
sensors

Article

JsrNet: A Joint Sampling–Reconstruction Framework
for Distributed Compressive Video Sensing

Can Chen 1, Yutong Wu 2, Chao Zhou 1 and Dengyin Zhang 3,4,*
1 College of Telecommunications and Information Engineering, Nanjing University of Posts and

Telecommunications, Nanjing 210003, China; chencan15@126.com (C.C.); zhouchaogl@163.com (C.Z.)
2 College of Information Technology, Shanghai Ocean University, Shanghai 201306, China;

wuyutong20000801@126.com
3 College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
4 Jiangsu Key Laboratory of Broadband Wireless Communication and Internet of Things, Nanjing University

of Posts and Telecommunications, Nanjing 210003, China
* Correspondence: zhangdy@njupt.edu.cn

Received: 1 December 2019; Accepted: 27 December 2019; Published: 30 December 2019 ����������
�������

Abstract: Huge video data has posed great challenges on computing power and storage space,
triggering the emergence of distributed compressive video sensing (DCVS). Hardware-friendly
characteristics of this technique have consolidated its position as one of the most powerful architectures
in source-limited scenarios, namely, wireless video sensor networks (WVSNs). Recently, deep
convolutional neural networks (DCNNs) are successfully applied in DCVS because traditional
optimization-based methods are computationally elaborate and hard to meet the requirements of
real-time applications. In this paper, we propose a joint sampling–reconstruction framework for DCVS,
named “JsrNet”. JsrNet utilizes the whole group of frames as the reference to reconstruct each frame,
regardless of key frames and non-key frames, while the existing frameworks only utilize key frames
as the reference to reconstruct non-key frames. Moreover, different from the existing frameworks
which only focus on exploiting complementary information between frames in joint reconstruction,
JsrNet also applies this conception in joint sampling by adopting learnable convolutions to sample
multiple frames jointly and simultaneously in an encoder. JsrNet fully exploits spatial–temporal
correlation in both sampling and reconstruction, and achieves a competitive performance in both
the quality of reconstruction and computational complexity, making it a promising candidate in
source-limited, real-time scenarios.

Keywords: distributed compressive video sensing; deep convolutional neural networks; video
signal processing

1. Introduction

Compressive sensing (CS) [1,2] is a powerful framework for signal acquisition and processing.
By adopting a measurement matrix, CS integrates sampling and compression, making it desirable in
many applications such as magnetic resonance imaging (MRI) [3] and cognitive radio communication [4].
CS states that if the measurement matrix satisfies the restricted isometry property (RIP), we can recover
one sparse or compressible signal from fewer measurements than that suggested by the Nyquist
theory [5]. Frame-based sampling [6,7] is impractical due to limited storage space. To overcome this
problem, Lu [8] proposed block-based CS that reduced much of the implementation costs.

Over the past decade, CS has been successfully applied in video signal processing because
compared to still images, video signals contain more spatial and temporal redundancies which can be
further exploited. One of the most powerful architectures in video CS reconstruction in the literature

Sensors 2020, 20, 206; doi:10.3390/s20010206 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/1/206?type=check_update&version=1
http://dx.doi.org/10.3390/s20010206
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 206 2 of 12

is distributed compressive video sensing (DCVS), which is desirable in source-limited scenarios
because of its hardware-friendly characteristics. In DCVS, the first frame of a given group of frames is
classified as the key frame and the remaining frames are classified as non-key frames. In an encoder,
each frame is sampled independently; in a decoder, key frames are reconstructed independently
and served as references in the recovery of non-key frames. A large number of algorithms have
been proposed for DCVS, which focus on how to further exploit spatial–temporal correlation in
decoders to improve reconstruction performance. Inspired by motion estimation (ME) and motion
compensation (MC), the multi-hypothesis (MH) prediction algorithm [9] utilizes a combination of
blocks to generate a prediction for the target block. Combining MH and residual reconstruction [10],
the MH-BCS-SPL algorithm [11] yields state-of-the-art results for DCVS. Further improvements based
on MH are proposed in [12,13]. Zhao [14] proposed a reweighted residual sparsity (RRS) model which
not only takes full advantage of spatial correlation of videos to produce good initial recoveries, but also
utilizes temporal correlation between frames to further enhance the reconstruction quality. To enhance
the robustness of MH prediction, Chen [15] proposed a reweighted Tikhonov regularization which
considers the impact of each hypothesis. Although these methods can yield competitive reconstruction
quality, they are time-consuming and do not easily meet the requirements of real-time applications.
Thus, MH-BCS-SPL is commonly adopted in DCVS for its acceptable reconstruction performance and
low computational complexity [16–18].

Iterative optimization-based methods used in traditional DCVS are computationally elaborate and
do not easily meet the requirements of real-time applications. Fortunately, as deep convolutional neural
networks (DCNNs) have shown great potential in solving computer vision tasks, such as classification
and object detection, applying DCNN to solve CS problem has attracted considerable attention.
Different from traditional approaches, DCNN-based approaches utilize deep learning techniques to
directly recover the original signal from the measurement vector, achieving a better trade-off between
reconstruction quality and computational complexity. A stacked denoising autoencoder (SDA) [19]
was first proposed to efficiently estimate a signal. DeepInverse [20] was first proposed to utilize
a DCNN to learn inverse transformation. Inspired from the denoising-based approximate message
passing (D-AMP) algorithm [7], Metzler [21] developed Learned D-AMP (LDAMP), which unrolls
D-AMP algorithm into a novel neural network architecture. Reconnet [22] first reconstructs each block
using a DCNN architecture and assembles reconstructed blocks to feed into an off-the-shelf denoiser.
In Deepcodec [23], the sensing process of images is non-linear and learned from the training data.
Recently, several video frameworks were proposed. Combining DCNNs and long short-term memory
(LSTM) networks, CSVideoNet [24] achieves a promising performance in DCVS. Blocking artifacts
were introduced in these methods because they neglect edge continuity between blocks. To reduce
blocking artifacts, instead of utilizing post-processing [22], a novel network in which all measurements
of blocks from one image are used simultaneously to reconstruct the full image was proposed in [25].
A multi-frame quality enhancement (MFQE) [26] approach based on LSTM networks was proposed,
which enhances the quality of low-quality frames by using their neighboring high-quality frames.

The promise of the existing DCNN-based frameworks has been offset by two problems. First,
the existing frameworks only utilize key frames as the reference to reconstruct non-key frames. Secondly,
the conception of exploiting complementary information between frames is only applied in joint
reconstruction. To address these problems, we propose a joint sampling–reconstruction framework for
DCVS, named “JsrNet”. The main contributions of our work are three-fold:

1. JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless of
key frames and non-key frames.

2. JsrNet not only applies the conception of exploiting complementary information between frames
in joint reconstruction, but also in joint sampling by adopting learnable convolutions to sample
multiple frames jointly and simultaneously in an encoder.

Sensors 2020, 20, 206 3 of 12

3. JsrNet exploits spatial–temporal correlation in both sampling and reconstruction, and achieves
a competitive performance on both the quality of reconstruction and computational complexity,
making it a promising candidate in source-limited, real-time scenarios.

The remainder of this paper is organized as follows. In Section 2, we review the backgrounds of
our work. Section 3 introduces a detailed description of the proposed JsrNet. In Section 4, we provide
the experimental results. Conclusions are drawn in Section 5.

2. Backgrounds

2.1. Preliminary of CS Theory

CS theory states that we can measure a signal x ∈ Rn×1 with a sub-Nyquist rate through
a measurement matrix ϕ ∈ Rm×n:

y = ϕx, (1)

where y ∈ Rm×1 denotes the measurements vector and SR = m/n denotes the sampling rate.
In block-based CS, n is equal to B2, where B denotes the block size. Since m � n, the recovery
of x from y is ill-posed. Regularized iterative algorithms [7,27] have become the standard approach to
this ill-posed inverse problem in the past few decades:

argmin
x

1
2
‖y−ϕx‖22 + λR(x), (2)

where λ is a non-negative constant and R(x) represents some priors about the signal structure, such
as sparse priors [28,29] and low-rank priors [30,31]. These methods suffer from high computational
complexity and parameter-tuning issues. Due to the powerful learning capability of deep networks,
deep learning-based algorithms [19–25,32] have successfully shown great potential in solving this
inverse problem.

2.2. Unsupervised Learning

Both supervised learning and unsupervised learning have been successfully applied in image CS
frameworks; however, we highlight the need for using unsupervised learning to find and represent
structure in video CS frameworks because videos contain a large amount of spatial and temporal
redundancies which makes them particularly suitable for building unsupervised learning models. This
is consistent with one of the motivations of our work that we aim to apply the conception of exploiting
complementary information between frames in joint sampling.

Given a T-length group of pictures {x1, . . . , xT}, we use mean square error (MSE) as the loss
function which favors high peak signal-to-noise ratio (PSNR):

L(Θ) =
1

2T

T∑
i=1

‖F(xi; Θ) − xi‖
2
2, (3)

where Θ represents the parameters in the designed network and F(xi; Θ) denotes the output of the
network. One advantage of these algorithms is low computational complexity because signals are
reconstructed by feeding to a single forward model, instead of optimizing iteratively.

3. The Proposed JsrNet

In this section, we propose a joint sampling–reconstruction framework for DCVS, named “JsrNet”.
JsrNet measures signals in a block-based manner, but reconstructs signals in a frame-based manner.
Figure 1 shows the overview architecture of JsrNet which contains three modules: (1) a convolutional
neural network (CNN) for joint sampling, in which multiple frames are sampled jointly and
simultaneously by using learnable convolutions in a block-based manner; (2) a spatial DCNN

Sensors 2020, 20, 206 4 of 12

for initial recovery, in which all measurements of blocks from one image are used simultaneously
to output the intermediate reconstructed image; and (3) a temporal DCNN for joint reconstruction,
in which each frame is reconstructed by exploiting temporal correlation within the whole group
of frames. These three modules consist of an integrated end-to-end model whose parameters are
jointly trained.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 12

Figure 1. Overview architecture of JsrNet.

3.1. CNN for Joint Sampling

Different from traditional approaches which commonly utilize the random Gaussian matrix [22]

as the measurement matrix, we use a convolutional layer [33] in which parameters only depend on

the size and number of convolution kernels to mimic the sampling operation. Figure 2 shows the

structure of the encoder for joint sampling. First, video sequences are divided into several T-length

groups of frames, in which a key frame 1x is followed by some non-key frames 2{ , , }Tx x . Each

frame goes through a specific convolution layer in which rectified linear units (ReLU) activation [34]

was removed to obtain measurements in a block-based manner. High sampling rates, K K /SR m n ,

are allocated to key frames, whereas relatively low sampling rates, N N /SR m n , are allocated to non-

key frames. During the training process, the sampling of multiple frames is jointly optimized, fully

exploiting spatial–temporal correlation in the encoder. Different from the existing frameworks which

only focus on exploiting complementary information between frames in joint reconstruction, JsrNet

also applies this conception in joint sampling by adopting learnable convolutions to sample multiple

frames jointly and simultaneously in the encoder.

Figure 2. CNN for joint sampling. In a T-length group of pictures, the key frame 1x and the

remaining non-key frames 2{ , , }Tx x go through specific convolution layers to generate

corresponding measurements 1i Ty .

3.2. Spatial DCNN for Initial Recovery

In this subsection, we design a spatial DCNN for the initial recovery of each frame which is

shown in Figure 3. Inspired by [25] which effectively removes the blocking artifacts, all measurements

of blocks from one image are used simultaneously to reconstruct the full image. Different from typical

DCNNs used for classification and segmentation, we remove the pooling layer which can cause

information loss. We first use a convolutional layer which uses n convolution kernels of size 1 × 1

with stride 1 and a reshape layer to transform the measurements to the feature map which has the

same dimension as the final reconstructed frame. Then, we stack 12 convolutional layers to obtain

Figure 1. Overview architecture of JsrNet.

3.1. CNN for Joint Sampling

Different from traditional approaches which commonly utilize the random Gaussian matrix [22]
as the measurement matrix, we use a convolutional layer [33] in which parameters only depend on the
size and number of convolution kernels to mimic the sampling operation. Figure 2 shows the structure
of the encoder for joint sampling. First, video sequences are divided into several T-length groups of
frames, in which a key frame x1 is followed by some non-key frames {x2, . . . , xT}. Each frame goes
through a specific convolution layer in which rectified linear units (ReLU) activation [34] was removed
to obtain measurements in a block-based manner. High sampling rates, SRK = mK/n, are allocated
to key frames, whereas relatively low sampling rates, SRN = mN/n, are allocated to non-key frames.
During the training process, the sampling of multiple frames is jointly optimized, fully exploiting
spatial–temporal correlation in the encoder. Different from the existing frameworks which only focus
on exploiting complementary information between frames in joint reconstruction, JsrNet also applies
this conception in joint sampling by adopting learnable convolutions to sample multiple frames jointly
and simultaneously in the encoder.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 12

Figure 1. Overview architecture of JsrNet.

3.1. CNN for Joint Sampling

Different from traditional approaches which commonly utilize the random Gaussian matrix [22]

as the measurement matrix, we use a convolutional layer [33] in which parameters only depend on

the size and number of convolution kernels to mimic the sampling operation. Figure 2 shows the

structure of the encoder for joint sampling. First, video sequences are divided into several T-length

groups of frames, in which a key frame 1x is followed by some non-key frames 2{ , , }Tx x . Each

frame goes through a specific convolution layer in which rectified linear units (ReLU) activation [34]

was removed to obtain measurements in a block-based manner. High sampling rates, K K /SR m n ,

are allocated to key frames, whereas relatively low sampling rates, N N /SR m n , are allocated to non-

key frames. During the training process, the sampling of multiple frames is jointly optimized, fully

exploiting spatial–temporal correlation in the encoder. Different from the existing frameworks which

only focus on exploiting complementary information between frames in joint reconstruction, JsrNet

also applies this conception in joint sampling by adopting learnable convolutions to sample multiple

frames jointly and simultaneously in the encoder.

Figure 2. CNN for joint sampling. In a T-length group of pictures, the key frame 1x and the

remaining non-key frames 2{ , , }Tx x go through specific convolution layers to generate

corresponding measurements 1i Ty .

3.2. Spatial DCNN for Initial Recovery

In this subsection, we design a spatial DCNN for the initial recovery of each frame which is

shown in Figure 3. Inspired by [25] which effectively removes the blocking artifacts, all measurements

of blocks from one image are used simultaneously to reconstruct the full image. Different from typical

DCNNs used for classification and segmentation, we remove the pooling layer which can cause

information loss. We first use a convolutional layer which uses n convolution kernels of size 1 × 1

with stride 1 and a reshape layer to transform the measurements to the feature map which has the

same dimension as the final reconstructed frame. Then, we stack 12 convolutional layers to obtain

Figure 2. CNN for joint sampling. In a T-length group of pictures, the key frame x1 and the
remaining non-key frames {x2, . . . , xT} go through specific convolution layers to generate corresponding
measurements yi=1...T.

3.2. Spatial DCNN for Initial Recovery

In this subsection, we design a spatial DCNN for the initial recovery of each frame which is shown
in Figure 3. Inspired by [25] which effectively removes the blocking artifacts, all measurements of

Sensors 2020, 20, 206 5 of 12

blocks from one image are used simultaneously to reconstruct the full image. Different from typical
DCNNs used for classification and segmentation, we remove the pooling layer which can cause
information loss. We first use a convolutional layer which uses n convolution kernels of size 1 × 1
with stride 1 and a reshape layer to transform the measurements to the feature map which has the
same dimension as the final reconstructed frame. Then, we stack 12 convolutional layers to obtain
the intermediate reconstruction xi=1...T. All the convolutional layers are followed by ReLU activation,
except the final layer, and each frame has its corresponding spatial DCNN, instead of a universal one.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 12

the intermediate reconstruction 1i Tx . All the convolutional layers are followed by ReLU activation,

except the final layer, and each frame has its corresponding spatial DCNN, instead of a universal one.

Figure 3. Spatial DCNN for initial recovery. Each intermediate reconstruction 1i Tx is recovered

from corresponding measurements 1i Ty through its corresponding spatial DCNN.

3.3. Temporal DCNN for Joint Reconstruction

JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless

of key frames and non-key frames, while the existing frameworks only utilize key frames as the

reference to reconstruct non-key frames. Figure 4 shows the structure of the temporal DCNN for joint

reconstruction, which is made up of several basic units (BUs). As shown in Figure 5, BU consists of a

concatenating layer, an inception layer, and a convolutional layer. In the concatenating layer, we

concatenate the intermediately reconstructed key frame and the output of the previous layer into a

single tensor. Adaptively exploiting temporal correlation is the key to improve the overall

reconstruction quality in traditional DCVS [17,18]. Therefore, we adopt the inception module [35] in

the inception layer to let DCNN adaptively select the optimal size to exploit temporal correlation. In

the last convolutional layer, 3 × 3 convolution kernels are utilized to reduce the number of channels

from T to T − 1. ReLU activation is removed in this convolutional layer. After stacking 5 BUs, we add

a shortcut connection to the plain network, making the DCNN easier to train [36]. Then, we de-

concatenate the output to obtain the final reconstructed frames.

Figure 4. Temporal DCNN for joint reconstruction. Intermediate reconstructions 1i Tx go through

this temporal DCNN together to generate the final outputs.

Figure 5. BU. The inputs are the intermediate reconstruction of key frame 1x and the outputs of the

previous layer.

Figure 3. Spatial DCNN for initial recovery. Each intermediate reconstruction xi=1...T is recovered from
corresponding measurements yi=1...T through its corresponding spatial DCNN.

3.3. Temporal DCNN for Joint Reconstruction

JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless
of key frames and non-key frames, while the existing frameworks only utilize key frames as the
reference to reconstruct non-key frames. Figure 4 shows the structure of the temporal DCNN for joint
reconstruction, which is made up of several basic units (BUs). As shown in Figure 5, BU consists
of a concatenating layer, an inception layer, and a convolutional layer. In the concatenating layer,
we concatenate the intermediately reconstructed key frame and the output of the previous layer
into a single tensor. Adaptively exploiting temporal correlation is the key to improve the overall
reconstruction quality in traditional DCVS [17,18]. Therefore, we adopt the inception module [35] in
the inception layer to let DCNN adaptively select the optimal size to exploit temporal correlation. In the
last convolutional layer, 3 × 3 convolution kernels are utilized to reduce the number of channels from T
to T − 1. ReLU activation is removed in this convolutional layer. After stacking 5 BUs, we add a shortcut
connection to the plain network, making the DCNN easier to train [36]. Then, we de-concatenate the
output to obtain the final reconstructed frames.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 12

the intermediate reconstruction 1i Tx . All the convolutional layers are followed by ReLU activation,

except the final layer, and each frame has its corresponding spatial DCNN, instead of a universal one.

Figure 3. Spatial DCNN for initial recovery. Each intermediate reconstruction 1i Tx is recovered

from corresponding measurements 1i Ty through its corresponding spatial DCNN.

3.3. Temporal DCNN for Joint Reconstruction

JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless

of key frames and non-key frames, while the existing frameworks only utilize key frames as the

reference to reconstruct non-key frames. Figure 4 shows the structure of the temporal DCNN for joint

reconstruction, which is made up of several basic units (BUs). As shown in Figure 5, BU consists of a

concatenating layer, an inception layer, and a convolutional layer. In the concatenating layer, we

concatenate the intermediately reconstructed key frame and the output of the previous layer into a

single tensor. Adaptively exploiting temporal correlation is the key to improve the overall

reconstruction quality in traditional DCVS [17,18]. Therefore, we adopt the inception module [35] in

the inception layer to let DCNN adaptively select the optimal size to exploit temporal correlation. In

the last convolutional layer, 3 × 3 convolution kernels are utilized to reduce the number of channels

from T to T − 1. ReLU activation is removed in this convolutional layer. After stacking 5 BUs, we add

a shortcut connection to the plain network, making the DCNN easier to train [36]. Then, we de-

concatenate the output to obtain the final reconstructed frames.

Figure 4. Temporal DCNN for joint reconstruction. Intermediate reconstructions 1i Tx go through

this temporal DCNN together to generate the final outputs.

Figure 5. BU. The inputs are the intermediate reconstruction of key frame 1x and the outputs of the

previous layer.

Figure 4. Temporal DCNN for joint reconstruction. Intermediate reconstructions xi=1...T go through
this temporal DCNN together to generate the final outputs.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 12

the intermediate reconstruction 1i Tx . All the convolutional layers are followed by ReLU activation,

except the final layer, and each frame has its corresponding spatial DCNN, instead of a universal one.

Figure 3. Spatial DCNN for initial recovery. Each intermediate reconstruction 1i Tx is recovered

from corresponding measurements 1i Ty through its corresponding spatial DCNN.

3.3. Temporal DCNN for Joint Reconstruction

JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless

of key frames and non-key frames, while the existing frameworks only utilize key frames as the

reference to reconstruct non-key frames. Figure 4 shows the structure of the temporal DCNN for joint

reconstruction, which is made up of several basic units (BUs). As shown in Figure 5, BU consists of a

concatenating layer, an inception layer, and a convolutional layer. In the concatenating layer, we

concatenate the intermediately reconstructed key frame and the output of the previous layer into a

single tensor. Adaptively exploiting temporal correlation is the key to improve the overall

reconstruction quality in traditional DCVS [17,18]. Therefore, we adopt the inception module [35] in

the inception layer to let DCNN adaptively select the optimal size to exploit temporal correlation. In

the last convolutional layer, 3 × 3 convolution kernels are utilized to reduce the number of channels

from T to T − 1. ReLU activation is removed in this convolutional layer. After stacking 5 BUs, we add

a shortcut connection to the plain network, making the DCNN easier to train [36]. Then, we de-

concatenate the output to obtain the final reconstructed frames.

Figure 4. Temporal DCNN for joint reconstruction. Intermediate reconstructions 1i Tx go through

this temporal DCNN together to generate the final outputs.

Figure 5. BU. The inputs are the intermediate reconstruction of key frame 1x and the outputs of the

previous layer.

Figure 5. BU. The inputs are the intermediate reconstruction of key frame x1 and the outputs of the
previous layer.

Sensors 2020, 20, 206 6 of 12

4. Experiments

4.1. Training Settings

We implemented the proposed JsrNet with Tensorflow framework using NVIDIA Titan XP GPU.
UCF-101 dataset [37] was used to benchmark the proposed network because there is no standard
dataset designed for DCVS. Due to limited GPU memory, we cropped the central 160 × 160 patch from
each frame and retained only the luminance component. The size of group of frames was set to 4 and
the batch size was set to 16. Groups were randomly split into 80% for training, 10% for validation, and
the remaining for testing. The sampling rate of key frames SRK was set to 0.25, whereas the sampling
rate of non-key frames SRN was set to 0.01, 0.04, and 0.1. We adopted the Adam optimizer [38] with
a learning rate of 0.0001 to train JsrNet for 50 epochs.

In DCVS, the reconstruction quality of key frames plays a significant role in improving the overall
reconstruction performance, because key frames are allocated with high sampling rates for guaranteed
high reconstruction quality to serve as references in the recovery of non-key frames. The reconstruction
quality of key frames, however, can be easily degraded by the poor reconstruction quality of non-key
frames in joint optimizations. Hence, we pre-trained the sampling part and the spatial DCNN for key
frames based on VOC dataset [39]. The learning rate was set to 0.0001 and the batch size was set to 128.
We pre-trained the subnetwork for 200 epochs.

4.2. Performance Comparisons

We compared the proposed JsrNet with four state-of-the-art algorithms experimentally:
(1) D-AMP [7], which is a representative of the state-of-the-art iterative algorithms developed for
CS; (2) Reconnet [22], which is a dedicated DCNN-based approach for block-based CS; (3) FIR [25],
which is a novel full image recovery CS framework for block-based CS; and (4) MH-BCS-SPL [11],
which achieves the state-of-the-art performance in DCVS. CSVideoNet [24] is another architecture
designed for DCVS and was intended to be compared; however, we could not present the results of
CSVideoNet due to limited GPU memory. The parameters used in these methods were set as default to
keep fairness.

We adopted PSNR and structural similarity (SSIM) as objective standards to measure reconstruction
performance. Table 1 shows the average PSNR and SSIM of the test set. JsrNet outperformed the
other four algorithms. For example, in experiments with SRN = 0.01, JsrNet outperformed Reconnet,
MH-BCS-SPL, FIR, and D-AMP by 8.37 dB, 2.91 dB, 4.03 dB, and 16.69 dB, respectively. Furthermore,
Figures 6 and 7 present examples of visual comparisons with different sampling rates. Reconnet,
D-AMP, and MH-BCS-SPL suffered from blocking artifacts, especially when having low sampling
rates. The main reason was that they compressed and recovered signals in a block-wise manner, but
ignored edge continuity between blocks. Benefiting from exploiting temporal correlation instead of
treating each frame independently, MH-BCS-SPL slightly alleviated the blocking artifacts and achieved
an acceptable performance. Although FIR succeeded in reducing the blocking artifacts because all the
measurements of blocks from one image were used to simultaneously reconstruct the full image, FIR
failed in preserving image details. It can be seen clearly that JsrNet achieved the best performance.
There were several factors contributing to this improvement. First, combining the advantages of FIR
and MH-BCS-SPL, JsrNet utilized the whole group of frames as the reference to reconstruct each frame,
regardless of key frames and non-key frames. JsrNet further applied the conception of exploiting
complementary information between frames in joint sampling by adopting learnable convolutions to
sample multiple frames jointly and simultaneously in the encoder.

Sensors 2020, 20, 206 7 of 12

Sensors 2020, 20, x FOR PEER REVIEW 7 of 12

NSR = 0.01 NSR = 0.04 NSR = 0.1

(a)

(b)

(c)

(d)

Figure 6. Cont.

Sensors 2020, 20, 206 8 of 12

Sensors 2020, 20, x FOR PEER REVIEW 8 of 12

(e)

Figure 6. Visual comparisons of WallPushups_g20. (a) JsrNet, (b) Reconnet, (c) MH-BCS-SPL, (d) FIR,

(e) D-AMP.

NSR = 0.01 NSR = 0.04 NSR = 0.1

(a)

(b)

(c)

Figure 6. Visual comparisons of WallPushups_g20. (a) JsrNet, (b) Reconnet, (c) MH-BCS-SPL, (d) FIR,
(e) D-AMP.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 12

(e)

Figure 6. Visual comparisons of WallPushups_g20. (a) JsrNet, (b) Reconnet, (c) MH-BCS-SPL, (d) FIR,

(e) D-AMP.

NSR = 0.01 NSR = 0.04 NSR = 0.1

(a)

(b)

(c)

Figure 7. Cont.

Sensors 2020, 20, 206 9 of 12

Sensors 2020, 20, x FOR PEER REVIEW 9 of 12

(d)

(e)

Figure 7. Visual comparisons of WallPushups_g10. (a) JsrNet, (b) Reconnet, (c) MH-BCS-SPL, (d) FIR,

(e) D-AMP.

Table 1. Reconstruction performance comparisons (PSNR/SSIM).

NSR JsrNet Reconnet MH-BCS-SPL FIR D-AMP

0.01 29.81 dB/0.8604 21.44 dB/0.5766 26.90 dB/0.7837 25.78 dB/0.7419 13.12 dB/0.2283

0.04 31.99 dB/0.9018 23.58 dB/0.6554 29.02 dB/0.8372 29.27 dB/0.8499 20.36 dB/0.6284

0.1 34.15 dB/0.9390 25.44 dB/0.7371 30.21 dB/0.8604 32.71 dB/0.9107 26.56 dB/0.7625

Table 2 shows the comparisons of average reconstruction speed of each frame. Compared with

MH-BCS-SPL and DAMP, the reconstruction time of JsrNet was nearly 1000 times faster. This was

because DCNN-based approaches reconstruct video sequences via a forward model instead of

solving an iterative optimization problem. More importantly, the speed of DCNN-based approaches

depends only on the model capacity, whereas traditional approaches depend on the sampling rate.

Compared with Reconnet and FIR, which treat each frame independently, JsrNet reconstructed

frames simultaneously, and achieved the best performance.

Table 2. Reconstruction speed comparisons (s).

NSR JsrNet Reconnet MH-BCS-SPL FIR D-AMP

0.01 0.003 0.008 4.631 0.034 14.935

0.04 0.003 0.008 3.805 0.033 14.822

0.1 0.003 0.008 1.932 0.034 13.097

5. Conclusions

A DCNN-based learning framework, named “JsrNet”, is proposed with the aim to apply DCVS

in real-time applications. JsrNet utilizes the whole group of frames as the reference to reconstruct

each frame, regardless of key frames and non-key frames. Moreover, JsrNet applies the conception

of exploiting complementary information between frames in joint sampling by adopting learnable

Figure 7. Visual comparisons of WallPushups_g10. (a) JsrNet, (b) Reconnet, (c) MH-BCS-SPL, (d) FIR,
(e) D-AMP.

Table 1. Reconstruction performance comparisons (PSNR/SSIM).

SRN JsrNet Reconnet MH-BCS-SPL FIR D-AMP

0.01 29.81 dB/0.8604 21.44 dB/0.5766 26.90 dB/0.7837 25.78 dB/0.7419 13.12 dB/0.2283
0.04 31.99 dB/0.9018 23.58 dB/0.6554 29.02 dB/0.8372 29.27 dB/0.8499 20.36 dB/0.6284
0.1 34.15 dB/0.9390 25.44 dB/0.7371 30.21 dB/0.8604 32.71 dB/0.9107 26.56 dB/0.7625

Table 2 shows the comparisons of average reconstruction speed of each frame. Compared with
MH-BCS-SPL and DAMP, the reconstruction time of JsrNet was nearly 1000 times faster. This was
because DCNN-based approaches reconstruct video sequences via a forward model instead of solving an
iterative optimization problem. More importantly, the speed of DCNN-based approaches depends only
on the model capacity, whereas traditional approaches depend on the sampling rate. Compared with
Reconnet and FIR, which treat each frame independently, JsrNet reconstructed frames simultaneously,
and achieved the best performance.

Table 2. Reconstruction speed comparisons (s).

SRN JsrNet Reconnet MH-BCS-SPL FIR D-AMP

0.01 0.003 0.008 4.631 0.034 14.935
0.04 0.003 0.008 3.805 0.033 14.822
0.1 0.003 0.008 1.932 0.034 13.097

5. Conclusions

A DCNN-based learning framework, named “JsrNet”, is proposed with the aim to apply DCVS
in real-time applications. JsrNet utilizes the whole group of frames as the reference to reconstruct
each frame, regardless of key frames and non-key frames. Moreover, JsrNet applies the conception

Sensors 2020, 20, 206 10 of 12

of exploiting complementary information between frames in joint sampling by adopting learnable
convolutions to sample multiple frames jointly and simultaneously in an encoder. Benefiting from
fully exploiting spatial–temporal correlation in both sampling and reconstruction, JsrNet achieves
a satisfying reconstruction quality without the blocking artifacts. Moreover, the non-iterative nature of
DCNNs leads to low computational complexity, making JsrNet a promising candidate in source-limited,
real-time scenarios. In future, we will focus on utilizing generative models for the representation and
reconstruction of video sequences.

Author Contributions: Conceptualization, C.C.; methodology, C.C.; software, C.C.; validation, C.C.; formal
analysis, C.C.; investigation, C.C.; resources, C.C.; data curation, C.C.; writing—original draft preparation, C.C.;
writing—review and editing, Y.W. and C.Z.; visualization, C.C.; supervision, D.Z.; project administration, D.Z.;
funding acquisition, D.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
(No. 61571241 and 61872423), the Industry Prospective Primary Research & Development Plan of Jiangsu
Province (No. BE2017111), the Scientific Research Foundation of the Higher Education Institutions of Jiangsu
Province (No. 19KJA180006), and Postgraduate Research & Practice Innovation Program of Jiangsu Province
(No. KYCX18_0889).

Acknowledgments: The authors thank the editors and anonymous reviewers for providing helpful suggestions
for improving the quality of this manuscript, and the MDPI English Editing Team.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [CrossRef]

2. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
3. Cheng, J.Y.; Chen, F.; Sandino, C.; Mardani, M.; Pauly, J.M.; Vasanawala, S.S. Compressed Sensing: From

Research to Clinical Practice with Data-Driven Learning. arXiv 2019, arXiv:1903.07824.
4. Sharma, S.K.; Lagunas, E.; Chatzinotas, S.; Ottersten, B. Application of compressive sensing in cognitive

radio communications: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 1838–1860. [CrossRef]
5. Landau, H.J. Sampling, data transmission, and the Nyquist rate. Proc. IEEE 1967, 55, 1701–1706. [CrossRef]
6. Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to

compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [CrossRef]
7. Metzler, C.A.; Maleki, A.; Baraniuk, R.G. From denoising to compressed sensing. IEEE Trans. Inf. Theory

2016, 62, 5117–5144. [CrossRef]
8. Gan, L. Block compressed sensing of natural images. In Proceedings of the 2007 IEEE 15th International

Conference on Digital Signal Processing, Cardiff, UK, 1–4 July 2007.
9. Do, T.T.; Chen, Y.; Nguyen, D.T.; Nguyen, N.; Gan, L.; Tran, T.D. Distributed compressed video sensing.

In Proceedings of the 2009 IEEE 16th International Conference on Image Processing, Cairo, Egypt,
7–10 November 2009.

10. Mun, S.; Fowler, J.E. Residual reconstruction for block-based compressed sensing of video. In Proceedings of
the 2011 IEEE Data Compression Conference, Snowbird, UT, USA, 29–31 March 2011.

11. Fowler, J.E.; Mun, S.; Tramel, E.W. Block-based compressed sensing of images and video. Found. Trends®

Signal Process. 2012, 4, 297–416. [CrossRef]
12. Azghani, M.; Karimi, M.; Marvasti, F. Multihypothesis compressed video sensing technique. IEEE Trans.

Circuits Syst. Video Technol. 2015, 26, 627–635. [CrossRef]
13. Chen, J.; Chen, Y.; Qin, D.; Kuo, Y. An elastic net-based hybrid hypothesis method for compressed video

sensing. Multimed. Tools Appl. 2015, 74, 2085–2108. [CrossRef]
14. Zhao, C.; Ma, S.; Zhang, J.; Xiong, R.; Gao, W. Video compressive sensing reconstruction via reweighted

residual sparsity. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 1182–1195. [CrossRef]
15. Chen, C.; Zhou, C.; Liu, P.; Zhang, D. Iterative Reweighted Tikhonov-regularized Multihypothesis Prediction

Scheme for Distributed Compressive Video Sensing. IEEE Trans. Circuits Syst. Video Technol. 2018. [CrossRef]

http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/COMST.2016.2524443
http://dx.doi.org/10.1109/PROC.1967.5962
http://dx.doi.org/10.1109/JSTSP.2007.910281
http://dx.doi.org/10.1109/TIT.2016.2556683
http://dx.doi.org/10.1561/2000000033
http://dx.doi.org/10.1109/TCSVT.2015.2418586
http://dx.doi.org/10.1007/s11042-013-1743-y
http://dx.doi.org/10.1109/TCSVT.2016.2527181
http://dx.doi.org/10.1109/TCSVT.2018.2886310

Sensors 2020, 20, 206 11 of 12

16. Chen, C.; Zhang, D.; Liu, J. Resample-based hybrid multi-hypothesis scheme for distributed compressive
video sensing. IEICE Trans. Inf. Syst. 2017, 100, 3073–3076. [CrossRef]

17. Chen, J.; Wang, N.; Xue, F.; Gao, Y. Distributed compressed video sensing based on the optimization of
hypothesis set update technique. Multimed. Tools Appl. 2017, 76, 15735–15754. [CrossRef]

18. Kuo, Y.; Wu, K.; Chen, J. A scheme for distributed compressed video sensing based on hypothesis set
optimization techniques. Multimed. Tools Appl. 2017, 28, 129–148. [CrossRef]

19. Mousavi, A.; Patel, A.B.; Baraniuk, R.G. A deep learning approach to structured signal recovery.
In Proceedings of the 2015 IEEE 53rd Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, USA, 29 September–2 October 2015.

20. Mousavi, A.; Baraniuk, R.G. Learning to invert: Signal recovery via deep convolutional networks.
In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New
Orleans, LA, USA, 5–9 March 2017.

21. Metzler, C.; Mousavi, A.; Baraniuk, R. Learned D-AMP: Principled neural network based compressive image
recovery. Adv. Neural Inf. Process. Syst. 2017, 2017, 1773–1784.

22. Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. Reconnet: Non-iterative reconstruction of images
from compressively sensed measurements. In Proceedings of the 2016 IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

23. Mousavi, A.; Dasarathy, G.; Baraniuk, R.G. Deepcodec: Adaptive sensing and recovery via deep convolutional
neural networks. arXiv 2017, arXiv:1707.03386.

24. Xu, K.; Ren, F. Csvideonet: A real-time end-to-end learning framework for high-frame-rate video compressive
sensing. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake
Tahoe, NV, USA, 12–15 March 2018.

25. Xie, X.; Wang, C.; Du, J.; Shi, G. Full image recover for block-based compressive sensing. In Proceedings of
the 2018 IEEE International Conference on Multimedia and Expo, San Diego, CA, USA, 23–27 July 2018.

26. Guan, Z.; Xing, Q.; Xu, M.; Yang, R.; Liu, T.; Wang, Z. MFQE 2.0: A New Approach for Multi-frame Quality
Enhancement on Compressed Video. arXiv 2019, arXiv:1902.09707. [CrossRef]

27. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sci. 2009, 2, 183–202. [CrossRef]

28. Li, Y.; Dai, W.; Zou, J.; Xiong, H.; Zheng, Y.F. Structured sparse representation with union of data-driven
linear and multilinear subspaces model for compressive video sampling. IEEE Trans. Signal Process. 2017, 65,
5062–5077. [CrossRef]

29. Van Chien, T.; Dinh, K.Q.; Jeon, B.; Burger, M. Block compressive sensing of image and video with nonlocal
Lagrangian multiplier and patch-based sparse representation. Signal Process. Image Commun. 2017, 54,
93–106. [CrossRef]

30. Chang, K.; Ding, P.L.K.; Li, B. Compressive sensing reconstruction of correlated images using joint
regularization. IEEE Signal Process. Lett. 2016, 23, 449–453. [CrossRef]

31. Wen, Z.; Hou, B.; Jiao, L. Joint sparse recovery with semisupervised MUSIC. IEEE Signal Process. Lett. 2017,
24, 629–633. [CrossRef]

32. Yao, H.; Dai, F.; Zhang, S.; Zhang, Y.; Tian, Q.; Xu, C. Dr2-net: Deep residual reconstruction network for
image compressive sensing. Neurocomputing 2019. [CrossRef]

33. Du, J.; Xie, X.; Wang, C.; Shi, G.; Xu, X.; Wang, Y. Fully convolutional measurement network for compressive
sensing image reconstruction. Neurocomputing 2019, 328, 105–112. [CrossRef]

34. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
2010 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

35. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,
Boston, MA, USA, 7–12 June 2015.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016
IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 26 June–1 July 2016.

37. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild.
arXiv 2012, arXiv:1212.0402.

http://dx.doi.org/10.1587/transinf.2017EDL8133
http://dx.doi.org/10.1007/s11042-016-3866-4
http://dx.doi.org/10.1007/s11045-015-0337-4
http://dx.doi.org/10.1109/TPAMI.2019.2944806
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1109/TSP.2017.2721905
http://dx.doi.org/10.1016/j.image.2017.02.012
http://dx.doi.org/10.1109/LSP.2016.2527680
http://dx.doi.org/10.1109/LSP.2017.2680603
http://dx.doi.org/10.1016/j.neucom.2019.05.006
http://dx.doi.org/10.1016/j.neucom.2018.04.084

Sensors 2020, 20, 206 12 of 12

38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
39. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc)

challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-009-0275-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Backgrounds
	Preliminary of CS Theory
	Unsupervised Learning

	The Proposed JsrNet
	CNN for Joint Sampling
	Spatial DCNN for Initial Recovery
	Temporal DCNN for Joint Reconstruction

	Experiments
	Training Settings
	Performance Comparisons

	Conclusions
	References

