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Abstract: Huge video data has posed great challenges on computing power and storage space,
triggering the emergence of distributed compressive video sensing (DCVS). Hardware-friendly
characteristics of this technique have consolidated its position as one of the most powerful architectures
in source-limited scenarios, namely, wireless video sensor networks (WVSNs). Recently, deep
convolutional neural networks (DCNNs) are successfully applied in DCVS because traditional
optimization-based methods are computationally elaborate and hard to meet the requirements of
real-time applications. In this paper, we propose a joint sampling–reconstruction framework for DCVS,
named “JsrNet”. JsrNet utilizes the whole group of frames as the reference to reconstruct each frame,
regardless of key frames and non-key frames, while the existing frameworks only utilize key frames
as the reference to reconstruct non-key frames. Moreover, different from the existing frameworks
which only focus on exploiting complementary information between frames in joint reconstruction,
JsrNet also applies this conception in joint sampling by adopting learnable convolutions to sample
multiple frames jointly and simultaneously in an encoder. JsrNet fully exploits spatial–temporal
correlation in both sampling and reconstruction, and achieves a competitive performance in both
the quality of reconstruction and computational complexity, making it a promising candidate in
source-limited, real-time scenarios.

Keywords: distributed compressive video sensing; deep convolutional neural networks; video
signal processing

1. Introduction

Compressive sensing (CS) [1,2] is a powerful framework for signal acquisition and processing.
By adopting a measurement matrix, CS integrates sampling and compression, making it desirable in
many applications such as magnetic resonance imaging (MRI) [3] and cognitive radio communication [4].
CS states that if the measurement matrix satisfies the restricted isometry property (RIP), we can recover
one sparse or compressible signal from fewer measurements than that suggested by the Nyquist
theory [5]. Frame-based sampling [6,7] is impractical due to limited storage space. To overcome this
problem, Lu [8] proposed block-based CS that reduced much of the implementation costs.

Over the past decade, CS has been successfully applied in video signal processing because
compared to still images, video signals contain more spatial and temporal redundancies which can be
further exploited. One of the most powerful architectures in video CS reconstruction in the literature
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is distributed compressive video sensing (DCVS), which is desirable in source-limited scenarios
because of its hardware-friendly characteristics. In DCVS, the first frame of a given group of frames is
classified as the key frame and the remaining frames are classified as non-key frames. In an encoder,
each frame is sampled independently; in a decoder, key frames are reconstructed independently
and served as references in the recovery of non-key frames. A large number of algorithms have
been proposed for DCVS, which focus on how to further exploit spatial–temporal correlation in
decoders to improve reconstruction performance. Inspired by motion estimation (ME) and motion
compensation (MC), the multi-hypothesis (MH) prediction algorithm [9] utilizes a combination of
blocks to generate a prediction for the target block. Combining MH and residual reconstruction [10],
the MH-BCS-SPL algorithm [11] yields state-of-the-art results for DCVS. Further improvements based
on MH are proposed in [12,13]. Zhao [14] proposed a reweighted residual sparsity (RRS) model which
not only takes full advantage of spatial correlation of videos to produce good initial recoveries, but also
utilizes temporal correlation between frames to further enhance the reconstruction quality. To enhance
the robustness of MH prediction, Chen [15] proposed a reweighted Tikhonov regularization which
considers the impact of each hypothesis. Although these methods can yield competitive reconstruction
quality, they are time-consuming and do not easily meet the requirements of real-time applications.
Thus, MH-BCS-SPL is commonly adopted in DCVS for its acceptable reconstruction performance and
low computational complexity [16–18].

Iterative optimization-based methods used in traditional DCVS are computationally elaborate and
do not easily meet the requirements of real-time applications. Fortunately, as deep convolutional neural
networks (DCNNs) have shown great potential in solving computer vision tasks, such as classification
and object detection, applying DCNN to solve CS problem has attracted considerable attention.
Different from traditional approaches, DCNN-based approaches utilize deep learning techniques to
directly recover the original signal from the measurement vector, achieving a better trade-off between
reconstruction quality and computational complexity. A stacked denoising autoencoder (SDA) [19]
was first proposed to efficiently estimate a signal. DeepInverse [20] was first proposed to utilize
a DCNN to learn inverse transformation. Inspired from the denoising-based approximate message
passing (D-AMP) algorithm [7], Metzler [21] developed Learned D-AMP (LDAMP), which unrolls
D-AMP algorithm into a novel neural network architecture. Reconnet [22] first reconstructs each block
using a DCNN architecture and assembles reconstructed blocks to feed into an off-the-shelf denoiser.
In Deepcodec [23], the sensing process of images is non-linear and learned from the training data.
Recently, several video frameworks were proposed. Combining DCNNs and long short-term memory
(LSTM) networks, CSVideoNet [24] achieves a promising performance in DCVS. Blocking artifacts
were introduced in these methods because they neglect edge continuity between blocks. To reduce
blocking artifacts, instead of utilizing post-processing [22], a novel network in which all measurements
of blocks from one image are used simultaneously to reconstruct the full image was proposed in [25].
A multi-frame quality enhancement (MFQE) [26] approach based on LSTM networks was proposed,
which enhances the quality of low-quality frames by using their neighboring high-quality frames.

The promise of the existing DCNN-based frameworks has been offset by two problems. First,
the existing frameworks only utilize key frames as the reference to reconstruct non-key frames. Secondly,
the conception of exploiting complementary information between frames is only applied in joint
reconstruction. To address these problems, we propose a joint sampling–reconstruction framework for
DCVS, named “JsrNet”. The main contributions of our work are three-fold:

1. JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless of
key frames and non-key frames.

2. JsrNet not only applies the conception of exploiting complementary information between frames
in joint reconstruction, but also in joint sampling by adopting learnable convolutions to sample
multiple frames jointly and simultaneously in an encoder.
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3. JsrNet exploits spatial–temporal correlation in both sampling and reconstruction, and achieves
a competitive performance on both the quality of reconstruction and computational complexity,
making it a promising candidate in source-limited, real-time scenarios.

The remainder of this paper is organized as follows. In Section 2, we review the backgrounds of
our work. Section 3 introduces a detailed description of the proposed JsrNet. In Section 4, we provide
the experimental results. Conclusions are drawn in Section 5.

2. Backgrounds

2.1. Preliminary of CS Theory

CS theory states that we can measure a signal x ∈ Rn×1 with a sub-Nyquist rate through
a measurement matrix ϕ ∈ Rm×n:

y = ϕx, (1)

where y ∈ Rm×1 denotes the measurements vector and SR = m/n denotes the sampling rate.
In block-based CS, n is equal to B2, where B denotes the block size. Since m � n, the recovery
of x from y is ill-posed. Regularized iterative algorithms [7,27] have become the standard approach to
this ill-posed inverse problem in the past few decades:

argmin
x

1
2
‖y−ϕx‖22 + λR(x), (2)

where λ is a non-negative constant and R(x) represents some priors about the signal structure, such
as sparse priors [28,29] and low-rank priors [30,31]. These methods suffer from high computational
complexity and parameter-tuning issues. Due to the powerful learning capability of deep networks,
deep learning-based algorithms [19–25,32] have successfully shown great potential in solving this
inverse problem.

2.2. Unsupervised Learning

Both supervised learning and unsupervised learning have been successfully applied in image CS
frameworks; however, we highlight the need for using unsupervised learning to find and represent
structure in video CS frameworks because videos contain a large amount of spatial and temporal
redundancies which makes them particularly suitable for building unsupervised learning models. This
is consistent with one of the motivations of our work that we aim to apply the conception of exploiting
complementary information between frames in joint sampling.

Given a T-length group of pictures {x1, . . . , xT}, we use mean square error (MSE) as the loss
function which favors high peak signal-to-noise ratio (PSNR):

L(Θ) =
1

2T

T∑
i=1

‖F(xi; Θ) − xi‖
2
2, (3)

where Θ represents the parameters in the designed network and F(xi; Θ) denotes the output of the
network. One advantage of these algorithms is low computational complexity because signals are
reconstructed by feeding to a single forward model, instead of optimizing iteratively.

3. The Proposed JsrNet

In this section, we propose a joint sampling–reconstruction framework for DCVS, named “JsrNet”.
JsrNet measures signals in a block-based manner, but reconstructs signals in a frame-based manner.
Figure 1 shows the overview architecture of JsrNet which contains three modules: (1) a convolutional
neural network (CNN) for joint sampling, in which multiple frames are sampled jointly and
simultaneously by using learnable convolutions in a block-based manner; (2) a spatial DCNN
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for initial recovery, in which all measurements of blocks from one image are used simultaneously
to output the intermediate reconstructed image; and (3) a temporal DCNN for joint reconstruction,
in which each frame is reconstructed by exploiting temporal correlation within the whole group
of frames. These three modules consist of an integrated end-to-end model whose parameters are
jointly trained.
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Figure 1. Overview architecture of JsrNet.

3.1. CNN for Joint Sampling

Different from traditional approaches which commonly utilize the random Gaussian matrix [22]
as the measurement matrix, we use a convolutional layer [33] in which parameters only depend on the
size and number of convolution kernels to mimic the sampling operation. Figure 2 shows the structure
of the encoder for joint sampling. First, video sequences are divided into several T-length groups of
frames, in which a key frame x1 is followed by some non-key frames {x2, . . . , xT}. Each frame goes
through a specific convolution layer in which rectified linear units (ReLU) activation [34] was removed
to obtain measurements in a block-based manner. High sampling rates, SRK = mK/n, are allocated
to key frames, whereas relatively low sampling rates, SRN = mN/n, are allocated to non-key frames.
During the training process, the sampling of multiple frames is jointly optimized, fully exploiting
spatial–temporal correlation in the encoder. Different from the existing frameworks which only focus
on exploiting complementary information between frames in joint reconstruction, JsrNet also applies
this conception in joint sampling by adopting learnable convolutions to sample multiple frames jointly
and simultaneously in the encoder.
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Figure 2. CNN for joint sampling. In a T-length group of pictures, the key frame x1 and the
remaining non-key frames {x2, . . . , xT} go through specific convolution layers to generate corresponding
measurements yi=1...T.

3.2. Spatial DCNN for Initial Recovery

In this subsection, we design a spatial DCNN for the initial recovery of each frame which is shown
in Figure 3. Inspired by [25] which effectively removes the blocking artifacts, all measurements of
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blocks from one image are used simultaneously to reconstruct the full image. Different from typical
DCNNs used for classification and segmentation, we remove the pooling layer which can cause
information loss. We first use a convolutional layer which uses n convolution kernels of size 1 × 1
with stride 1 and a reshape layer to transform the measurements to the feature map which has the
same dimension as the final reconstructed frame. Then, we stack 12 convolutional layers to obtain
the intermediate reconstruction xi=1...T. All the convolutional layers are followed by ReLU activation,
except the final layer, and each frame has its corresponding spatial DCNN, instead of a universal one.
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Figure 3. Spatial DCNN for initial recovery. Each intermediate reconstruction xi=1...T is recovered from
corresponding measurements yi=1...T through its corresponding spatial DCNN.

3.3. Temporal DCNN for Joint Reconstruction

JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless
of key frames and non-key frames, while the existing frameworks only utilize key frames as the
reference to reconstruct non-key frames. Figure 4 shows the structure of the temporal DCNN for joint
reconstruction, which is made up of several basic units (BUs). As shown in Figure 5, BU consists
of a concatenating layer, an inception layer, and a convolutional layer. In the concatenating layer,
we concatenate the intermediately reconstructed key frame and the output of the previous layer
into a single tensor. Adaptively exploiting temporal correlation is the key to improve the overall
reconstruction quality in traditional DCVS [17,18]. Therefore, we adopt the inception module [35] in
the inception layer to let DCNN adaptively select the optimal size to exploit temporal correlation. In the
last convolutional layer, 3 × 3 convolution kernels are utilized to reduce the number of channels from T
to T − 1. ReLU activation is removed in this convolutional layer. After stacking 5 BUs, we add a shortcut
connection to the plain network, making the DCNN easier to train [36]. Then, we de-concatenate the
output to obtain the final reconstructed frames.
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Figure 4. Temporal DCNN for joint reconstruction. Intermediate reconstructions xi=1...T go through
this temporal DCNN together to generate the final outputs.
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4. Experiments

4.1. Training Settings

We implemented the proposed JsrNet with Tensorflow framework using NVIDIA Titan XP GPU.
UCF-101 dataset [37] was used to benchmark the proposed network because there is no standard
dataset designed for DCVS. Due to limited GPU memory, we cropped the central 160 × 160 patch from
each frame and retained only the luminance component. The size of group of frames was set to 4 and
the batch size was set to 16. Groups were randomly split into 80% for training, 10% for validation, and
the remaining for testing. The sampling rate of key frames SRK was set to 0.25, whereas the sampling
rate of non-key frames SRN was set to 0.01, 0.04, and 0.1. We adopted the Adam optimizer [38] with
a learning rate of 0.0001 to train JsrNet for 50 epochs.

In DCVS, the reconstruction quality of key frames plays a significant role in improving the overall
reconstruction performance, because key frames are allocated with high sampling rates for guaranteed
high reconstruction quality to serve as references in the recovery of non-key frames. The reconstruction
quality of key frames, however, can be easily degraded by the poor reconstruction quality of non-key
frames in joint optimizations. Hence, we pre-trained the sampling part and the spatial DCNN for key
frames based on VOC dataset [39]. The learning rate was set to 0.0001 and the batch size was set to 128.
We pre-trained the subnetwork for 200 epochs.

4.2. Performance Comparisons

We compared the proposed JsrNet with four state-of-the-art algorithms experimentally:
(1) D-AMP [7], which is a representative of the state-of-the-art iterative algorithms developed for
CS; (2) Reconnet [22], which is a dedicated DCNN-based approach for block-based CS; (3) FIR [25],
which is a novel full image recovery CS framework for block-based CS; and (4) MH-BCS-SPL [11],
which achieves the state-of-the-art performance in DCVS. CSVideoNet [24] is another architecture
designed for DCVS and was intended to be compared; however, we could not present the results of
CSVideoNet due to limited GPU memory. The parameters used in these methods were set as default to
keep fairness.

We adopted PSNR and structural similarity (SSIM) as objective standards to measure reconstruction
performance. Table 1 shows the average PSNR and SSIM of the test set. JsrNet outperformed the
other four algorithms. For example, in experiments with SRN = 0.01, JsrNet outperformed Reconnet,
MH-BCS-SPL, FIR, and D-AMP by 8.37 dB, 2.91 dB, 4.03 dB, and 16.69 dB, respectively. Furthermore,
Figures 6 and 7 present examples of visual comparisons with different sampling rates. Reconnet,
D-AMP, and MH-BCS-SPL suffered from blocking artifacts, especially when having low sampling
rates. The main reason was that they compressed and recovered signals in a block-wise manner, but
ignored edge continuity between blocks. Benefiting from exploiting temporal correlation instead of
treating each frame independently, MH-BCS-SPL slightly alleviated the blocking artifacts and achieved
an acceptable performance. Although FIR succeeded in reducing the blocking artifacts because all the
measurements of blocks from one image were used to simultaneously reconstruct the full image, FIR
failed in preserving image details. It can be seen clearly that JsrNet achieved the best performance.
There were several factors contributing to this improvement. First, combining the advantages of FIR
and MH-BCS-SPL, JsrNet utilized the whole group of frames as the reference to reconstruct each frame,
regardless of key frames and non-key frames. JsrNet further applied the conception of exploiting
complementary information between frames in joint sampling by adopting learnable convolutions to
sample multiple frames jointly and simultaneously in the encoder.
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Figure 7. Visual comparisons of WallPushups_g10. (a) JsrNet, (b) Reconnet, (c) MH-BCS-SPL, (d) FIR,
(e) D-AMP.

Table 1. Reconstruction performance comparisons (PSNR/SSIM).

SRN JsrNet Reconnet MH-BCS-SPL FIR D-AMP

0.01 29.81 dB/0.8604 21.44 dB/0.5766 26.90 dB/0.7837 25.78 dB/0.7419 13.12 dB/0.2283
0.04 31.99 dB/0.9018 23.58 dB/0.6554 29.02 dB/0.8372 29.27 dB/0.8499 20.36 dB/0.6284
0.1 34.15 dB/0.9390 25.44 dB/0.7371 30.21 dB/0.8604 32.71 dB/0.9107 26.56 dB/0.7625

Table 2 shows the comparisons of average reconstruction speed of each frame. Compared with
MH-BCS-SPL and DAMP, the reconstruction time of JsrNet was nearly 1000 times faster. This was
because DCNN-based approaches reconstruct video sequences via a forward model instead of solving an
iterative optimization problem. More importantly, the speed of DCNN-based approaches depends only
on the model capacity, whereas traditional approaches depend on the sampling rate. Compared with
Reconnet and FIR, which treat each frame independently, JsrNet reconstructed frames simultaneously,
and achieved the best performance.

Table 2. Reconstruction speed comparisons (s).

SRN JsrNet Reconnet MH-BCS-SPL FIR D-AMP

0.01 0.003 0.008 4.631 0.034 14.935
0.04 0.003 0.008 3.805 0.033 14.822
0.1 0.003 0.008 1.932 0.034 13.097

5. Conclusions

A DCNN-based learning framework, named “JsrNet”, is proposed with the aim to apply DCVS
in real-time applications. JsrNet utilizes the whole group of frames as the reference to reconstruct
each frame, regardless of key frames and non-key frames. Moreover, JsrNet applies the conception
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of exploiting complementary information between frames in joint sampling by adopting learnable
convolutions to sample multiple frames jointly and simultaneously in an encoder. Benefiting from
fully exploiting spatial–temporal correlation in both sampling and reconstruction, JsrNet achieves
a satisfying reconstruction quality without the blocking artifacts. Moreover, the non-iterative nature of
DCNNs leads to low computational complexity, making JsrNet a promising candidate in source-limited,
real-time scenarios. In future, we will focus on utilizing generative models for the representation and
reconstruction of video sequences.
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