset.

• Imbalanced dataset. The distribution of instances per class in the original dataset were highly
diverse, which may have caused minority classes to be overlooked by the classification model.
For example, Act19 wash dishes was represented by 13 instances of data, whereas other activities
such as Act17 brush teeth had more than 100 instances. Furthermore, the distribution of instances
per class in the provided training and test sets were highly varied. For example, Act09 was
very under-represented in the training set, yet the test set included a large number of Act09
instances. Noteworthy, Act09 also produced very similar sensor characteristics to Act12, which was
problematic in the initial experiments, as the training set included large amounts of Act12 data.
This issue was discussed in [74], where researchers stated that their approach also found difficulty
in classifying Act12, due to the poor representation of this activity in the training set, and suggested
that the data should be better distributed to improve HAR performance.

• Quantity of data. As previously stated, data-driven approaches require lots of data during the
training phase to learn activity models and to ensure these models can generalize well to new
data. NN require lots of data to learn complex activity models [79], though the original dataset
was relatively small. Thus, more labelled training data could have improved initial experiments.
In [76], UCAmI Cup participants suggested the cause for their low HAR performance was the
high imbalance of classes in the training set and stated that the training algorithm required more
labelled training data to perform better.

• Missing sensors. Act21 work at table had no binary sensor located near the table to distinguish this
activity, as presented in Figure 1. This issue caused confusion as the sensor firing for Act21 in the
labelled training set was seen to be a motion sensor located in the bedroom, which is irrelevant to
Act21 and therefore seen as erroneous. In addition to missing sensors, there were also missing
values from sensors that were expected to fire during certain activities. As previously stated,
some researchers participating in the UCAmI Cup challenge reported that they found missing
values or mislabeling of some activities within the training set. In [73] this issue was discussed,
where participants stated that during one instance of Act10 enter the smart lab, the only binary
sensor that is expected to fire (M01), does not change states.

• Interclass similarity. This is a common HAR challenge that occurs when certain activities generate
similar sensor characteristics, though they are physically different [80]. Table 3 shows the activities
that produced similar sensor characteristics, resulting in difficulties arising in discriminating
between these activities during classification.

Table 3. Activities producing similar sensor characteristics within the UCAmI Cup data.

Activity Group Activity Name Common Sensors

Act10, Act13, Act14 Enter Smart Lab, Leave Smart Lab,
and Visitor to Smart Lab M01 Door

Act23, Act24 Go to Bed and Wake Up C14 Bed

Act09, Act12 Watch TV and Relax on Sofa S09 Pressure Sofa
SM5 Sofa Motion

Act02, Act03, Act04, Act08 Prepare Breakfast, Prepare Lunch,
Prepare Dinner, Prepare Snack

SM1 Kitchen Motion
D10 Pantry
C03 Cutlery

As a result of the various problems identified with the dataset, it was decided to restructure the
data to reveal the potential of using binary sensors alone within smart environments.
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3.2. Restructured Dataset

First, the provided training and test sets were combined to better represent activity classes within
the training data. Figure 2 shows the distribution of the combined 10 days of 24 activity classes for
all the available data in the UCAmI Cup. As can be viewed in Figure 2, certain classes were very
under-represented, with a third of all activity classes containing less than 30 instances. These classes
were removed, as they would be under-represented in the training phase and therefore would not
generalize well to unseen data. Consequently, 8.82% of instances were removed, which comprised the
following classes: Act08, Act11, Act16, and Act19-Act21. An opportunity to combine certain similar
activity classes was also identified so that the data could be used effectively. For example Act10,
Act13, and Act14 were combined to produce ActN1 door, as they all make use of a single door sensor,
and Act09 and Act12 were combined to produce ActN2 watch TV on sofa, as they mainly consisted of
the inhabitant sitting on the sofa. Furthermore, Act02 and Act05, Act03 and Act06, and finally Act04
and Act07 were combined to produce ActN3 breakfast, ActN4 lunch, and ActN5 dinner, respectively,
as these sets of activities were similar. Table 4 presents the restructured dataset.
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Table 4. Activity classes in the restructured dataset.

ID Name Instances Routine ID Name Instances Routine

Act01 Take
Medication 52 A, E Act24 Wake up 32 M

Act15 Put waste
in the bin 75 A, E ActN1 Door 61 M, A, E

Act17 Brush
teeth 132 M, A, E ActN2 Watch TV

on sofa 155 M, A, E

Act18 Use the
toilet 44 M, A, E ActN3 Breakfast 141 M

Act22 Dressing 86 M, A, E ActN4 Lunch 219 A
Act23 Go to bed 30 E ActN5 Dinner 162 E

4. Proposed HAR Classification Model

The materials and methods implemented are described within this section. The data pre-processing
phase is explained, including data segmentation and feature extraction, which are two fundamental
aspects of the activity recognition process [80]. Following this, the ensemble approach and conflict
resolution techniques are presented.
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4.1. Data Pre-Processing

Since the data restructuring process involved combining the provided train and test sets to produce
a set of data that better represents activity classes in the training data, it was subsequently required to
extract a new test set. Thus, 15% of the data was randomly selected and removed to generate an unseen
test set. The raw data files containing data streams produced by binary sensors include a timestamp,
the sensor ID, the sensor state, and the inhabitant name, as presented in Figure 3.
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The raw data was segmented into 30-second non-overlapping time windows to identify the
segments of data that are likely to contain information regarding activities. Time-based windowing
involves dividing the entire dataset equally into time segments that include a fixed quantity of
data per window [29]. It is a common approach for segmenting data streams collected through
environmental sensors, however, no clear consensus exists for choosing the optimal window size
for ADL recognition [81], therefore a 30 second window size was chosen, as this was the regulation
adhered to in the UCAmI Cup challenge. A total of 31 features were included, which consisted of one
feature per binary sensor and an additional time routine feature representing whether the activity
had occurred in the morning, afternoon, or evening, to help distinguish between the similar activities
previously outlined. For example, as Act23 go to bed and Act24 wake up use the same pressure sensor
located in the bed, the inclusion of a time routine feature can help distinguish these activities due to
the human nature of habitually waking up in the morning and going to bed in the evening.

4.2. Ensemble Approach

Ensemble methods for classification have been explored recently, due to their potential to improve
robustness, performance and generalization capabilities in comparison to single model approaches [40].
Our approach consists of four MLPs as base classifiers to generate a homogeneous ensemble method.
A model is created per time routine: Morning, Afternoon, and Evening as some activities uniquely
occur within specific routines. Additionally, a Mixed model is created to consider activities that occur
arbitrarily throughout the day. Figure 4 presents the four base classifiers where n indicates the number
of classes per model. M, A, and E represent the Morning, Afternoon, and Evening models, respectively,
and finally MI represents the Mixed model.
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Definitions:
Input:

X =
[
→
x 1,

→
x 2, . . . ,

→
x M

]R
∈ BN×d,

where N is the number of instances, d is the number of features, d=31.

→
x i =

[
x1

1, x2
2, . . . , xd

i

]
where xd

i ∈ [0, 1].

Output:

Y =
[
y1, y2, . . . , yN

]R
∈ [1, . . . , 12].

Base Models:
Models M1, M2, M3, and M4 represent the Morning, Afternoon, Evening, and Mixed base models,

respectively, in the proposed ensemble approach.
Given the instance

→
x i base model output M j is given by

f j
i = f j

(
ϕ j(xi)

)
,

where index j = [1, . . . , 4]; ϕ j(xi) is the input to the activation function of base model M j and f j is the
output of each base model M j

For simplicity, the output can be represented as f j
i =

[
p j

1, . . . , p j
m j

]
, where m j represents the

number of outputs from base model M j.

Predicted class k̂ j
i ∈ [1, . . . , 12] from base model M j is the class represented by the output with

maximum p values p j,1
i = max

[
p j

1, . . . , p j
m j

]
.

The second largest value in the output vector is notated as p j,2
i . p values will be used for later

conflict resolution in Algorithms 2–5.
Base Model Compositions:
Universal set C represents the set of all classes of activities; C j represents activity classes represented

by the time domain of each base model M j



Sensors 2020, 20, 216 14 of 26

C̃ j is the complement class for base model M j and it combines the activity classes not in the C j

denoted below {
k ∈ C : k < C j

}
Example: Morning Base Model M1 contains activities from classes

C1 = [Act24, ActN3]

C̃1 = [{ActN4, Act23, ActN5, Act01, Act15, Act17, Act18, Act22, ActN1, ActN2}]

There are mj = 3 number of classes, where all but one class, the complement, are in C1.
The morning model contains two main activity classes, namely Act24 wake up and ActN3

breakfast, as these activities occur in a typical morning routine. ActN4 lunch, is the only main class
within the afternoon model as lunch usually occurs in the afternoon. The evening model contains
two main classes, namely Act23 go to bed and ActN5 dinner, as these activities habitually occur in an
evening routine. Finally, the mixed model contains seven main activity classes that do not regularly
occur within a specific time routine. For example, Act15 put waste in the bin and Act22 dressing are
activities commonly performed at any time during the day. The activity class outputs per model are
presented in Table 5.

Table 5. Activity class outputs per model.

#output Model ID Name Activity Classes

m1 = 3 M1 Morning

C1 = [Act24, ActN3]← 2 classes
C̃1 = [ActN4, Act23, ActN5, Act01,
Act15, Act17, Act18, Act22, ActN1,

ActN2]← 1 class

m2 = 2 M2 Afternoon

C2 = [ActN4]← 1 class
C̃2 = [Act24, ActN3, Act23, ActN5,
Act01, Act15, Act17, Act18, Act22,

ActN1, ActN2]← 1 class

m3 = 3 M3 Evening

C3 = [Act23, ActN5]← 2 classes
C̃3 = [Act24, ActN3, ActN4, Act01,
Act15, Act17, Act18, Act22, ActN1,

ActN2]← 1 class

m4 = 8 M4 Mixed

C4 = [Act01, Act15, Act17, Act18,
Act22, ActN1 ActN2]← 7 classes

C̃4 = [Act24, ActN3, ActN4, Act23,
ActN5]← 1 class

A framework for the implemented homogenous ensemble approach is presented in Figure 5,
where the conflict resolution approaches are compared. Each base model is presented with an input
feature vector consisting of data produced by 30 binary sensors and an additional time routine feature,
resulting in a total of 31 input features. Each of the base models produce output predictions derived
from the estimated likelihood of each class, which are subsequently combined through the support
function fusion [56] during the ensemble integration phase.
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Due to each model having no overlapping classes, each needs to be trained with a complement
class, which consists of representative activity samples from each of the main classes contained within
the remaining models. The aim of this is that each model will be able to identify whether or not new
activity instances belong to that model, thus when a model receives an unseen input of an activity
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class existing within its complement, it should recognize that the activity does not exist as a main
class in the model and should, therefore, eliminate itself from the decision process. For example, if the

morning model is presented with an activity instance contained in the C̃1 class, e.g., ActN4, as presented
in Table 5, it should recognize that ActN4 belongs to the complement class and should therefore exclude
itself from the decision making process. To analyze the effects on model conflicts of various data
distributions that construct the complement classes per model, we explore two approaches towards
generating these classes. Section 4.2.1 explains the generation of the complement class data at a model
level, where activity instances are distributed evenly between the remaining models, and Section 4.2.2
explains the generation of the complement class data at a class level, where activity instances are
distributed evenly between the remaining classes.

4.2.1. Complement Class Generation at a Model Level

Distributing instances at a model level involves balancing the complement class data equally
between the remaining models. The first step in the process is to calculate how many instances this class
should contain, in total. Per model, this is calculated as the average number of main class instances.
This total is then divided by the number of remaining models to achieve an equal distribution of
instances per model. Following this, the class distributions are calculated by dividing the number of
instances per model by the number of main classes within each model. Table 6 presents the distribution
of instances at a model level.

Table 6. Model level-distribution of instances for complement class compositions.

Complement
Model

Distribution
(No. of Instances)

Class Distribution
(No. of Instances)

complement class C̃1 of M1

Afternoon (24)
Evening (24)
Mixed (25)

ActN4 (24)
Act23 (12)
ActN5 (12)
Act01 (03)
Act15 (03)

Act17 (03)
Act18 (04)
Act22 (04)
ActN1 (04)
ActN2 (04)

complement class C̃2 of M2

Morning (62)
Evening (62)
Mixed (62)

Act24 (31)
ActN3 (31)
Act23 (31)
ActN5 (31)
Act18 (08)

Act15 (09)
Act17 (09)
Act01 (09)
Act22 (09)
ActN1 (09)
ActN2 (09)

complement class C̃3 of M3

Morning (27)
Afternoon (27)

Mixed (27)

Act24 (13)
ActN3 (14)
ActN4 (27)
Act18 (03)
Act01 (04)

Act15 (04)
Act17 (04)
Act22 (04)
ActN1 (04)
ActN2 (04)

complement class C̃4 of M4

Morning (24)
Afternoon (24)
Evening (25)

Act24 (12)
ActN3 (12)
ActN4 (24)

Act23 (12)
ActN5 (12)

4.2.2. Complement Class Generation at a Class Level

Distributing instances at a class level involves balancing the complement class data equally
between the remaining classes within the models. As with the previous approach, the first step
involves calculating the average number of main class instances per model to attain the total instances
for each complement class. Following this, the previously calculated total is divided by the number
of remaining classes across the remaining models to achieve an equal distribution of instances per
class. Finally, all instances per class were multiplied by 2 to better represent each class. For example,
to generate the M1 complement class, the average number of main class instances was calculated
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first, resulting in 74. Subsequently, to achieve an equal distribution of instances per class within the
complement, 74 was divided by the 10 remaining classes, resulting in 7.4 instances required per class.
Finally, to better represent each class during training, this number was multiplied by 2, resulting in 14.8
(15) instances per class. Table 7 presents the distribution of instances at a class level.

Table 7. Class level-distribution of instances for complement class compositions.

Complement
Model

Distribution
(No. of Instances)

Class Distribution
(No. of Instances)

complement class C̃1 of M1

Afternoon (15)
Evening (30)
Mixed (105)

ActN4 (15)
Act23 (15)
ActN5 (15)
Act01 (15)
Act15 (15)

Act17 (15)
Act18 (15)
Act22 (15)
ActN1 (15)
ActN2 (15)

complement class C̃2 of M2

Morning (68)
Evening (68)
Mixed (238)

Act24 (34)
ActN3 (34)
Act23 (34)
ActN5 (34)
Act18 (34)

Act15 (34)
Act17 (34)
Act01 (34)
Act22 (34)
ActN1 (34)
ActN2 (34)

complement class C̃3 of M3

Morning (32)
Afternoon (16)

Mixed (112)

Act24 (16)
ActN3 (16)
ActN4 (16)
Act18 (16)
Act01 (16)

Act15 (16)
Act17 (16)
Act22 (16)
ActN1 (16)
ActN2 (16)

complement class C̃4 of M4

Morning (58)
Afternoon (29)
Evening (58)

Act24 (29)
ActN3 (29)
ActN4 (29)

Act23 (29)
ActN5 (29)

4.3. Model Conflict Resolution

As mentioned, support function fusion [56] is explored through combining the output predictions
produced by each MLP base model during the ensemble integration phase. The combined predictions
are subsequently analyzed to determine whether a single model has chosen the final output, i.e., all
models except one had chosen the complement class. If this is not the case, and more than one model
has chosen a main class output, a conflict has occurred between these models during the decision
making process, as seen in Algorithm 1. We investigate several approaches to the model conflict
resolution to determine the final output class per instance.

Algorithm 1. Process of finding conflicts between models

1: For Each instance
→
x i ∈ B1×d

2: i f ∃ j
(
k̂ j

i ∈ C j
)

Λ∃ j j
(
k̂ j j

i ∈ C j j Λ j , j j
)

3:
Then use conflict resolution approaches in Algorithms 2/3/4/5 as there are at least 2
conflicting cases

The first method of resolving conflicts, presented in Algorithm 2, is simply to award the final
decision to the model with the highest output prediction. This approach has previously been established
as a soft-level combiner [82], as it makes use of the output predictions given by the classifiers as the
posterior probabilities of each output class. A limitation of this method, however, is that it provides
limited confidence of the output prediction. For example, consider the two largest output values of one
base model are 0.56 and 0.54, respectively. If the final class decision is awarded according to the highest
output value in this case, there is less confidence in the quality of classification, which implies a less
secure output prediction. To overcome this, another technique, presented in Algorithm 3, is proposed
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to calculate the difference between the highest and second highest predictions per conflicting model,
where subsequently the final decision is given to the model with the highest differential value, i.e., this
is the model with the strongest class prediction. Following this, the impact of a weighting technique
is investigated in Algorithm 4 on the basis of the number of classes per model, as each base model
contains a different number of unique classes. This approach considers the output predictions from
each conflicting base classifier and the number of classes the base models are trained on, i.e., the output
predictions from each base model are multiplied by the number of classes within those base models.
For example, if a conflict occurs between model M2 and model M4, which contain two and eight classes,
respectively, the two class problem may be less complex than the eight class problem, and therefore
a lower weighting is specified for M2. Finally, we explore the potential of another weighted method
in Algorithm 5, which builds upon the previous approach. Weightings are implemented on the basis of
the number of classes, as well as the training performance per model, i.e., the output predictions from
each conflicting base classifier are multiplied by the number of classes in that model and the training
performance achieved. According to [83], a base classifier that outperforms other base classifiers
in an ensemble approach should be given a higher confidence when deciding upon the final output
prediction, as the training performance measure is indicative of the classifiers’ effectiveness in predicting
the correct output class. The training performance measure in Algorithm 5 is the classification accuracy
obtained by each conflicting model.

Repeated notations:
The largest value in the output vector is notated as p j,1

i .

The second largest value in the output vector is notated as p j,2
i .

Algorithm 2. Conflict resolution approach 1

Input:
→
x i, base models Mr, Ms

Output: class yi

1: i f pr,1
i > ps,1

i
2: Then yi = k̂r

i
3: Else yi = k̂s

i

Algorithm 3. Conflict resolution approach 2

Input:
→
x i, base models Mr, Ms

Output: class yi

1: i f
(
pr,1

i − pr,2
i

)
>

(
ps,1

i − ps,2
i

)
2: Then yi = k̂r

i
3: Else yi = k̂s

i

Algorithm 4. Conflict resolution approach 3

Input:
→
x i, base models Mr, Ms

Output: class yi

1: i f pr,1
i ×mr > ps,1

i ×ms

2: Then yi = k̂r
i

3: Else yi = k̂s
i
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Algorithm 5. Conflict resolution approach 4

Input:
→
x i, base models Mr, Ms

Output: class yi
1: Accr

train represents training performance for base model Mr

2: Accs
train represents training performance for base model Ms

3: i f pr,1
i ×mr × Accr

train > ps,1
i ×ms × Accs

train
4: Then yi = k̂r

i
5: Else yi = k̂s

i

5. Results and Discussion

The results show that the class level distribution technique, described in Section 4.2.2,
greatly reduces the number of conflicts that occur between the various base models, in comparison to
the model level distribution technique, as shown in Table 8. This is due to improved representations of
activities within the complement classes per model during the training phase of the base classifiers.
For example, with the class level distribution technique activity instances were distributed evenly
between classes, therefore evenly representing each activity within the complement class. Contrarily,
the model level distribution technique involved balancing the complement class data equally between
the remaining models, which meant the class distributions within these models were imbalanced.

For example, with the model level distribution technique, the C̃1 complement class contained 24
instances of ActN4 and only 03 instances of Act17, whereas with the class level distribution technique,

the C̃1 complement class contained 15 instances each of ActN4 and Act17. Consequently, with the
implementation of the latter distribution technique, the base classifiers are stronger at deciding when
an unseen instance belongs to their complement class, eliminating themselves from the decision-making
process and therefore reducing the number of conflicts that occur.

Table 8. Number of conflicts.

No. of Conflicts Per Fold

1 2 3 4 5 6 7 8 9 10 Avg.

Complement Class –
Model Level Approach 76 57 69 52 49 35 60 45 62 56 56.1

Complement Class –
Class Level Approach 21 37 11 13 13 42 29 39 11 17 23.3

Classification performance from each of the two data distribution techniques were analyzed
before and after conflict resolution approaches were applied, as presented in Figure 6. Considering the
complement class generation at a model level, the preliminary performance accuracy of 60.28% is much
less than that of the complement class generation at a class level, which achieves a preliminary accuracy
of 72.12%. This is due to less model conflicts occurring in the latter approach, which shows the base
models were stronger during the decision-making process. As for the final accuracies produced after
conflict resolution techniques had been applied, the class level approach outperformed the model
level approach in all four cases. Finally, overall, the best HAR performance of 80.39% was achieved
using complement data generated at a class level in conjunction with the conflict resolution approach
presented in Algorithm 3, i.e., resolving conflicts through calculating the difference between the highest
and second highest predictions per conflicting model, where the final decision is given to the model
with the highest differential value.
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Table 9 presents an analysis of incorrectly classified instances with regards to the first data
distribution approach where complement class data was generated at a model level, as discussed
previously in Section 4.2.1, whereas Table 10 presents an analysis of incorrectly classified instances with
regards to the second data distribution approach, where complement class data was generated at a class
level, as discussed previously in Section 4.2.2. The “incorrect” instances reported describe those that
were incorrectly classified by the target model, for example, there may not have been any conflicting
models, yet the incorrect class was chosen by the base classifier. The number of incorrectly classified
instances are important to consider when analyzing the effectiveness of each conflict resolution
approach, as these cases would permanently be incorrect, regardless of the application of conflict
resolution techniques.

Table 9. Ensemble approach 1—analysis of incorrect instances.

Fold

1 2 3 4 5 6 7 8 9 10 Avg.

Algorithm
2

Incorrect 22 22 21 29 29 20 30 22 20 22 23.7
Right but
Incorrect 17 18 21 12 17 16 9 14 20 20 16.4

Algorithm
3

Incorrect 23 22 21 29 29 22 29 22 20 24 24.1
Right but
Incorrect 10 14 10 9 12 12 9 12 14 11 11.3

Algorithm
4

Incorrect 22 23 21 29 29 22 29 22 20 22 23.9
Right but
Incorrect 31 22 13 23 11 15 23 18 10 21 18.7

Algorithm
5

Incorrect 22 22 21 29 29 22 29 22 20 22 23.8
Right but
Incorrect 14 10 13 7 13 15 9 17 14 11 12.3
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Table 10. Ensemble approach 2—analysis of incorrect instances.

Fold

1 2 3 4 5 6 7 8 9 10 Avg.

Algorithm
2

Incorrect 33 26 35 33 25 32 27 28 40 26 30.5
Right but
Incorrect 6 9 2 6 4 11 8 10 2 8 6.6

Algorithm
3

Incorrect 33 26 35 33 25 31 27 28 40 26 30.4
Right but
Incorrect 5 7 3 2 6 7 6 5 0 6 4.7

Algorithm
4

Incorrect 33 26 35 33 25 31 27 28 40 25 30.3
Right but
Incorrect 8 21 4 3 6 6 11 7 1 5 7.2

Algorithm
5

Incorrect 33 26 34 33 25 31 27 28 40 25 30.2
Right but
Incorrect 8 8 5 2 6 5 6 7 1 5 5.3

The “right but incorrect” cases are those that were correctly classified by the target base model,
although they were not chosen during the final decision-making process after applying the conflict
resolution approaches. These cases are considered when evaluating the most effective approach of the
four explored, as they could have resulted in a correct classification, given the application of an effective
conflict resolution technique.

The conflict resolution approach presented in Algorithm 3 was the most effective when applied to
both data distributions, as there were the lowest number of “right but incorrect” instances (on average
11.3 and 4.7, respectively), closely followed by the approach in Algorithm 5. The lower the number
of “right but incorrect” cases helps to determine which conflict resolution approach is most effective
in deciding upon which base model should be awarded the final class decision. For example, consider
the conflict resolution technique in Algorithm 3 with ensemble approach 2, as presented in Table 10.
There were 23.3 conflicts occurring on average (refer to Table 8). Upon analysis of the incorrectly
classified instances, 30.4, on average, were incorrectly classified, whereas 4.7, on average, could have
been correctly classified, though an incorrect base model won the final decision after applying conflict
resolution. Finally, this means that as a result of applying Algorithm 3, an average of 18.6 conflicting
cases were correctly resolved, improving the final HAR performance.

As shown in Figure 6, the best HAR performance of 80.39% was achieved using complement data
generated at a class level in conjunction with the conflict resolution approach presented in Algorithm 3.
Given the non-parametric nature of the neural networks, two non-parametric benchmark classifiers
were chosen to evaluate the proposed ensemble approach, namely, Support Vector Machine (SVM) and
Nearest Neighbour (kNN) classifiers. The multiclass SVM classifier was an error-correcting output
codes (ECOC) model required for multiclass learning, consisting of multiple binary learners. Figure 7
presents the performance of our ensemble approach in comparison to the chosen non-parametric
benchmark classifiers. The kNN model achieved an accuracy of 70.95%, whereas the SVM model
achieved 76.54%, thus demonstrating that the proposed ensemble approach outperformed both
benchmark classifiers.
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6. Conclusions

In this work, we focused on data-driven approaches to HAR and addressed the current challenges
of their application to openly available datasets. We proposed an ensemble approach to recognize
ADLs within a smart environment setting, with particular emphasis on exploring various approaches
to resolving conflicts that occur between base models in ensemble classifiers and analyzing the effects
of various data distributions that generate the complement class per base model. It was observed
that distributing data at a class level greatly reduces the number of conflicts that occur between
the base models, leading to an increased preliminary performance before the application of conflict
resolution techniques. It was also found that the best method of resolving conflicts, in comparison to
other approaches explored, is to award the final decision to the model with the highest differential
value between the highest and second highest predictions per conflicting model. We evaluated our
proposed HAR classification model, the ensemble NN method, by comparing the achieved HAR
performance with two non-parametric benchmark classifiers. The ensemble NN method outperformed
both benchmark models, demonstrating the effectiveness of the proposed ensemble approach.

This work is limited in that feature selection techniques were not applied to determine an optimal
subset of input features. According to [84], feature selection is an increasingly significant consideration
in machine learning, with the primary aim of its application being to reduce the dimensionality
in large, multi-dimensional datasets. Thus, future work would involve the application of feature
selection techniques to determine the optimal subset of features required for the classification problem.
Additionally, this work is limited in that the proposed approach was evaluated on one HAR dataset,
therefore future work would involve evaluating the methods on another dataset so that results are not
subjective to only the current dataset.
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