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Abstract: Apart from the received signal energy, auxiliary information plays an important role in
remarkably ameliorating conventional spectrum sensing. In this paper, a novel spectrum sensing
scheme aided by geolocation information is proposed. In the cellular cognitive radio network (CCRN),
secondary user equipments (SUEs) first acquire their wireless fingerprints via either received signal
strength (RSS) or time of arrival (TOA) estimation over the reference signals received from their
surrounding base-stations (BSs) and then pinpoint their geographical locations through a wireless
fingerprint (WFP) matching process in the wireless fingerprint database (WFPD). Driven by the
WFPD, the SUEs can easily ascertain for themselves the white licensed frequency band (LFB) for
opportunistic access. In view of the fact that the locations of the primary user (PU) transmitters in
the CCRN are either readily known or practically unavailable, the SUEs can either search the WFPD
directly or rely on the support vector machine (SVM) algorithm to determine the availability of the
LFB. Additionally, in order to alleviate the deficiency of single SUE-based sensing, a joint prediction
mechanism is proposed on the basis of cooperation of multiple SUEs that are geographically nearby.
Simulations verify that the proposed scheme achieves higher detection probability and demands less
energy consumption than the conventional spectrum sensing algorithms.

Keywords: spectrum sensing; geolocation; wireless fingerprint database; support vector machine;
dynamic spectrum access; cognitive radio

1. Introduction

With the aim of identifying the status of the licensed spectrum and enabling secondary access,
spectrum sensing techniques have been extensively investigated for cognitive radio (CR) in recent
years [1–5]. In order to guarantee that, as little interference is generated to the primary user (PU) as
possible, secondary users (SUs) in the cognitive radio network (CRN) can only gain opportunistic access
to the licensed frequency band (LFB) when they detect no PU activity over it. However, the task of
ascertaining PU behavior over the licensed spectrum is practically challenging if conventional spectrum
sensing methods, e.g., energy detection (ED), are concerned, since the signals transmitted from the PUs
are usually subject to complicated radio propagation effects before reaching the SUs, especially when
the PU signals encounter severe power attenuation and fast fluctuations. In addition, if it is assumed
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that the SUs in the CRN are cellular secondary user equipments (SUEs) (Correspondingly, the CRN
is referred to as the cellular cognitive radio network (CCRN) hereinafter.) periodically collecting
spectrum observations over the LFB and reporting them to their serving base-stations (BSs) for global
decisions on the status of the LFB, it would probably arouse another problematic issue of power
deficiency for battery driven SUE devices. In particular, the battery time that the SUEs could sustain
may be significantly shortened due to the dual-band power consumption.

In the existing literature, the spectrum sensing techniques can be roughly categorized into
four types. Firstly, threshold-test-based signal detection, such as ED [6–8], cyclostationary feature
detection [9–11], and matched filtering detection [12–14] serve as common methods for the SUEs
to gain awareness of the LFB’s PU occupancy status. Secondly, for achieving higher accuracy and
reliability, cooperative spectrum sensing (CSS) algorithms have been extensively investigated [15–18],
where space diversity in the CRN is exploited and different hard decision fusion (HDF) schemes
and soft data fusion algorithms are proposed under different criteria [15]. Thirdly, different from
the single/multi-user-based signal detection schemes, some hybrid spectrum sensing strategies
that combine signal processing techniques and geolocation databases have been proposed [19–21].
The geolocation database stores in advance some information about the PUs, such as the PU
transmitter’s (PUT’s) power, geographical position, statistical behavior, and so forth. Supported
by this additional a priori information, the database-based sensing approaches substantially relieve
the complexity requirement and power demand on the SUEs’ devices [22,23]. Fourthly, as one
kind of promising solution, machine learning-based spectrum sensing (MLSS) schemes have also
been researched in recent years [24–28], where it has been testified that some typical supervised
and unsupervised machine learning methods work well in discerning the spectrum observations
collected from different situations and even outperform some conventional CSS methods, for instance,
the AND, OR, and Majority criteria-based HDF schemes. It is of special importance to note that
the conventional threshold-test methods, CSS schemes, and MLSS algorithms usually operate on
the spectrum observations only and aim to detect the weakest PU signal possible. It certainly helps
significantly in relieving the hidden terminal effect, but the spectrum opportunity is unfortunately
ignored when the SUEs are sufficiently far away from the PUs. On the other hand, the conventional
geolocation database supported sensing method operates on the statistical knowledge that is drawn
over a relatively long period. It, therefore, lacks the flexibility of being able to adapt to the transient
behavior of the PUs and it may even fail to achieve the sensing agility requirement if a plug-and-play
sensing method is demanded.

In order to strengthen the SUEs’ capability of squeezing the opportunistic spectrum chances and
enhance their energy efficiency in sensing, we propose a geolocation information aided spectrum
sensing scheme on the basis of the wireless fingerprint database (WFPD) and machine learning (ML)
algorithms. The philosophy of resorting to WFPD and ML algorithms in the proposed sensing scheme
is twofold. Firstly, the WFPD helps the SUEs a lot in easily identifying their own geographical locations
and hence they are able to search the database and easily obtain the LFB availability information
corresponding to their current positions in the CCRN. This mechanism is of great benefit for the SUEs’
energy efficiency in sensing because the conventional periodic acquisition of spectrum observations
over the LFB is circumvented in a proactive manner. In this way, a large portion of energy consumed in
scanning the LFB can be saved. Secondly, assisted by the information and data stored in the WFPD, it is
easier for the SUEs to take spectrum sensing decisions when ML methods are adopted for processing
the spectrum observations with high efficiency and precision. Furthermore, and to be more specific,
aided by the WFPD, geolocation related spectrum availability for a specific SUE can be achieved
according to the distance between the SUE and the PUTs. This geolocation information enables the
SUEs to suppress the nuisance interference generated by themselves to the PU receivers in their vicinity.
In practice, however, locations of the PUTs can be either readily known or completely unknown [29].
For the two different situations, wireless fingerprint (WFP) searching-based sensing scheme and the
MLSS algorithm-based HDF scheme are proposed. It is verified in simulations that the proposed
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scheme outperforms the conventional HDF-based CSS algorithms in terms of sensing performance.
Meanwhile, the proposed scheme also achieves higher energy efficiency than the conventional periodic
spectrum sensing schemes.

The rest of this paper is organized as follows. In Section 2, we describe the CCRN and present
the signal model. Section 3 briefly reviews the non-geolocation information aided spectrum sensing
methods. In Section 4, we propose the geolocation information aided spectrum sensing schemes
for different scenarios. In Section 5, performance evaluation results for the proposed schemes are
presented. Finally, Section 6 concludes the paper.

2. System Model

2.1. Cellular Cognitive Radio Network

We consider a CCRN, where there are multiple BSs serving a number of SUEs over the CCRN’s
own frequency band denoted by F1. By means of any possible strategy or mechanism, the SUEs
attempt to seize possible opportunities of accessing the LFB, denoted as F2, to offload the traffic that
could not be undertaken over their own frequency band F1.

The target geographic area of the CCRN is divided into Q grids with the same area (The area
of the grids reflects the spatial resolution requirement in status identification of the LFB.), where
any specific SUE in the CCRN can be located in terms of the grid it is currently camping in. If one
database is established in advance, with its data tables storing information about the availability of
the LFB within each specific grid in the CCRN, then the problem of spectrum sensing could be easily
solved by first positioning the SUEs and then searching the database for the pre-stored spectrum
availability information. This kind of database-driven spectrum sensing mechanism is of particular
benefit in practice. Normally as battery supported devices communicating with the BSs over F1

and simultaneously monitoring F2, the SUEs in the CCRN inevitably encounter a problem of power
deficiency, which is a critical issue to be tackled. In this sense, with the support of the database,
the SUEs are provided an option of determining the status of F2 via simple database operations.

2.2. Signal Model

It is assumed that K BSs continuously operate over F1 in the CCRN and simultaneously P PUTs
serve their PU receivers over F2 within the same geographic area. When communicating with its
serving BS (the k-th BS) over F1, the SUE in the q-th grid (Without loss of generality, we refer to the
SUE in the q-th grid as the q-th (q=1, 2, · · ·, Q) SUE in this paper, even though in practice there may
be multiple SUEs camping in the q-th grid simultaneously.) receives the signal as

ȳqk(i) =
√

Ēk h̄kq s̄k(i) +
K

∑
j=1,j 6=k

√
Ēj h̄jq s̄j(i) + n̄q(i), (1)

where i is the time index for signal samples, Ēk is the transmit power of the k-th BS, h̄kq is the channel
coefficient from the k-th BS to the q-th SUE, s̄k is the downlink signal transmitted by the k-th BS,
and n̄q(i) ∼ CN (0, σ̄2

0 ) is the complex additive white Gaussian noise (AWGN) corresponding to the
q-th SUE in the F1 band.

In addition to communicating over F1, the q-th SUE keeps repeatedly observing the LFB F2 with
the sensing period Ts in conventional sensing methods. It obtains the signal received from the PUTs in
the m-th sensing operation as

yqm(i) =


P
∑

p=1

√
I+(E(m)

p )h(m)
pq x(m)

p (i) + n(m)
q (i), H1

n(m)
q (i), H0

(2)
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where i stands for the time index within the m-th spectrum observation, I+(E(m)
p ) = max(E(m)

p , 0) with

E(m)
p ∈ {Ep, 0} referring to the transmit power level (For the purpose of simplicity, we assume in this

paper that the PUTs have only two possible transmit power levels, although, in practice, there are
usually multiple transmit power levels that need to be identified.) of the p-th PUT, h(m)

pq denotes the

channel coefficient from the p-th PUT to the q-th SUE, x(m)
p (i) is the transmit symbol of the p-th PUT,

n(m)
q (i) ∼ CN (0, σ2

0 ) is the complex AWGN of the q-th SUE in the F2 band, and the hypothesesH1 and
H0, respectively, represent the case of at least one PUT being busy and the case that all the PUTs are idle.

The channel coefficient h(m)
pq can be modeled as

h(m)
pq =

√
PL(‖CPUT

p − CSUE
q ‖) · ζp · νp, (3)

where CPUT
p = [CPUT

p,x CPUT
p,y ]T stands for the position of the p-th PUT, CSUE

q = [CSUE
q,x CSUE

q,y ]T is the
position of the q-th SUE, ‖ . ‖ is the Euclidean distance, PL(d) = d−a is the path-loss component for
the relative distance d with the path-loss exponent a, ζp is the shadowing component, and νp is the
multipath fading component in accordance with Rayleigh distribution.

Within the m-th sensing operation, the q-th SUE acquires the spectrum observation vector as
yqm =[yqm(1), yqm(2), · · ·, yqm(2Wτ)]T , where W is the PU signal bandwidth in F2 and τ is the sensing
interval. Over M consecutive sensing interval τ within each Ts, the aggregate observations can be
organized as Yq =

[
yq1, yq2, · · · , yqM

]
, where M is the total number of spectrum observation segments.

Based on the raw data Yq, the spectrum occupancy status of F2 with respect to the q-th grid can be
decided, through either conventional signal detection methods or MLSS algorithms. It is noteworthy
that depending on the grid granularity in the CCRN, some neighboring grids may obtain the same
spectrum decisions. Once all the grids requesting for spectrum opportunities are aware of their own
spectrum status of F2, the spectrum sensing task is fully fulfilled in the CCRN.

3. Non-Geo-Location Information Aided Spectrum Sensing

3.1. Conventional Threshold-Test-Based Spectrum Sensing Methods

3.1.1. Single User-Based Energy Detection

According to the well-known ED, the q-th SUE measures the received signal energy in yqm as

Yqm =
∥∥yqm

∥∥2
=

2Wτ

∑
i=1

∣∣yqm(i)
∣∣2, (4)

and obtains the test statistic Zq and the spectrum decision Dq via the threshold-test

Zq = tr(YqYH
q ) =

M

∑
m=1

∥∥yqm
∥∥2 ≷ λq

↗ Dq = Ĥ1,

↘ Dq = Ĥ0,
(5)

where λq is the pre-calibrated threshold, depending on the desired false alarm probability under the
criterion of constant false alarm probability (CFAP), ‖ . ‖ is the vector norm, tr(.) is the matrix trace
operator, and the test decision Dq is either Ĥ0 = 0 for the case of all PUTs being idle or Ĥ1 = 1 for the
case of any PUT being active in the CCRN, respectively.
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3.1.2. Multi-User-Based HDF Sensing

On obtaining the spectrum decision Dq, the q-th SUE may cooperate with multiple SUEs in its
neighbourhood to strengthen the sensing reliability through the HDF criteria, e.g., AND, OR, and Vote, as

Λq = ∑
t∈Qq ,t 6=q

Dt + Dq ≷ η
↗ D̃q = Ĥ1,

↘ D̃q = Ĥ0,
(6)

where Dt is the spectrum decision of the t-th SUE, Qq is the index set of the q-th SUE’s neighboring
SUEs with the set cardinality denoted as |Qq|, and η is an integer threshold for the HDF schemes. It can
be observed that the HDF scheme boils down to the AND scheme for η = |Qq|+ 1, the OR scheme for
η = 1, and the η0-out-of-

(
|Qq|+ 1

)
(a.k.a Vote) scheme for η = η0, respectively.

The sensing performance is usually quantified in terms of receiver operating characteristics (ROC),
which gives the detection probability PD = Pr(Ĥ1 |H1) as a function of the probability of false alarm
PFA = Pr(Ĥ1 |H0). By varying the detection threshold, the operating point of a detector can be chosen
anywhere along its ROC curve.

3.2. Machine Learning-Based Spectrum Sensing

In recent years, machine learning-based classification algorithms have been proposed to identify
the LFB status for CR systems, since the ultimate task of sensing is in some sense equivalent to
classifying the spectrum observations as the data containing PU signal components or the data
composed of noise only. Typically, ML algorithm such as support vector machine (SVM) and clustering
algorithms can be utilized for spectrum sensing. For the purpose of simplicity, we assume in this paper
that the transmit powers of the PUTs are fixed within each sensing period Ts, i.e., E(m)

p = Ep,h for all
m = 1, 2, · · · , M, and the p-th PUT has only two possible power levels Ep,h ∈ {Ep, 0}. Practically in
the m-th sensing operation, the P PUTs may operate in mutually independent modes and hence there
are in total 2P operation states of the PUTs in the CCRN, where for the h-th state, the corresponding
power vector of the PUTs can be expressed as

Ph =
[

I+(E1,h), I+(E2,h), · · · , I+(Ep,h), · · · , I+(EP,h)
]T

, h ∈ {0, 1, · · · , 2P−1}. (7)

For the SVM-based sensing data classifier, we can get the q-th energy vector from Equation (4)
within each sensing period Ts as

θq =
[

Yq1, Yq2, · · · , YqM
]T , (8)

where Yqm is the received signal energy captured for the q-th SUE.
Prior to feeding θq into the SVM, we need to obtain enough number of energy vectors to form

the training data set. Given a sufficiently large number of energy vectors that may be accumulated in
a relatively long time, we utilize the training data set and the training label set as

Θq,L =
{

θ
(1)
q , θ

(2)
q , · · · , θ

(l)
q , · · · , θ

(L)
q

}
,

Cq,L =
{

C(1)
q , C(2)

q , · · · , C(l)
q , · · · , C(L)

q

}
,

(9)

where L is the number of energy vectors adopted for training and the corresponding label C(l)
q is either

Ĥ0 or Ĥ1. After the SVM classifier is successfully trained, it can be used to classify the spectrum
observations. In addition, it is worth noting that for conventional ED and MLSS schemes, only when
the PUTs are operating in the h=0 state, i.e., P0 = [0, 0, · · · , 0]T , the label C(l)

q can be set as Ĥ0. It is
apparent that in fact the state P0 = [0, 0, · · · , 0]T means that no active PUT is found in the CCRN at
all and it is the only state under which the SUEs are allowed to access the LFB F2. Therefore, it is
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actually an over-strict condition for the SUEs to gain spectrum opportunities over F2 only in case that
the PUTs’ state is identified as P0, whereas the spectrum opportunities possibly hidden in the states
Ph, h ∈ {1, 2, · · · , 2P − 1}, are ignored.

In the MLSS schemes, when the test data θq is fed into the readily trained classifier and the label
allocated to it is Ĉq, the spectrum sensing accuracy can be evaluated as

PA =
2

∑
p=1

Eq
[
Pr(Ĉq = Cq|Hp)Pr(Hp)

]
≈

2

∑
p=1

1
Q

Q

∑
q=1

I(Ĉq = Cq)Pr(Hp), (10)

where Hp has only two possible hypothesis as H1 and H2, Cq is the true label of θq, E[.] is the
mathematical expectation, Pr(A) is the probability of an event A, and I(.) is the indicator function.

4. Geo-Location Information Aided Spectrum Sensing

In the previous section, the conventional signal detection-based sensing schemes and the MLSS
algorithms obtain the spectrum decisions from the spectrum observations only. Without additional
information that may be helpful in sensing, the aforementioned schemes can merely acquire the
spectrum decisions under the very stringent constraint of ascertaining whether PU signal components
exist in the spectrum data under test. Drawbacks of these methods are apparent. Firstly, a relatively
large portion of the potential spectrum opportunities in the CCRN may be wasted. Even when the SUE
is sufficiently far away from the active PUTs, it can not be granted permission to access F2. Interestingly,
this problem may occur when cooperation of some SUEs is evoked to enhance the reliability in sniffing
the weak PU signals (Bearing in mind that hidden terminal effect may be harmful, we usually find that
the conventional spectrum sensing schemes are designed to prevent the SUEs from accessing the LFB
when weak PU signals are detected in the spectrum observations.). Secondly, without offline history
information of the spectrum status, the SUEs need to repeatedly monitor the LFB F2, even when its
status is relatively stable or only varying slowly over time. This case actually imposes a heavy burden
on the power consumption of the SUEs.

Aiming to tackle these problems encountered in conventional spectrum sensing schemes,
we propose to exploit geolocation information to assist the SUEs in sensing operations. Tailored
for geolocation information-based sensing scheme, the WFPD can be viewed as an indispensable
infrastructure consisting of a large variety of different data. Specifically, aided by the WFPD, the SUEs are
easy to locate themselves in the CCRN, with short time and high precision. When the positions of the
PUTs are possibly available to the SUEs and the WFPD stores records of the PU behaviors, the SUEs are
capable of quickly identifying the LFB availability with respect to their own locations.

4.1. Geographical Region-Based Spectrum Status Identification

According to the robustness requirement of spectrum sensing stipulated in the IEEE 802.22
standard [30], a region division strategy over the active PUTs is considered in the CCRN. The target
geographical area is divided into black, grey, and white regions, as shown in Figure 1 for example.
Centered with an active PUT, the black region with radius Dt is closely surrounded by the grey region
with inner radius Dt and outer radius Dp. Meanwhile, the grey region is surrounded by the white region.
Inside the black region, the PUTs have exclusive right to use the LFB F2 and the SUEs are absolutely
forbidden to operate over F2, thus tremendously eliminating any possible interference to the PU receivers
inside it. The temporal spectrum opportunities may be found in the grey region, where the SUEs can
opportunistically gain access, and in the white region, where the SUEs are of sufficiently long distances
from the PU receivers and therefore are allowed to transmit with their maximum power at any time,
without causing severe interference to the PU receivers.
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Radius of black region Dt
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Figure 1. Geo-regions-based spectrum status identification.

Specifically, radius of the black region surrounding the p-th active PUT can be defined as [31]

Dt ≤ βt

(
Ep

σ2
0 (2

ξ0 − 1)

)1/a

(11)

where ξ0 is a threshold constant and βt is an adjusting coefficient. The outer radius of the gray region is

Dp =

 2EpWMτ

σ2
0

(
q f
√

2WMτ + q2
m + qm

√
2WMτ + 2q f

√
2WMτ + q2

m

)


1/a

(12)

where q f = Q−1(ε f ), qm = Q−1(εm), the parameter ε f and εm are constraint constants of PFA and PM

(probability of miss detection), respectively, with PFA ≤ ε f , PM ≤ εm required, and Q−1(.) is the inverse
Q-function. For the purpose of ensuring the quality of PU communication and guaranteeing the spectrum
opportunities for the SUEs, the region partitioning can be flexibly adjusted, as shown in Figure 2.

0 1 2 3 4 5

PU transmit power (W)

0

1

2

3

4

5

6

7

8

9

10

11

12

R
a

d
iu

s 
(k

m
)

a=2, Dt
a=3, Dt
a=4, Dt
a=2, Dp
a=3, Dp
a=4, Dp

Pathloss factor: a=2-4
Step: 1

Figure 2. Relationship between the region radius and primary user transmitter (PUT) power.

The spectrum availability of F2 in different regions can be denoted by the flags given in Table 1,
where the PUT_Flag is set identical with the Region_Flag. The PUT_Flag with value 1 means no
spectrum opportunity over F2 is found for the SUEs, −1 means the SUEs are safe to transmit over F2,
and 0 implies potential spectrum opportunities might be discovered in the grey region. As an enabling
label for the SUEs to access F2, the next step of spectrum sensing is to identify the region that the SUEs
are camping in.
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Table 1. Region oriented spectrum availability.

Region Type Region_Flag PUT_Flag Availability of F2 for the SUEs

Black Region 1 1 strictly non-accessible
Grey region 0 0 uncertain

White region −1 −1 freely accessible

4.2. WFPD Aided SUE Positioning

After defining the regions in the CCRN, the next step of spectrum sensing is to find the locations
of the SUEs. When the SUEs are able to know their own locations, they can make a quick spectrum
decision based on the spectrum availability information stored in the WFPD. Since it is well known
that wireless positioning technology based on received signal strength (RSS) and time of arrival (TOA)
are common methods that may be utilized practically, they are both employed in this paper. The TOA
positioning technique refers to the method of estimating the time that the BS downlink reference signal
takes to arrive at the SUE. Observing the surrounding BSs’ downlink reference signals in routine
operations such as synchronization tracking and reference signal received power (RSRP) measurement,
the SUEs can measure the downlink reference signals’ RSS and TOA of neighboring BSs to locate
themselves in the CCRN [32,33].

Based on the received signal in Equation (1), the q-th SUE utilizes the locally generated reference
signal over F1 to seek the peak of the correlation output as the TOA. The signal correlation is first
obtained as

Rqk(l) = |
L1

∑
l1=1

ȳqk(l + l1) · rq,local(l1)|2, (13)

where ȳqk =
[
ȳq1, ȳq2, · · · , ȳqL2

]T is the k-th BS’s downlink reference signal received by the q-th SUE,
ȳqk(l + l1) denotes the (l + l1)-th signal element in ȳqk, rq,local = [r̄q1, r̄q2, · · · , r̄qL1 ]

T is the local signal
generated by the q-th SUE, rq,local(l1) is the l1-th signal sample, and the parameters L1 and L2 are,
respectively, the length of the local signal and the length of the received signal.

Therefore, the estimate of TOA of the k-th BS at the q-th SUE is obtained as

Tqk =
1
Fs

arg max
l

(Rqk(l)), (14)

where Fs is the sampling frequency of the BS’s downlink signal.
Before the SUEs can truly perform sensing operations, it is assumed that one WFPD has already

been established in advance, as shown in Table 2, and it is fully accessible for all the SUEs in the CCRN.
Since there are Q grids in the CCRN, the number of WFPs in the WFPD is set as Q, too. Each WFP
consists of the TOA estimations (For the case of RSS information-based WFPD, RSS data is used instead.)
with respect to the K BSs, the corresponding K BS-IDs, PUT_Position_Flag, Region_Flag, the LFB F2’s
availability flag (PUT_Flag), the LFB F2’s status update timer (Update_Timer), received signal {yqm}M

m=1
and signal energy {Yqm}M

m=1. In addition, there is a public flag PUT_State_Flag_h among the Q WFPs,
where h indicates that all the data in Table 2 are actually obtained from the PUTs’ power state Ph.

If the q-th SUE is triggered to sense the LFB F2, it first sends its TOA estimations, i.e., the TOA
fingerprint, to the WFPD. The TOA fingerprint is a combination of the estimated TOAs and the
corresponding BS-IDs, e.g., the q∗-th WFP {TOAkq∗}K

k=1. The q-th SUE is located in the q∗-th grid
based on the WFP search when its WFP best matches the q∗-th WFP in the WFPD as

q∗= arg min
q′∈{1,2,··· ,Q})

βq′ = arg min
q′∈{1,2,··· ,Q})

√√√√ K

∑
k=1

[
Tqk − FPq′(k)

]2
, (15)
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where β′q is the root square of the TOA estimation error, q∗ is the index of the WFP that best matches the
fingerprint reported by the q-th SUE, and FPq′(k) represents the k-th fingerprint feature, TOAkq′ in Table 2,
i.e., the TOA estimation of the reference signal from the k-th BS to the q′-th grid in the CCRN. In addition,
Equation (15) requires that βq∗ < ψ and βq′ > ψ, q′ ∈ {1, 2, · · · , Q}/q∗, where ψ is the threshold used to
guarantee the maximum tolerable error in localizing the q-th SUE. If βq∗ > ψ, the q-th SUE fails to find
the grid it is camping in and has to search the WFPD with its newly measured fingerprint again. It is
worth mentioning that depending on the grid area and the error threshold ψ, WFP duplications [29] may
be encountered by the SUEs. This situation usually results from the small grid area and a high ψ setting
in practice. In this case, the WFP duplications would not give rise to wrong spectrum decisions because
the grids that have the same WFP will have the same spectrum label as well.

Table 2. Data table of the time of arrival (TOA) wireless fingerprint database.

Data Type WFP 1 WFP 2 · · · WFP q · · · WFP Q

Geo-Location C(SUE)
1 C(SUE)

2 · · · C(SUE)
q · · · C(SUE)

Q

TOA11 TOA12 · · · TOA1q · · · TOA1Q
WFP Feature TOA21 TOA22 · · · TOA2q · · · TOA2Q

(TOA)
...

...
...

...
... · · ·

TOAK1 TOAK2 · · · TOAKq · · · TOAKQ

Spectrum Region_Flag_1 Region_Flag_2 · · · Region_Flag_q · · · Region_Flag_Q
Label PUT_Flag_1 PUT_Flag_2 · · · PUT_Flag_q · · · PUT_Flag_Q

Timer Update_Timer_1 Update_Timer_2 · · · Update_Timer_q · · · Update_Timer_Q

Most Recent yh
11, yh

12, · · · , yh
1M yh

21, yh
22, · · · , yh

2M · · · yh
q1, yh

q2, · · · , yh
qM · · · yh

Q1, yh
Q2, · · · , yh

QM
Observations Yh

11, Yh
12, · · · , Yh

1M Yh
21, Yh

22, · · · , Yh
2M · · · Yh

q1, Yh
q2, · · · , Yh

qM · · · Yh
Q1, Yh

Q2, · · · , Yh
QM

Public Labels PUT_State_Flag_h, h ∈ {0, 1, · · · , 2P−1}; PUT_Position_Flag

4.3. Grid Oriented Spectrum Decision Making

In the previous subsection, the q-th SUE finds its location in the q∗-th grid via WFP matching in
the WFPD. In order to determine which region the q∗-th grid belongs to, the distances between the
q∗-th grid and the active PUTs need to be evaluated. However, calculating the distances demands
geolocation information of the q∗-th grid and the active PUTs, whereas in practice CPUT

p may be either
readily available or completely unknown for the SUEs. It actually imposes two different situations to
be dealt with by different approaches.

4.3.1. PUT’s Geo-Location Information Aided Spectrum Decision Making

When the locations of the PUTs in the CCRN are readily known to the SUEs, it is set in the WFPD
that PUT_Position_Flag = 1. Once the location of the q-th SUE is determined as in the q∗-th grid,
the flag Region_Flag_q∗ can be immediately determined, depending on its distance to the PUTs and
the predefined region radius Dt and Dp, as

Region_Flag_q∗ =



1
P
∑

p=1
‖CPUT

p − CSUE
q∗ ‖ · I(Êp,h = Ep) < ‖P̂h‖0 · Dt,

0 ‖P̂h‖0 ·Dt ≤
P
∑

p=1
‖CPUT

p −CSUE
q∗ ‖ · I(Êp,h = Ep)≤‖P̂h‖0 ·Dp,

−1
P
∑

p=1
‖CPUT

p − CSUE
q∗ ‖ · I(Êp,h = Ep) > ‖P̂h‖0 · Dp,

(16)

where P̂h is the power vector corresponding to the PUTs’ current operating state classified by
the machine learning algorithms as Ĉq∗ = h, Êp,h is the power level accredited for the p-th PUT
according to the h-th state of the P PUTs, and ‖·‖0 is the l0-norm. As for the label Region_Flag_q∗,
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Region_Flag_q∗ = 1 means that the SUE in the q∗-th grid is strictly prohibited from accessing the
LFB F2, Region_Flag_q∗ = 0 implies that the q∗-th grid is inside in the grey area and the SUEs inside
it might cause interference to the potential PU receivers in its vicinity when they transmit over F2,
and Region_Flag_q∗ = −1 claims that the q∗-th grid is sufficiently far away from any active PUT in
the CCRN and hence the SUEs in the q∗-th grid can freely gain access to the LFB without yielding any
interference to the PU receivers in the proximity of themselves.

In this way, the unavailable/available/uncertain status of the LFB F2 can be determined as
PUT_Flag_q∗ = 1/− 1/0, respectively, depending on the region that the q∗-th grid belongs to. In the
proposed sensing scheme, PUT_Flag_q∗ serves as the final sensing decision for the SUE located in
the q∗-th grid in the CCRN. The Update_Timer_q∗ in Table 2 counts the time since the last update
operation of PUT_Flag_q∗. When it reaches an upper limit ϕ, it automatically returns to zero and sets
the PUT_Flag_q∗ as 0, meaning that the status of the PUT needs to be reconfirmed. If no data can
be obtained for updating the PUT_Flag_q∗, it is better to keep it as 0 to prevent possible interference
to the PU receivers. It is of particular importance to note that when PUT_Position_Flag_q∗ = 0,
the PUT_Flag_q∗ needs to be set as 0, meaning that Equation (16) is not applicable due to the lack of
CPUT

p . It is therefore necessary to determine whether the LFB F2 is accessible by the q-th SUE, by means
of either conventional sensing methods or MLSS algorithms. In other words, without knowledge of
the PUTs’ locations, the SUEs are no longer able to decide the region that their locations belong to,
but have to merely rely on the received signal energy to identify the status of the F2. Figure 3 gives
a depiction of the grid oriented spectrum sensing scenario, where the q-th SUE first performs TOA
estimation based on the received reference signals from the three BSs in the CCRN, and it is then able
to locate itself through WFP matching operation in the WFPD. Subsequently, the q-SUE can identify
its spectrum label from the WFP it matches in the WFPD or through different grid oriented spectrum
decision making methods described within this subsection.

PUT 1

SUE at qth grid

PUT 2

BS 1

BS 2

BS 3

.

     When the PUTs are operating under the hth state, the  fingerprint information at the qth 
grid:

TOA1q, TOA2q, TOA3q, PUT_State_Flag_h, PUT_Position_Flag, Update_Timer_q,                            

Region_Flag_q,                                ,                                

TOA3q

TOA2q

Dp Dt

Dp

Dt

F1

F1

F
1

F2

F2

1 2, , ... ,y  y  y
h h h

q q qM 1 2, , ... ,  
h h h

q q qMY Y Y

T
O

A
1
q

Figure 3. Grid-based sensing scenario and data collection.

4.3.2. Machine Learning Aided Spectrum Decision Making

Intrinsically as classifiers or clustering algorithms, typical ML methods, e.g., SVM [34],
K-means [35], and K-nearest neighbors (KNN) [36], can be employed for identifying the PUT_Flag_q∗

for the q-th SUE. In the sequel, we take the SVM classification algorithm as an example (Compared to
the SVM algorithm adopted for spectrum decision making, the proposed scheme can be implemented
with the K-means and KNN algorithms in a similar workflow. The difference between employing SVM
and K-means lies in that the SVM algorithm requires a readily available label set in training whereas
the K-means algorithm only demands the number of clusters in training, significantly relieving the
implementation requirement.) and describe how the spectrum sensing decision is made for the SUEs
in the q-th grid.
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Similar to the conventional MLSS methods, we utilize the training data set and the corresponding
label set as

Θq,L =
{

θ
(1)
q , θ

(2)
q , · · · , θ

(l)
q , · · · , θ

(L)
q

}
,

Cq,L =
{
C(1)q , C(2)q , · · · , C(l)q , · · · , C(L)

q

}
,

(17)

where the training label set Cq,L is different form the training label set Cq,L in Equation (9) in that

C(l)q ∈ {0, 1, · · · , 2P−1}.
The SVM originally provides a binary model in machine learning which strives to find a linearly

separable hyperplane with the help of support vectors that lie closest to the decision surface by maximizing
the margin of the classifier while minimizing the sum of classification errors [24], as shown in Figure 4,
where x(n) is the n-th training sample, x∗(s) is the s-th test sample, y(n) and y∗(s) are, respectively, their
corresponding labels, and the number of training samples and test samples is N and S, respectively.

( )T n b w x 0

2

w

( ) 1T n b  w x

( ) 1T n b w x

Support vector

Margin=

++++
++

+
++ +

++
++

+

+

+
+
+
+
+

+
+

+
+
+ +

Figure 4. Support vector machine (SVM) model c© 2019 IEEE [28].

The learning strategy of SVM is to maximize the margin shown in Figure 4 and its learning goal
is to find a hyperplane in the multi-dimensional samples space. The hyperplane equation can be
expressed as

ωTx(n) + b = 0, (18)

where ω is the weighting vector and b is the bias.
During training, the SVM should satisfy the following condition for all n = 1, 2, · · · , N as

y(n) =

{
1, if ωTx(n) + b ≥ 1,
−1, if ωTx(n) + b ≤ −1.

(19)

We need to minimize the vector norm of ω so as to maximize the margin, and hence the objective
function is

Min 1
2‖ω‖

2

s.t. y(n)(ωTx(n) + b) ≥ 1.
(20)

where ω and b in the optimal hyperplane can be obtained by solving the objective function.
In practice, when a test sample x∗(s) is fed into the SVM model, the SVM can determine which

class it belongs to through the following rules

ŷ∗(s) =

{
1, if ωTx∗(s) + b ≥ 1,
−1, if ωTx∗(s) + b < −1,

(21)
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where ŷ∗(s) is the predicted label of the s-th binary test sample.
However, practically the samples are not always linearly separable. For this case, the hyperplane

satisfying such conditions does not exist at all. Then, we need to find a fixed nonlinear mapping
function φ(.) to map the non-linear samples into a new feature space and use a linear SVM in the feature
space [34]. Hence, the nonlinear SVM should satisfy the following condition for all n = 1, 2, · · · , N as

y(n) =

{
1, if ωTφ(x(n)) + b ≥ 1,
−1, if ωTφ(x(n)) + b ≤ −1.

(22)

The decision rule for nonlinearly SVM is given as

ŷ∗(s) =

{
1, if ωTφ(x∗(s)) + b ≥ 1,
−1, if ωTφ(x∗(s)) + b < −1.

(23)

While the training energy vectors have been mapped into a higher dimensional feature space,
practically we cannot achieve a perfect linearly separable hyperplane that satisfies the condition in
Equation (20) for each x(n). Therefore, we rewrite the optimization problem as a convex optimization
problem as follows

Min 1
2‖ω‖

2 + Λ
N
∑

n=1
ξ(n)

s.t. y(n)(ωTx(n) + b) ≥ 1− ξ(n), n = 1, 2, · · · , N
ξ(n) ≥ 0, n = 1, 2, · · · , N,

(24)

where Λ is a soft margin constant, for which a larger Λ means the assignment of a higher penalty to
errors, and ξ(n) is a slack variable. As it is well known that the Radial basis function (rbf) kernel is
a popular kernel function used in various kernelized learning algorithms to map a feature space to
a higher dimension, it is adopted for the SVM classifier in this paper.

In order to obtain the final spectrum sensing decision for the SUEs located in the q∗-th grid,
PUT_Flag_q∗, there are two types of SVM classifiers that need to be utilized in two consecutive stages.
The first type SVM classifier, denoted as T1-SVM, is first evoked to classify the current operating
state of the PUTs as Ĉq∗ ∈ {0, 1, · · · , 2P − 1} and the second type SVM classifier, denoted as T2-SVM,
is subsequently triggered to identify the availability of the LFB F2 as PUT_Flag_q∗ ∈ {1, 0,−1}. For the
training of the T1-SVM classifiers, it is assumed that there are enough number of SUEs pre-traversing
all the grids in the CCRN and experiencing all the 2P operating states of the P PUTs over a relatively
long time, for example a duration of hundreds or even thousands of spectrum sensing periods Ts.
In this way, Θq,L and C(1)

q,L are collected with a sufficiently large L and used as the training data set

and label set for the T1-SVM classifier, respectively, with C(1)
q,L ∈ {0, 1, · · · , 2P − 1}. For the T2-SVM

classifier training, the classification models are trained under different operating states of the PUTs.

Given the label C(1)
q,L = h from the T1-SVM, the training data set Θ̆q,h = {θ̆(1)q , θ̆

(2)
q , · · · , θ̆

(Lh)
q } ⊂ Θq,L

is taken from Θq,L, with C(1)
q,L identifying the PUTs’ operating state that the data set Θ̆q,h is obtained

under. The label set for T2-SVM training is C(2)
q,h with C(2)

q,h ∈ {1, 0,−1}. Specifically, for the training

process, we have ∑2P−1
h=0 Lh = L and

⋃2P−1
h=0 Θ̆q,h = Θq,L. After training, the current operating state of

the PUTs can be predicted by the T1-SVM classifier as a label Ĉ(1)q = h, indicating that the current state

is the h-th state. Subsequently, under the Ĉ(1)q -th PUTs’ state, the T2-SVM operates to determine the

final spectrum sensing decision PUT_Flag_q∗ as Ĉ(2)q .
Unlike the binary SVM classifier presented in Equation (23), T1-SVM and T2-SVM are required

to work as non-binary classifiers and hence they need to be modified for the purpose of being
able to make multiple classifications. We adopt a one-versus-all (OVA) [37,38] scheme to fulfill the
multi-classification task. Without loss of generality, assuming that a four-class problem for the T1-SVM



Sensors 2020, 20, 213 13 of 21

classification model is to be solved, i.e., P = 2, we need a series of four SVM classifiers, denoted as
c1, c2, c3, and c4, respectively. During the learning phase, the i-th binary classifier ci outputs a label
‘+1’ when it is determined that the training data belongs to the positive class, whereas it produces
a label ‘−1’ when the training data is classified as being in the negative class. With four binary SVMs
operating in the OVA scheme, the task of multi-classification can be completed. As shown in Table 3,
the binary SVM classifier c1 in the first row is trained by assigning the positive label to it while the
remaining c2, c3, and c4 binary SVM classifiers are assigned the negative label. The classification label
l1 is actually a combination of the individual labels of the four classifiers in the first row and the label
l1 is represented by the label set of the four SVM classifiers as one final label. Similarly, for the second
classifier c2 in row 2 of Table 3, the positive label is assigned to it and the negative label is assigned to
all the other classifiers. In general, for the ci classifier in the i-th row of Table 3, we assign the positive
label to it and the negative label to the remaining classifiers in the li row. In this way, the multiple
classification task to obtain Ĉ(1)q and Ĉ(2)q can be fulfilled with different number of different binary SVM
classifiers, respectively.

Table 3. Classification coding matrix of the one-versus-all (OVA) scheme.

c1 c2 c3 c4

l1 +1 −1 −1 −1
l2 −1 +1 −1 −1
l3 −1 −1 +1 −1
l4 −1 −1 −1 +1

Due to the limited spectrum observation of the q-th SUE, θq, it is straightforward to exploit
spatial diversity to ameliorate the spectrum sensing accuracy through SUE cooperation. Specifically,
we assume the q′-th SUE (q′ ∈ Qq) stays in one of the |Qq| grids surrounding the q-th grid and they may
have the same true PU_Flag_q′, q′ ∈ Qq with that of the q-th grid. Accordingly, the spectrum sensing
scheme only depending on θq is defined in this paper as a single-SUE-based spectrum prediction
scheme and the one depending on θq and the spectrum observations θq′ , q′ ∈ Qq from the SUEs in Qq

as a joint-SUE spectrum prediction scheme.
For the single-SUE spectrum prediction, the spectrum sensing decision for the SUE located in the

q-th grid is predicted as PU_Flag_q. For the joint-SUE spectrum prediction, a sum of the labels from
the q-th grid and its neighboring grids in Qq is firstly obtained as

Λ̄q = PU_Flag_q + ∑
t∈Qq

PU_Flag_t, (25)

and the final decision PU_Flag_q is made as

PU_Flag_q =


−1 Λ̄q ≤ η̄1

0 η̄1 < Λ̄q < η̄2

1 Λ̄q ≥ η̄2

(26)

where η̄1 and η̄2 are the lower and upper integer threshold designed for the joint-SUE prediction,
respectively.

The proposed geolocation information aided spectrum sensing scheme is described in detail in
Algorithm 1.
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Algorithm 1 Geo-location information aided spectrum sensing.

Input: Θq,L, Cq,L, Tqk, WFPD. % for the q-th SUE, q = 1, 2, · · · , Q

Output: PUT_Flag_q.

1: train the q-th T1-SVM classifier via {Θq,L,C(1)
q,L}

2: train the q-th T2-SVM classifier via {Θ̆q,h,C(2)
q,h}

2P−1
h=0

3: the q-th SUE estimates K TOAs (fingerprint) from the K BSs over F1

4: if βq∗ < ψ and it satisfies (15) then

5: the estimated fingerprint best matches the q∗-th WFP in the WFPD

6: the q-th SUE is located in the q∗-th grid

7: else return to step 2

8: end if

9: the q-th SUE reads the labels in the q∗-th WFP and obtain

10: {PUT_Position_Flag_q∗, Update_Timer_q∗, PUT_Flag_q∗}
11: if PUT_Position_Flag_q∗ = 1 then

12: if Update_Timer_q∗ < ϕ then

13: if PUT_Flag_q∗ 6= 0 then

14: output PUT_Flag_q = PUT_Flag_q∗

15: Exit to step 33

16: end if

17: end if

18: end if

19: if Update_Timer_q∗ = ϕ or PUT_Flag_q∗ = 0 then the q-th SUE

20: % single-SUE prediction

21: obtains the sensing observation θq over the LFB F2

22: predicts the state of the PUTs as Ĉ(1)q∗ via θq and the trained T1-SVM classifier

23: predicts PUT_Flag_q∗ as Ĉ(2)q∗ via θq, Ĉ(1)q∗ and the trained T2-SVM classifier

24: if Joint-SUE prediction is required then

25: reads received signals of the |Qq| grids that neighbor the q∗-th grid

26: predicts PUT_Flags_q′, q′ ∈ {Qq} independently, via single-SUE prediction

27: obtains PUT_Flag_q∗ by HDF voting based on PUT_Flags_q′, q′ ∈ {Qq ∪ {q∗}}

28: end if

29: update PUT_Flag_q∗ in the q∗-th WFP

30: clear and restart Updata_Timer_q∗ in the q∗-th WFP

31: end if

32: output PUT_Flag_q = PUT_Flag_q∗

33: if A new sensing request occurs then return to step 2

34: end if

35: Exit
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Similar to Equation (10), the spectrum sensing accuracy of the proposed scheme is

PA =
2P−1

∑
h=0

Eq

[
Pr(Hh)Pr(Ĉ(1)q = C(1)q |Hh)Pr

(
Ĉ(2)q = C(2)q |Ĉ

(1)
q = C(1)q ,Hh

)]
≈ 1

Q

Q

∑
q=1

2P−1

∑
h=0

Pr(Hh)I
(
Ĉ(2)q = C(2)q , Ĉ(1)q = C(1)q |Hh

)
,

(27)

whereHh is the h-th hypothesis indicating that the PUTs operate under the h-th state.
In order to compare the average energy consumption of the q-th SUE in the conventional

non-geolocation aided spectrum sensing scheme and the proposed geolocation-based spectrum sensing
scheme, we adopt the following energy consumption calculation as

Eq,avg =limN=(N1+N2)→∞
1

N1+N2

(N1+N2)Eq,F1 + (N1+N2)EWFP,F1︸ ︷︷ ︸
E1

+vq,F2 N2 · (Escan,F2 M+Ereport,F1 )︸ ︷︷ ︸
E2

 , (28)

where Eq,F1 is the power consumption of the q-th SUE in routine operations such as synchronization
and signal measurement over the F1 frequency band, EWFP,F1 is the power consumed in WFP matching
operations in the WFPD, Escan,F2 is the power consumed in capturing energy observations of spectrum
samples over the LFB F2, Ereport,F1 is the power consumption of reporting the spectrum observations
to the q-th SUE’s serving BS for classification operations, vq,F2 ∈ {0, 1} indicates whether the q-th
SUE identifies the status of the LFB F2 through the WFP matching procedure (vq,F2 = 0) or it is
required to make a decision for the LFB F2 spectrum (vq,F2 = 1) based on the spectrum observations,
N1 and N2 are, respectively, the number of operations performed over a relatively long period of time,
corresponding to the E1 and E2 power consumption. As it is easy to observe that when vq,F2 = 0,
the power consumption of E2 is saved because the q-th SUE is capable of discerning the availability
of F2 based on the WFPD only. With a well established WFPD, periodical spectrum observation
acquisition from the LFB F2, which is intrinsically demanded by the non-geolocation-based spectrum
sensing scheme, is thus fully circumvented and the power consumption is significantly reduced
because instead of operating on dual frequency bands F1 and F2 simultaneously, the q-th SUE only
operates on the single frequency band F1.

5. Simulation and Analysis

In this section, the performance of the proposed geolocation information aided spectrum sensing
scheme is evaluated via Matlab 2016b and compared with the conventional sensing algorithms.
The conventional scheme refers to the energy detection-based sensing scheme [6,7,15], including the
AND and OR criteria-based hard decision fusion schemes. These schemes are claimed as conventional
because they do not rely on the WFP matching mechanism but keep periodically scanning the licensed
spectrum. We consider a 6 km× 6 km CCRN area consisting of 5625 grids, with the size for each
grid as 80 m× 80 m. In simulations, the main parameters are given in Table 4, where their values are
chosen under practical concern. For example, the minimum bandwidth of F2 is set as 5 MHz, which is
a good choice for the 4 G LTE technology-based SUEs. The time-frequency product Wτ is 500, which is
sufficiently large for obtaining the energy sample.
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Table 4. Simulation parameters.

Parameter Value

CCRN Area 6 km × 6 km
Grid Area 80 m × 80 m
Number of BSs, K 3
Number of Grids, Q 5625
Number of PUTs, P 2
Bandwidth of F2, W 5 MHz
Sensing Interval, τ 100 µs
Sensing Period, Ts 100 ms
Maximum Time in Update_Timer_q, ϕ 1000 Ts
Number of sensing segments, M 10
Pathloss component, α 4
Shadowing component, ζp 2 dB
Fading component, νp 5 dB
Length of data for T1-SVM training, L 22,500
Length of data for T2-SVM training, Lh 5625

Figure 5 depicts the spectrum sensing scenario, where there are three BSs and two PUTs in the
CCRN. When the two PUTs are both active, Figure 6a presents the ideally identified three regions for
accessing the LFB F2 and the regions predicted by the proposed algorithm are shown in Figure 6b. It is
worth noting that Figure 6 is drawn from the grid oriented spectrum decisions, where the q-th grid in
the figure is displayed as white, black, or grey according to PUT_flag_q ∈ {−1, 1, 0}, q ∈ {1, 2, · · · , Q}.

For the WFPD aided SUE localization, we compare the positioning accuracy performance of
the RSS and TOA schemes, as shown in Figure 7. It is easy to see that the differences between the
actual positions and the estimated positions of the SUEs are apparent for the RSS scheme, whereas the
differences are trivial for the TOA estimate-based scheme. It means that the accuracy of TOA-based
positioning is much better than that of the RSS-based scheme, because the latter one is inherently more
sensitive to the strength variations of the received reference signal over F1.
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Figure 5. Spectrum sensing scenario in the cellular cognitive radio network (CCRN).
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Figure 6. Region division when there are two active PUTs in the CCRN. (a) Regions ideally identified
when there are two active PUTs in the CCRN. (b) Regions predicted when there are two active PUTs in
the CCRN (EP = 5 W).
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Figure 7. Accuracy comparison of TOA and RSS-based SUE positioning. (a) Accuracy of received
signal strength (RSS)-based secondary user equipment (SUE) positioning. (b) Accuracy of time of
arrival (TOA)-based SUE positioning.

For the power efficiency, the conventional spectrum sensing scheme and the proposed WFP-based
spectrum sensing scheme are compared in Figure 8. It is assumed that both Escan,F2 and EWFP,F1 are
approximately equal to Eq,F1 , and Ereport,F1 is only a portion, 30%, of EWFP,F1 . When the PUTs’ locations
are already known to the SUEs or the spectrum availability information stored in the WFPD is within
the newly updated period, the SUEs are able to determine the spectrum availability by searching the
WFPD only. In other words, it is not necessary for the the SUEs to operate in the dual-band mode,
and, therefore, the power consumptions of Escan,F2 and Ereport,F1 are totally saved. It is shown that the
proposed scheme saves much more energy than the conventional non-WFPD aided sensing scheme.
In the conventional sensing scheme, it requires the SUEs to keep sensing the LFB F2 periodically
whenever there is a request to access it, whereas for the proposed scheme, the SUEs only need to sense
the spectrum on condition that the F2 status in the WFPD is outdated or there is a request to obtain the
spectrum observations over F2.
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Figure 8. Power consumption of conventional sensing scheme and the wireless fingerprint database
(WFPD) aided scheme with different sensing period Ts.

For the joint-SUE prediction-based sensing gain, we compare the spectrum prediction accuracies
for the joint-SUE prediction with |Qq| = 8 and the single-SUE-based prediction, using SVM, KNN,
and K-means algorithms. Figure 9 gives the prediction accuracy according to the distance between
the SUE and one active PUT, where the PUT is located at the 0 km point and the grey region is about
from 2∼3.5 km. It is shown that the prediction accuracy is not satisfactory within the grey region,
because it suffers an ambiguity in discerning the data collected from the boundaries of the three regions.
As shown, the prediction accuracy achieves 100% in the black and white regions and decreases when
the SUE moves around the grey area. Due to the fact that the energy observations collected from the
region borders are statistically indiscernible and it is hard for ML algorithms to classify them, the SUEs
need to be conservative to gain spectrum opportunities in this region. We also compare KNN, SVM,
K-means, and conventional sensing schemes in Figure 10, where the ROC curves for different schemes
are depicted. The proposed SVM aided sensing scheme outperforms the other ML algorithms-based
scheme and the conventional ED-based sensing schemes.

Figure 9. Prediction accuracy of different machine learning (ML) algorithms.
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Figure 10. Receiver operating characteristics (ROC) of different sensing algorithms.

6. Conclusions

In this paper, a geolocation information-based spectrum sensing mechanism is proposed for the
SUEs in the CCRN. By formulating the first task of sensing as identifying the positions of the SUEs
through the WFP matching operation in the WFPD, we tackle the second task as ascertaining the grid
oriented spectrum availability through either spectrum labels in the WFPD or ML algorithm aided
spectrum observation classification. On the condition that the PUTs’ locations are readily known,
the SUEs just need to check the LFB occupancy status in the WFPD or the distance between the SUE
and the active PUTs, whereas when the PUTs’ locations are unknown, the SUEs have to gather data
from their neighboring grids to obtain the final spectrum decision, with the help of MLSS algorithms.
Simulation results verified that the TOA estimation-based WFP scheme is superior to the RSS-based
scheme for the first task. As for the grid oriented spectrum decision making mechanism, the SVM
algorithm is verified to achieve higher spectrum prediction accuracy than the KNN and K-means
algorithms. Meanwhile, the proposed scheme exhibits the best performance in terms of detection
probability, compared with the ED-based HDF methods. Since the problem of only two transmit power
levels of the PUTs are investigated in this paper, the methods and analysis for the case of multiple
power levels are to be addressed in future work. Due to its salient power-saving capability in sensing
operations, the proposed geolocation information aided spectrum sensing scheme can be used as one
practical candidate solution in the CCRN.
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