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Abstract: This paper proposes a framework to perform the sensor classification by using multivariate
time series sensors data as inputs. The framework encodes multivariate time series data into
two-dimensional colored images, and concatenate the images into one bigger image for classification
through a Convolutional Neural Network (ConvNet). This study applied three transformation
methods to encode time series into images: Gramian Angular Summation Field (GASF), Gramian
Angular Difference Field (GADF), and Markov Transition Field (MTF). Two open multivariate
datasets were used to evaluate the impact of using different transformation methods, the sequences
of concatenating images, and the complexity of ConvNet architectures on classification accuracy. The
results show that the selection of transformation methods and the sequence of concatenation do not
affect the prediction outcome significantly. Surprisingly, the simple structure of ConvNet is sufficient
enough for classification as it performed equally well with the complex structure of VGGNet. The
results were also compared with other classification methods and found that the proposed framework
outperformed other methods in terms of classification accuracy.

Keywords: time series classification; multivariate time series; image concatenation; convolutional
neural network

1. Introduction

In the era of data explosion, time series data, which is a series of data points indexed in time
order, is one of the most common data collected. A variety of time series data can be collected from
the internet, machines, devices, and sensors for all kinds of applications such as monitoring, tracking,
and pattern classification. Multivariate time series (MTS) data from multiple resources can be used to
present the operating statuses of the machines, or human health condition such as electrocardiography.
In smart manufacturing, building a binary classification model by machine learning algorithm to
identify defects or tool wearing (normal or abnormal) from the collected time series data is also a
popular approach to improve production quality [1].

Assume a time series x is a set of data points indexed in time order, x =
{
x(t) ∈ R : t = 1, 2, . . . , T

}
,

where T represents the length of the time series data [2]. Górecki and Łuczak defined
an MTS X as multiple univariate time series, such that X = (x1, x2, . . . , xm), xi ={
xp(t) ∈ R : t = 1, 2, . . . , T

}
(p = 1, 2, . . . , m), where m is the number of univariate time series in X

that also represents the dimension.
An MTS can be considered as a m × n matrix. Generally, MTS data mining research can be

categorized into: (1) representation and indexing, (2) similarity measure, (3) segmentation, (4)
visualization, and (5) mining [3]. Essentially, MTS classification belongs to a “mining” area that tries to
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categorize multiple time series as class labels [4]. There have been several challenges in dealing with
high-dimensional data for MTS classification. For instance, a univariate time series usually includes
a lot of noise in the process of collecting data. The noise issue is compounded in MTS, which is
composed of multiple univariate time series. Another challenge is MTS classification tools have to not
only recognize the data features but also consider the correlations among the variables.

In the early years, traditional time series analysis techniques such as: Simple Exponential
Smoothing (SES) [5], Autoregressive Integrated Moving Average (ARIMA) [2], and dynamic time
warping (DTW) method [6], which were used for analyzing MTS data for measurement or estimation.
Combining with different measurement techniques, multiple machine learning methods such as
decision tree [7], Support Vector Machine (SVM) [8], neural network [9], and so on have been proposed
to solve the MTS classification problem.

Lately, with the maturity of deep learning technology and advances in Graphics Processing Unit
devices, many studies used deep learning frameworks to address MTS classification problems. Fawaz
et al. reviewed multiple deep learning methods and specified an overview of the different deep
learning approaches for time series classification [10]. In their review, deep learning approaches for
MTS classification can be categorized as two main models: the generative and the discriminative
models. By exhibiting an unsupervised training step to find a good representation of time series
that precedes the learning phase of the classifier, generative models were considered as model-based
classifiers [11]. On the other hand, a discriminative deep learning model directly learns the mapping
between the inputs of MTS and class outputs with the feature engineering and model tuning. To
avoid the ambiguity, in this research, we focus on developing a discriminative deep learning model
based on image-based time series data representation, considered as an innovative preprocessing of
feature engineering.

Among versatile deep learning models, Convolutional Neural Network (ConvNet) has gained
rapid adoption. This method can extract more features and details from the input image, classify and
predict classes more precisely than previous machine learning algorithms. Researchers had applied it
to solve problems in different fields, of course that includes MTS classification (TSC) problems. By
directly using time series data as inputs, Zheng et al. proposed supervised feature learning with
ConvNet to classify time series data [12]. Gamboa also adopted ConvNet for time series analysis
and obtained promising results [13]. Yazdanbakhsh and Dick used same size segments in time series
with sliding window to transform an image and applied Dilated Convolutional Neural Network for
classification [14].

Instead of using raw time series data as input, Wang and Oates first encoded univariate time series
data into different types of images, namely, Gramian Angular Fields (GAF) and Markov Transition
Fields (MTF), as inputs of ConvNet [15,16]. In fact, this image-based framework initiated a new branch
of deep learning approaches which consider image transformation as one of feature engineering
technique. The transformation of time series into images was inspired from the computer vision feature
extraction concept. By learning spatially invariant filters (or features) from raw input time series,
ConvNet method diminished the problems of: (1) temporal information is lost and (2) the features
learned are no longer time-invariant which are with the traditional multi-layer-perceptron approach.
In their most recent work, Chen and Shi followed the same framework adopting Relative Position
Matrix with ConvNet, called RPMCNN, to perform the classification by the transform 2D images
from time series data as inputs [17]. Their results all showed promising performances by converting
univariate time series data to 2D images as an input of ConvNet.

Although the result of encoding time series data as image representation for ConvNet is promising
in improving classification accuracy, most of the previous works only considered encoding univariate
time series data as one image for a single channel of ConvNet’s input. In other words, when MTS
data are collected, how to combine the information of MTS image as inputs of ConvNet is still an open
domain. In addition, for an MTS classification problem, the framework of considering colors of MTS
images for ConvNet is needed. Therefore, in this research, we proposed an innovative framework
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which transforms one batch of MTS data into multiple images and concatenating them as bigger
two-dimensional images as inputs of ConvNet. The deep learning architecture of ConvNet was
then applied to extract and learn features from these images for classification purpose. Three typical
methods of encoding MTS data into images, the sequences of image concatenation and two kinds of
ConvNet architectures were investigated. Two open multivariate datasets which are the benchmarks
datasets were used to evaluate the experiment results. The results show that proposed framework
can enhance the accuracy of MTS classification by using the relatively simple network. In short, we
conclude this work as the followings:

• This work aims to extend 2-D image transformation method for MTS classification from the
univariate time series input to MTS inputs;

• The proposed innovative image concatenation can combine MTS data as multiple color channels
as inputs of ConvNet;

• The proposed framework can enhance the accuracy of MTS classification by using the relatively
simple network;

• The result shows the selection of image transformation methods and the sequence of image
concatenation are not significant for classification accuracy.

The rest of the paper is organized as follows: Section 2 provides a review of MTS, data
encoding methods, and ConvNet; Section 3 describes the methodologies of data transformation,
image aggregation, and ConvNet hyperparameter setting; Section 4 explains the experiments and
results; and Section 5 presents the conclusion and suggestions for future research.

2. Literature Review

2.1. Convolutional Neural Network (ConvNet)

In recent years, ConvNet is widely used as the deep learning algorithm for computer vision
to detect meaningful features and patterns. The concept of this framework was introduced by two
neurophysiologists, Hubel and Wiesel, who were inspired by the visual cortical neurons of cats and
monkeys. However, the first researchers who used backpropagation applied in ConvNet were LeCun
et al., who also started the new era of ConvNet [18]. Over time, many outstanding architectures were
developed, such as the AlexNet [19], VGGNet [20], ResNet [21], and Inception v3 [22]. They achieved
good results in the ImageNet Large Scale Visual Recognition Competition (ILSVRC) each year.

A typical ConvNet consists of a convolutional layer, an activation function, a pooling layer, a
fully connected layer, and an output layer. The convolutional layer extracts meaningful features such
as edges, color, and gradient orientation, from the input image by using linear function. The output
matrix is the result of computing the dot product when a filter covers the input image.

Activation functions plays a non-linear role between the convolutional layer and pooling layer in
a ConvNet model. The Rectified Linear Unit (ReLU) is the popular activation function in the last few
years in the deep learning field [23], although this concept was proposed as early as the year 2000 [24].
The advantages of ReLU are it reduces the vanishing gradient problem and allows models to learn
faster and perform better.

The main purpose of the pooling layer is to reduce the spatial dimensions of the feature map
but still preserve the important information. Generally, the feature map is shrunk by a factor greater
than or equals to two. The max pooling method [25], which simply calculates the maximum value
of each patch in the feature map, is often used in the pooling layer. After passing through multiple
convolutional and pooling layers, the output is converted into a dense vector by flattening the pooled
feature map from two dimensions to one dimension. Lastly, a ConvNet uses the feedforward neural
network to compute the different weights between nodes, and get the probabilities of different classes.
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2.2. Image Based Time Series Data

Due to the rapid developing of computer vision, the idea of classifying time series data using
computer vision technology was inspired. Various transformation methods were proposed to encode
times series as input images of computer vision, in hope that the two-dimensional images can reveal
features and patterns not found in the one-dimensional sequence of the original time series.

Two of the popular data transformation methods are the Gramian Angular Field (GAF) and
the Markov Transition Field (MTF) [15]. GAF encodes time series into image by polar coordinates
based matrix and it can preserve absolute temporal correlation [26]. The original time series x is first
normalized to between 0 and 1, which is defined in Equation (1).

x̃t
0 =

x(t) −min(x)
max(x) −min(x)

(1)

Then, angular cosine and the time stamp are used to encode the rescaled data into polar coordinates.
From top-left to bottom-right, the image position corresponds to the raw time series and it is symmetrical
by the main diagonal. Due to this characteristic, the polar coordinates can revert back to the raw
time series by its transformation principle. GAF can generate two images by different equations.
The Gramian Angular Summation Field (GASF) is defined in Equations (2) and (3) and the Gramian
Angular Difference Field (GADF) is defined in Equations (4) and (5). The difference is the conversion of
trigonometric functions, where GASF is based on cosine functions and GADF is based on sine functions.

GASF =


cos(∅1 +∅1) · · · cos(∅1 +∅n)

cos(∅2 +∅1) · · · cos(∅2 +∅n)
...

. . .
...

cos(∅n +∅1) · · · cos(∅n +∅n)

 (2)

GASF = x̃′ ·̃x−
√

I − x̃2
′

·

√

I − x̃2 (3)

GADF =


sin(∅1 +∅1) · · · sin(∅1 +∅n)

sin(∅2 +∅1) · · · sin(∅2 +∅n)
...

. . .
...

sin(∅n +∅1) · · · sin(∅n +∅n)

 (4)

GADF =
√

I − x̃2
′

·̃x− x̃′·
√

I − x̃2 (5)

MTF uses Markov transition probabilities to maintain details in the time domain [15]. MTF is
composed of Markov transition probabilities Mi j of quantile bin qi moves to q j, at time stamp i and j,
respectively. Suppose a time series x = x(1), x(2), . . . , x(T), and quantile Q = q1, q2, . . . , q j. The size of
Q affects the Markov transition matrix (w) size. MTF is defined in Equation (6).

Mi j =


wi j

∣∣∣x(1) ∈ qi, x(1) ∈ q j · · · wi j
∣∣∣x(1) ∈ qi, x(n) ∈ q j

wi j
∣∣∣x(2) ∈ qi, x(1) ∈ q j · · · wi j

∣∣∣x(2) ∈ qi, x(n) ∈ q j
...

. . .
...

wi j
∣∣∣x(n) ∈ qi, x(1) ∈ q j · · · wi j

∣∣∣x(n) ∈ qi, x(n) ∈ q j

 (6)

MTF can preserve details in the temporal range. However, as the transformed matrix is formed
by the probabilities of element moving, the MTF method cannot revert to the raw time series data like
GAF. In addition, as MTF is formed by the probabilities of element moving, it is not as symmetrical as
GAF method. For both GAF and MTF, the transformed values can be represented as colors via the
colormap. The colormap contains the colors of a rainbow. The redder color corresponds to a larger
value and the bluer color corresponds to a smaller value.
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Both GAF and MTF were applied in many studies. For example, Mitiche, et al. utilized GAF in an
Electromagnetic Interference (EMI) image study for extracting significant information [27]. In their
work, the GAF method was combined with two feature reduction methods called the Local Binary
Pattern and the Local Phase Quantization to remove redundancy. The Random Forest method was
implemented to classify the images with promising outcomes. In addition, Sánchez and Cervera used
electrocardiogram (ECG) data from the PhysioNet/CinC Challenge 2017 to detect atrial fibrillation [28].
The data was encoded into GASF and fed into a feed forward neural network and ConvNet for
classification. Similarly, Nagem et al. encoded the American Geostationary Operational Environmental
Satellite (GOES) data into MTF images, and applied ConvNet to predict the status of solar flares [29].
In the field of financial technology, Chen et al. proposed the mean average mapping method and
the double moving average mapping method to encode the time series into two-dimensional images,
and compare them with the GAF method [30]. The images of the mentioned methods were fed into
ConvNet, and the results showed that the GAF outperforms the others.

To illustrate the advantage of transforming time series data into two-dimensional images, Figure 1
shows an example of the comparison between normal and abnormal sensor data under GADF
transformation from the Wafer dataset [31]. In the Wafer dataset, each time series is labelled as
abnormal or normal for identifying whether the wafer process has defect. The left side of Figure 1
shows the normal time series’ sensor data and the corresponding GADF images while the right side of
Figure 1 shows abnormal case. As can be seen, the abnormal time series has relatively low values and
two obvious spikes comparing with the normal one. The corresponding GADF image of the abnormal
case can be easily recognized that it has relatively lighter color with two distinct crossing lines (marked
by the white circles) to represent the two spikes. Therefore, the characteristics of time series data can
be identified in two-dimensional image from different features such as color, points, and lines at the
corresponding locations in the image.
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Figure 1. A Gramian Angular Difference Field (GADF) example of normal sensor and abnormal sensor
in a Wafer dataset.

Similarly, Figure 2 shows an MTF example of the comparison between normal and abnormal
sensor data (the same as time series data in Figure 1) from the Wafer dataset. As can be seen similarly,
the abnormal case shown on the right hand side can be recognized with different color mapping
and unique cross-lines due to the relatively high values (marked by the white circles) representing
the two spikes. Although GAD and MTF shares this similarity, it is interesting to evaluate which
transformation can perform better in terms of classification accuracy.
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3. Methodology

This research is to propose a framework to classify MTS data using deep learning technology. This
study first applied MTF, GASF, and GADF to transform MTS data into images. Then, the transformed
images were concatenated for processing by ConvNet to identify features in the images for classification.
Basically, this framework consists of four steps: (1) dimension reduction of time series, (2) image
encoding, (3) image concatenation, and (4) ConvNet classification model training. Figure 3 shows
the workflow of the proposed framework for MTS Classification by ConvNet. The details of this
framework are introduced in the following sub-sections.
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3.1. Dimensionality Reduction Using Piecewise Aggregate Approximation (PAA)

An image is composed of pixels, so it can be considered as a n× n matrix, where n defines the
image size. When the length of the time series data is n, the image size of any kind of transformation
method is n× n [26]. As each batch of time series data can vary in length, the straight transformation
of the original data into images will result in different sizes of images. Therefore, to obtain images
of the same size for ConvNet, in this research, Piecewise Aggregate Approximation (PAA) method
is applied to perform dimension reduction of the original time series data before transforming time
series data into images [32]. Please note that applying PAA is also the convention method for data
preprocessing before transferring time series to images [17].

PAA divides original time series into N equal-length segments. N is the length of the reduced
times series that should satisfy the constraint of 1 ≤ N ≤ T. Then, the mean value of each segment
substitutes the original time series to reduce the dimensionality from T to N. Suppose a time series
x = x(1), x(2), . . . , x(T) where T is the length of the original time series. T/N denotes as the length of
each segment. It also means the original time series x will be divided by N segments and the reduced
time series can be denoted as x =

{
x(l) ∈ R : l = 1, 2, . . . , N

}
based on Equation (7) where l is the index

of the reduced time series. If N = 1, x is the mean of the original time series; If N = T, x is the original



Sensors 2020, 20, 168 7 of 15

time series. In this research, in order to synchronize the image size, N is determined by the shortest
length of MTS. Inevitably, the information losing on the longer timer series occurs. Although PAA will
reduce the dimensionality of some time series, the result shows the classification can be improved
based on concatenating multiple time series. The more detailed information can be found in Section 4.

x(l) =
N
T

T
N l∑

k= T
N (l−1)+1

xk (7)

3.2. Time Series Data Encoding As Images

In this study, a 3-dimensional matrix is formed to contain the MTS. First, a time series data is
encoded as a color image which has two dimensions using the GDF or MTF method. As the image can
be of any color, adding one more dimension to represent the color is required. For example, the image
can be represented with 3 color channels by red, green, and blue (RGB). Then, 3 elements in the first
dimension exists. Please note that more colors can be used for representing more color channels. In
this work, only RGB channels were to evaluate the concept of the framework.

3.3. Image Concatenation

MTS data transformation produces multiple images (one image for each univariate time series).
These images have to be combined before feeding the ConvNet. This study adopted the concatenating
method proposed by Yang et al. [33]. For RGB image aggregation, each colored image was first separated
into three monochroic images: red, green, and blue (RGB) in this case. Then these monocolor images
were concatenated together as a bigger image. Figure 4 illustrates the framework of concatenating RGB
images. Please note that if more time series data are used as inputs for classification, more 2D images
will be generated accordingly. However, only three RGB channels will be constructed in this case.
Basically, this design is to maintain the same number of the input channels of the network structure
which will benefit on keeping the ConvNet network structure simple. This design is particularly
convenient to apply on the domains such as anomaly detection where the time series data can be
processed on the edge computing from a variety of sensors, and the image files can be uploaded as
inputs of ConvNet which might be in the different location such as on cloud computing environment.
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There is an interesting issue regarding the “spurious edge” created by concatenating 2D images.
The question is if the “spurious edge” influences the classification? In order to study this issue, an
experiment was designed to evaluate the sequence of concatenating 2D images. The concatenated
images with different sequence of the 2D images (the different patterns of “spurious edges”) are
compared with their classification performance. The experimental result shows the patterns of “spurious
edges” will not significantly influence the classification result. The details of this experimental results
can be found in Section 4.

3.4. The Architecture of a ConvNet

In this study, for each time series data, the size of 2D transformed image is fixed at 128× 128 pixels.
Due to the nature of the proposed concatenation method, if m time series exists, the size of the input
image for the ConvNet is fixed at (128×m) × 128 for each monochrome channel. For RGB images,
three channels will be allocated.

In order to assess whether the complexity of ConvNet architecture affects the classification
accuracy, in this research, two kinds of ConvNet, noted as the simple ConvNet and VGG16, are studied.
VGG16 proposed by Simonyan and Zisserman is the model won the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) in 2014 [20].

For the simple ConvNet, we adopted the very popular model devised by Palm [34]. Two
convolutional layers with a kernel size of 5× 5, two max pooling layers with a 2× 2 pixel window and
stride of 2, and one fully-connected layer are suggested. After max pooling, the height and width of the
input image becomes half. The learning rate was set to 0.0023 and the rectification non-linearity was
applied to all hidden layers as the activation function based on the setting suggested in [19]. To prevent
the overfitting problem, the early stopping method was implemented according to the suggestion
in [35]. This method can also reduce memory and decrease computation time.

Because VGGNet uses more layers and smaller size of convolutional filters to construct the deeper
depth of network structure, in this work, we consider VGGNet as a larger network for learning which
is expected to classify images more accurately. This research adopted the typical VGG16, which has
13 convolutional layers with a kernel size of 3 × 3, 5 max pooling layers with a 2 × 2 pixel window
and 3 fully-connected layers. The learning rate was set to 0.00023 based on [20]. Most of the learnable
parameters are used in the first fully-connected layers. The number of learnable parameters in VGG16
is 201,330,688, which is 800 times larger than the simple ConvNet (251,542). Obviously, VGG16 can be
expected to spend more execution time and memory than typical ConvNet.

4. Experiments and Results

In this work, three series of experiments were conducted to evaluate the impact of: (1) the
image transformation methods, (2) the sequences of concatenating images, and (3) the structure
complexity of the network. As mentioned earlier, the first experiment was to evaluate the significance
of utilizing image transformation methods: GASF, GADF, and MTF methods as inputs of ConvNet.
The second experiment aimed to study the impact of “spurious edges” which are generated by
concatenating images. The different sequences of concatenating 2D images were evaluated to check
if the classification performance was affected by the sequence, or “spurious edges” of concatenated
images. The performances of different random sequences are compared with each other. The third
experiment focused on evaluating if the more complicated network structure is able to further improve
the classification accuracy.

The MTS data were transformed by three methods (GASF, GADF, and MTF) using the pyts
package [36]. All experiments were carried out in Python 3.6 coding environment. The deep learning
frameworks were built in PyTorch 1.1. The tests were conducted on a computer with Intel® Core
I7-8700K CPU 3.7 GHz, 64GB RAM, GeForce GTX Titan Xp video card, and Windows 10.
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4.1. Introduction of Data Set

In this study, two popular MTS datasets, benchmark datasets for binary classification of MTS data,
were used to evaluate the performance of the proposed framework. The Wafer dataset was collected
from six vacuum chamber sensors that monitored the manufacture of semiconductor microelectronics.
The ECG dataset in which exactly one heart beat exists per series was collected from two electrodes
that recorded heartbeats as normal or abnormal. Both of the datasets were provided by Olszewski [31]
and the classes of both datasets are binary (normal or abnormal). The details of these two datasets are
described in Table 1.

Table 1. Description of datasets.

Dataset Instances Variables Classes Min Length Max Length

Wafer 1194 6 2 104 198
ECG 200 2 2 39 152

The data length can be different in each batch, but within the same batch, the data length is the
same for all sensor variables. As the range of values collected by multiple sensors is different, the
data were normalized to between 0 and 1. Then the data were smoothed using the PAA mentioned in
Section 3 before transformation into images.

4.2. Performance Evaluation

Five-fold cross validation was applied to avoid overfitting problem. It also means for each fold,
80% of the data was used for training the simple ConvNet and VGG16 while the remaining 20% was
used to test the deep learning tools. The accuracy rate and the error rate are the common measures to
evaluate the performance of a classification tool. Equation (8) shows the formula to calculate the error
rate. When the predicted class is the same as the actual class, the value of correct is 1, or 0 otherwise. N
is the total number of testing data in each dataset.

Error rate = 1−

∑n
i=1 correcti

N
× 100% (8)

4.3. Experimental Results

In this research, three experiments were conducted. Each experiment used the five-fold cross
validation and ran for 20 times to obtain the mean value of error rate. The first experiment investigated
the impact of image transformation method GASF, GADF, and MTF under the proposed RGB image
concatenation using the simple ConvNet. The second experiment evaluated the impact of the sequence
of concatenating images. The third experiment explored whether the more complex architecture of the
ConvNet can produce better classification results.

4.3.1. Experiment #1: Comparison of Image Transformation Method

Figure 5 shows the boxplot of the average error rates by classifying classes of Wafer dataset under
RGB images inputs of ConvNet. As mentioned earlier, three image encoding methods: GADF, GASF,
and MTF were used. As can been seen, the mean error rates, indicated in the blue ink on the center of
the plot, are between 0.4% and 0.57% for Wafer dataset. Similarly, the average error rates by the case of
ECG dataset are between 5.72% and 6.15%.
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Angular Summation Field (GASF), and MTF transformation methods (Wafer and electrocardiogram
(ECG) database).

Further statistical analysis, through the Dunn tests, was conducted to determine whether different
image transformation methods affect the error rates. Based on the results presented in Table 2, the
error rates are not significantly different among pairwise comparison of the three methods in the
ECG dataset under 95% confidence interval. Although the mean error rates of GASF and MTF, which
are the largest and lowest in the Wafer dataset, respectively, are significantly different, the pairwise
comparisons between GASF and GADF, and between GADF and MTF are not significant. In short, the
selection of the image transformation seems not to affect the classification result in terms of error rates.

Table 2. The p-values of the Dunn Test in the RGB Wafer and ECG datasets images.

Comparison p-Value

Wafer ECG

GADF and GASF 0.487 0.116
GADF and MTF 0.061 0.201
GASF and MTF 0.018 0.947

4.3.2. Experiment #2: Comparison of Different Sequences of Concatenating Images

In this experiment, only Wafer dataset was used because ECG has only two time series which
cannot represent the complication of different image concatenation. In the Wafer dataset, each batch
contains data collected from six sensors. Hence, the transformed images from the sensors can be
arranged in various sequences. The concatenation can be arranged based on the different randomness.
Different sequences generated different concatenated images. Without losing the generality, the
concatenation of RGB images was conducted to clearly show “spurious edges” by MTF transformation
which has shown the better result in the Wafer dataset.

By following the same framework in Experiment #1, Figure 6 shows the box plot of 20 classification
results under three different sequences that are based on different random number seed in the
experiment. No matter which sequence was applied, the means of classification errors are around
0.4~0.45. The Wilcoxon Signed Rank Test was applied to check the pairwise comparison among
these three random sequences. The statistical test also confirmed no significantly difference on the
classification performance under the pairwise comparisons. It means the sequence of concatenating the
images will not significantly influence the classification. This test also demonstrated that the ConvNet
is able to learn image features regardless of the sequence of concatenation (or the patterns of edges).
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4.3.3. Experiment #3: Comparison of Different Architectures of ConvNet

In the third experiment, two architectures of ConvNet: simple ConvNet and VGG16, were
represented as the simple and complicated network structures, respectively. It is worth noting that
VGG16 has the more complicate (deeper) network than simple ConvNet. Figure 7 shows that in the
Wafer dataset, the average error rates under the simple ConvNet and VGG16 fall between 0.4% and
0.57%. The average error rates range from 5.35% to 6.47% in the ECG dataset, as shown in Figure 8. It
can be seen, for each network structure, there is no significant different under different transformation
methods. Further statistical analysis through the Kruskal–Wallis’s analysis of variance (Kruskal–Wallis
ANOVA) proves that the error rates of these two ConvNet architectures are insignificantly different
(p-value = 0.87 in the Wafer dataset and p-value > 0.999 in the ECG dataset). It simply means the
complicated network structures does not necessarily guarantee better classification results.
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Table 3 shows the execution times of the simple ConvNet and VGG16 in processing the Wafer
dataset and ECG datasets. It is obvious to show that VGG16 took more than ten times longer than
the simple ConvNet in processing time, but the prediction accuracy improvement was insignificant.
In short, the results of experiments show the interesting insights: encoding MTS data into colored
concatenating image as inputs of the simple ConvNet can significantly improve the classification,
however, the complicated network might not further improve it.
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Table 3. Average execution times (in seconds) of the simple ConvNet and VGG16 in processing the
Wafer and ECG dataset images, separated by three data transformation methods.

Dataset ConvNet Architecture GADF GASF MTF

Wafer
Simple ConvNet 414.78 382.75 295.15

VGG16 4619.19 5658.32 4805.03

ECG
Simple ConvNet 135.90 136.47 135.96

VGG16 2356.57 2405.64 2358.46

4.4. Comparison of Different Classification Tools

In literature, many methods were proposed to classify binary classes in Water and ECG MTS
data. Table 4 enumerates the error rates conducted by different methods [4,37–39]. Please note that
the average error rates are all limited to one-dimensional data transformation except our proposed
methods starting with “concat”. As shown in this table, the proposed framework which uses three
encoding methods with RGB by ConvNet produces better prediction accuracy in classifying Wafer
and ECG datasets, indicated as bold face. In fact, the proposed concat-MTF-RGB can generate the
best result (error rate = 0.4) in Wafer dataset while concat-GADF-RGB can obtain the best result (error
rate = 5.35) in ECG dataset when comparing with previous works in literature. Therefore, once again,
we can conclude that concatenating the encoded RGB images from multivariate time series data as
the inputs of ConvNet following the proposed framework can significantly improve the classification
accuracy, especially for the binary classification problems.

Table 4. Comparison of average error rates (%) of different methods in Wafer and ECG datasets.

Approach Wafer ECG

DTW [4] 2.01 18.5
DDTW [4] 9.21 14

DDDTW [4] 1.92 14.5
STKG-SVM-K3 [37] 1.23 14.7
STKG-NB-K5 [37] 3.69 13.01

STKG-IF-PSVM-DT+M [37] 0.84 21.77
STKG-IF-NB-SVM+M [37] 2.23 9.71

normDTW [38] 3.85 16
combDTW [38] 2.01 16
LSTM-FCN [39] 1 15

MLSTM-FCN [39] 1 14
ALSTM-FCN [39] 1 14

MALSTM-FCN [39] 1 14
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Table 4. Cont.

Approach Wafer ECG

concat-MTF-RGB (ours) 0.4 6.1
concat-GASF-RGB (ours) 0.57 6.15
concat-GADF-RGB (ours) 0.44 5.35

5. Conclusions

MTS classification tries to classify multiple univariate time-series data and predicts a class based
on the learned patterns. This study proposed a framework of concatenating 2D images transformed
from time series data as RGB input channels for ConvNet training. In this work, by following the
convention, three image encoding methods: GASF, GADF, and MTF were used to encode MTS data into
two-dimensional images after PAA dimension reduction. Then the MTS 2D images were concatenated
as a big image separated by RGB channels to feed into ConvNet for binary classification. In order to
investigate the impacts of: (1) the transformation methods, (2) the sequence of concatenation, and
(3) the complexity of network structure on classification performance, a series of experiments were
conducted. Three transformation methods, three different random sequences of concatenation (only
for Wafer dataset), and two kinds of ConvNet architectures (simple ConvNet vs. VGG16), were used
to assess the effects of these adjustments on the prediction accuracy.

Based on experimental results, the proposed framework applying the concatenated RGB images
and with simple architecture of ConvNet can significantly improve the classification results. It is
interesting that the selection of encoding methods does not affect the prediction outcome significantly.
Also, the sequence of image concatenation is not significant for classification accuracy. These findings
actually release the troublesome of choosing the image transformation method and the order of
image concatenation.

Besides, the experiment of conducting the two ConvNet (simple and complicated VGG16) show
they produced insignificantly different results based on colored concatenating images as inputs. This
“simple is enough” finding can enlighten MTS classification practitioners that always starting with
the simple network rather than complicated one when applying deep learning methods on MTS
classification problem. Again, the proposed framework with encoding images and simple ConvNet
architecture was compared with other methods published in the past literature. The proposed
framework produced promisingly the lowest error rates in both Wafer and ECG datasets where
multivariate variables are inputs to classify binary class (normal vs. abnormal).

There are several future directions to further study the model. First, in this work, only one
ConvNet was used for training data. Another framework which utilizes parallel ConvNets for each
time series data and joins them in the last layer for prediction can be constructed. It would be worth
evaluating if the parallel network will improve the accuracy. Second, developing a transformation
method that can preserve both the dynamic and static information in the temporal range at the same
time, or filter out irrelevant noise in the time series may be helpful to increase the feature distinctiveness
in the images. Third, it might be interesting to check if more monochrome than RGB can improve the
classification further. Last but not least, as the current framework was applied in binary classification
datasets only, multiclass classification can be explored to assess the proposed framework performance.
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