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Abstract: This paper concerns the use of adaptive wave cancellation in a new multilayer smart skin
sensor to attenuate the primary low-frequency noise underwater. The proposed multilayered system
is designed with a piezoelectric actuator (Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 composite)
and two layers of polyvinylidene fluoride to accelerate wave absorption. Furthermore, the use of
a combination of an adaptive control scheme and a time-delay signal separation method has the
potential to provide the proposed absorber system with a wave cancellation capability and thereby
enable the absorber system to respond to environmental changes underwater. The use of smart
piezoelectric materials and an adaptive control approach enables the absorber system to achieve the
high attenuation level of the reflected waves, unlike typical absorber systems based on active noise
control. Echo reduction experiments showed that the proposed piezoelectric-based multilayer sensor
with an adaptive controller could attenuate reflected wave signals effectively.

Keywords: piezoelectricity; multilayer sensor; active noise canceling; underwater; adaptive
gain control

1. Introduction

Since the 1950s, underwater acoustic absorbers have typically been passive systems employing
energy-absorbing materials to block the transmission of acoustic waves. These passive absorbers
satisfactorily attenuate undesirable high-frequency signals. However, they have a drawback, becoming
bulky when designed to cancel relatively low-frequency signals. Since the use of passive materials
for the cancellation of low-frequency signals has been very limited, active noise control has attracted
considerable attention [1,2].

For the achievement of active noise control and the creation of a silent space, a piezoelectric
material is used to measure the incident waves and generate control waves with the opposite phase for
canceling the incident waves. In particular, active noise control has the following advantages: The
physical size of the absorber system is less limited to the frequency and acoustic absorption in the
broadband frequency range by a digital controller is possible [1–6].

To enhance the performance of the active noise control system, many investigations have
been conducted by considering a variety of piezoelectric materials [7–9]. However, the use of
the composite material Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) for active noise
cancellation has not been examined yet. This composite material is a single-crystal material with
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high transmitting/receiving sensitivity. Furthermore, the PIN–PMN–PT composite shows a good
transmitting/receiving performance, with a larger broadband frequency than any other piezoelectric
materials. An advantage of the composite material is that it is capable of wave cancellation over a large
frequency range underwater [10–12]. In an acoustic absorber system with a single sensor, a common
transmission path for both incident and reflected waves renders the separate analysis of the two types
of waves difficult. To overcome this difficulty and to facilitate the use of a time-delay signal separation
method, the present study considered an acoustic absorption system with two receiving sensors [13,14].

Recently, researchers have focused on an acoustic absorber, called smart skin, installed on the
surface of a variety of underwater control system [15,16]. The acoustic absorber mimics a smart sensor
attached to the surface of human skin. This study proposes a smart skin comprising piezoelectric
materials, two receiving sensors, and an intelligent digital controller. The smart skin shows higher echo
reduction performance compared with other acoustic absorber systems. The multi-sensor system can
separate superposed signals by using a time-delay signal separation method [10]. Furthermore, this
study presents an application of an adaptive control scheme that can enable the multi-sensor system to
achieve perfect noise cancelation when environmental changes occur.

This paper is organized as follows. Section 2 describes the proposed multilayer absorber system,
and Section 3 discusses the transmitting and receiving sensitivities of the acoustic absorber system.
Section 4 presents a noise cancellation strategy for the multilayer acoustic absorber system. Section 5
explains the proposed adaptive wave cancellation technique employed by the developed sensor system
in underwater applications. Section 6 details the results of echo reduction experiments conducted in
this study. Finally, Section 7 summarizes the conclusions.

2. Components of the Multilayer Acoustic Absorber System

2.1. System Design

As shown in Figure 1, the proposed multilayer acoustic absorber system comprised a
piezoelectric-material-based actuator, multiple acoustic sensors, and multiple acoustic windows.
Figure 1a,b show a fabricated multilayer acoustic absorber and its conceptual diagram, respectively.
The dimensions of the sensor were 8 mm × 8 mm × 49.12 mm. In this study, the PIN–PMN–PT
composite, which has high transmitting sensitivity, was used as a piezoelectric actuator. Its role was to
provide a control wave with the opposite phase for canceling waves reflected from the surface of the
piezoelectric material in the sensors. Rho-c rubber, whose acoustic impedance is similar to that of water,
was used as the acoustic window. Finally, two layers of polyvinylidene fluoride (PVDF) were used to
measure the superposition of the incident wave, reflected wave, and control wave, respectively. The
receiving sensors (PVDF) were placed in front of the actuator to measure acoustic signals superposed
on the incident and reflected signals.
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Table 1 presents the properties of the materials used in the proposed multilayer acoustic
absorber [17,18].
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Table 1. Properties of the components of the proposed multilayer sensor.

Wave Speed
(m/s)

Density
(kg/m3)

Piezoelectric Coefficients
(10−12 C/N)

Coupling
Coefficients

PIN–PMN–PT composite 3190 3150 d22 = 994 k33 = 0.843
PVDF 1410 1780 d33 = −30 k33 = 0.2

Rho-c rubber 1600 980 - -

2.2. Fabrication

Figure 2 shows the fabrication process of the multilayer acoustic absorber. The multilayer acoustic
absorber, comprising two receiving sensors (PVDF), a piezoelectric actuator (PIN–PMN–PT composite),
and an acoustic window (rho-c rubber), was fabricated using an acrylic mold. Its dimensions were
about 14 mm × 11 mm × 55 mm. The piezoelectric actuator and receiving sensors were fixed in place
on the acrylic mold, then the wires were connected to the piezoelectric actuator and receiving sensors
using the conductive epoxy, as shown in Figure 3a. After curing the conductive epoxy, the liquid
acoustic window was added to the mold and cured in the final step, as shown in Figure 3b.
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3. Transmitting and Receiving Sensitivities of the Multilayer Acoustic Absorber System

It is necessary to determine the frequency dependence of the transmitting and receiving sensitivities
of the proposed acoustic absorber system to achieve high acoustic absorption performance. The
transmitting and receiving sensitivities obtained from a mathematical-model-based simulation and
from experiments were compared.
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The driving control signal of the piezoelectric actuator was given with a three-cycle sinusoidal
signal. The installed hydrophone acted as a receiving sensor and collected the acoustic signal generated
by the piezoelectric actuator. The estimated transmitting sensitivity T(ω) of the piezoelectric actuator
in the multilayer sensor can be defined as

T(ω) =
Voutput

VInput × SHy(ω)
, (1)

where SHy(ω) is the receiving sensitivity of the hydrophone, and VOutput and VInput are the
hydrophone-measured signal and the drive control signal of the piezoelectric actuator, respectively.

With the measurement of the receiving sensitivity, the receiving sensitivity S(ω) was estimated
from the measured amplitude of the acoustic signal received by the PVDFs:

S(ω) =
Voutput × d

VInput × TPro(ω)
, (2)

where TPro(ω) is the transmitting sensitivity of the projector, d is the distance between the sensor and
the projector, and VOutput and VInput are the voltage signal received by the PVDF and the source signal
of the projector, respectively.

In the simulation, the equivalent circuit model shown in Figure 4 was used [15,16]. The equivalent
circuit model can be used to analyze a multilayer model and require less time compared to the finite
element method. The calculation of the sensitivity depended on the properties of each material and
the designed equivalent circuit model. In this study, the properties of each material, such as the Q
factor (quality factor), thickness, and acoustic impedance, were based on the properties obtained from
the experimental values. The transmitting/receiving sensitivity in the simulation was calculated using
the equivalent circuit model equation [19–22].
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Figure 4. Equivalent circuit model of the proposed sensor.

Experiments for measuring both sensitivities were conducted in a water tank that was 1 m long,
0.75 m wide, and 0.5 m high (Figure 5). The projector and hydrophone were positioned 150 mm from
the front of the multilayer absorber system. A microcontroller (STM32H743ZI) and a digital-to-analog
converter (AD5685R) were used to collect the transmitting and receiving sensitivities of the proposed
acoustic absorber system.
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4. Design of the Active Control System for the Multilayer Acoustic Absorber System

The proposed control system has a function for separating a superposed signal into incident and
reflected signals with a time-delay signal separation method, and it provides a driving control signal
to the piezoelectric actuator for wave reduction.

4.1. Active Noise Control

Active noise control mainly involves a piezoelectric system that attenuates the primary noise on
the basis of the principle of superposition. Specifically, an anti-wave with the same amplitude as the
primary noise signal, but with the opposite phase, is generated for canceling the primary noise, as
shown in Figure 8. Figure 9 depicts a block diagram of a typical active noise control scheme.

Pr + Pc = 0. (3)

The superposition of the reflected acoustic signal (Pr) and control acoustic signal (Pc) had to have
zero amplitude, as shown in Equation (3), to achieve the active noise control performance required in
this study.
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4.2. Time-Delay Signal Separation Method

Figure 10 shows a conceptual diagram of the control scheme of the smart skin acoustic absorber
system. In this study, the incident wave was assumed to be a plane wave propagating perpendicular
to the absorber system, with the reflected wave propagating in the opposite direction. The receiving
sensors were assumed to be sufficiently thin and, therefore, the transmission loss could be neglected.
The output voltages of sensors A (VA) and B (VB) were estimated from the signal superposed on both
the incident acoustic signal (Pin) and the reflected acoustic signal (Pr):

VA = S(ω)[Pin exp( jkrSS + jkrSA) + Pr exp(− jkrSS − jkrSA)], (4)

VB = S(ω)[Pin exp( jkrSA) + Pr exp(− jkrSA)], (5)

where S(ω) (in units of volt per pascal) is the receiving sensitivity of the sensors. The exponential
terms represent the phases of the signals, and they depend on the relative positions of sensors A and B.
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k is the wave number of the acoustic signal. rSS is the distance between sensor A and sensor B, and rSA
is the distance between sensor B and the piezoelectric actuator.Sensors 2019, 19, x FOR PEER REVIEW 7 of 12 
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The incident signal Vin was separated from the superposed signal as follows:

Vin = VB exp(− jkrSS) −VA
= S(ω)[Pin exp( jkrSA) + Pr exp(− jkrSA)] exp(− jkrSA) − S(ω)[Pin exp(2 jkrSA)

+Pr exp(−2 jkrSA)]

= S(ω)Pin exp( jkrSA)[exp(− jkrSA) − exp( jkrSA)]

= −2 jS(ω)Pin sin(krSA) exp( jkrSA).

(6)

Furthermore, the reflected signal Vr can be expressed as

Vr = VA exp(− jkrSS) −VB

= S(ω)[Pin exp(2 jkrSA) + Pr exp(−2 jkrSA)] exp(− jkrSA)

− S(ω)[Pin exp( jkrSA) + Pr exp(− jkrSA)]

= −2 jS(ω)Pr sin(krSA) exp(−2 jkrSA).

(7)

As shown in Figure 11, each PVDF signal shows the phase shift, which depends on the sensor
structure. The control signal drives the piezoelectric actuator when the reflected signal is incident on
the surface of the piezoelectric actuator.
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4.3. System Control Parameter

The reflected acoustic signal Pr was estimated by multiplying the incident acoustic signal Pin,
which propagates to the actuator surface, with the reflection coefficient R [13]:

Pr = R× Pin. (8)

The control acoustic signal is given by

Pc = Vinexp(− jkrSA) ×G× T(ω), (9)

and the total reflected signal can be obtained from Equations (8) and (9) as follows:

Pr = Pr + Pc = R× Pin − 2 jSPinsin(krSA) ×G× T(ω),
= Pin

[
R + 2SC0ωsin

(
ω
c rSA

)
×G

]
.

(10)

The system control parameter G was set to G0, which is the value that makes the amplitude of the
total reflected signal zero at a specific frequency (ω0). G0 can be expressed as

G0 =
−R

2SC0ω0 sin
(
ω0
c rSA

) . (11)

G0 is approximately linear in the low-frequency range considered in this study, and the range
included the resonant frequency of the piezoelectric actuator. The echo reduction rate of the piezoelectric
acoustic absorber system was defined as the ratio between the amplitude of the source signal and the
total reflected signal on the logarithmic scale:

EchoR = 20 log10

∣∣∣∣∣∣ Pr

Pin

∣∣∣∣∣∣. (12)

5. Real-Time Gain Tuning of Adaptive Controller

Owing to the characteristics of the sensor system, it is difficult to completely eliminate the echo by
setting a constant gain. A constant gain cannot appropriately respond to variations in the characteristics
with frequency. Accordingly, this study used adaptive control signals to attenuate the reflected wave.
The system control parameters were investigated over a range of frequencies to enhance the reduction
performance, and an adaptive feedback control scheme, shown in Figure 12, was used. First, an
appropriate G0 was defined for the frequency of the incident wave in real time. Second, the real-time
control parameter (α) was updated by using a proportional–integral–derivative control scheme and
the error in the reflected signal, which was estimated by employing the time-delay signal separation
method, was compensated for. The optimal values of KP (0.0393), KI (0.0212), and KD (0.0071) were
obtained through wave reduction experiments.

Vc = G0 ×Vin(1 + α), (13)

α = KP × eVr(t) + KI ×

∫
eVr(t)dt + KD ×

deVr(t)

dt
. (14)
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6. Echo Reduction Experiments

An echo reduction experiment was conducted to evaluate the wave reduction of the multilayer
acoustic absorber system. The experimental setup is shown in Figure 13. A projector (TC4013)
generated the source signal and a hydrophone (TC4013) collected the reflected signal; these two
components were placed 150 and 200 mm from the smart skin acoustic absorber system, respectively.
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Figure 13. Setup of the echo reduction experiment.

First, an experiment involving an active control approach was conducted. For the verification,
the performance of a multilayer acoustic absorber employing the active control scheme for wave
cancellation was compared with that of a multilayer acoustic absorber without any control scheme
(passive control).

Figure 14 shows a comparison of the acoustic signal waveforms measured by the hydrophone
with and without the active control scheme. The source signal was a four-cycle tone-burst sinusoidal
signal. Its amplitude was 168 mV, while the amplitude of the reflected signal with passive control was
55 mV. This implied that the passive echo reduction rate of the proposed sensor system was −9.7 dB.
By contrast, for active control with a constant control parameter, the reflected signal was about 5 mV
and the echo reduction rate was −31.1 dB.

Figure 15 shows an input signal on project and outputs measured by the hydrophone. Figure 15a
shows a continuous sinusoidal source signal at a low frequency, and Figure 15b presents a comparison
of echo reduction in the proposed multilayer sensor between the active control and the adaptive control
schemes. When active control was used, G0 was fixed, and echo reduction was about −31.1 dB. In the
adaptive control approach, the control signal Vc varied with the updated real-time control parameter
according to Equations (13) and (14). The final echo reduction improved from −31.1 dB to −36.5 dB
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over time. Thus, the use of the adaptive parameter (α) updated in real time showed better reduction
performance in the multilayer piezoelectric sensor.
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Figure 15. Use of active noise control: (a) a continuous input signal and (b) the echo reduction rate and
system control parameter.

The echo reduction experiment was conducted by changing the frequency of the source signal at
10 s. Figure 16 shows an input signal on the project and the output of the hydrophone, respectively.
The echo reduction is compared between the active control and the adaptive control schemes. The
echo reduction achieved by the active control scheme is about −31.1 dB. With the adaptive control
scheme, the echo reduction initially decreased to approximately −29 dB at 10 s and then increased to
−36 dB. The system control parameter responded to a change in the input signal (at 10 s) in real time.
As shown in Figure 15b, the adaptive control parameter provided higher echo reduction compared to
the fixed control parameter in active control.
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7. Conclusions

This paper presents a multilayer piezoelectric acoustic absorber system with high echo reduction
at low frequencies. Despite the separation of the incident signal from the two sensor signals through a
time-delay signal separation method, the absorber system cannot respond precisely to environmental
changes. The use of the proposed real-time system control parameter in the multilayer acoustic absorber
system enables the system to maintain a high echo reduction performance when the environment
changes. Simulation results for the smart skin acoustic absorber system showed the possibility of
high echo reduction at low frequencies. In an experiment conducted in a water tank, the multilayer
piezoelectric acoustic absorber system with an adaptive controller could attenuate reflected waves at
low frequencies.

This study examined the attenuation in the multilayer acoustic absorber system for vertically
incident 1D acoustic signals. A future study will focus on echo reduction for obliquely incident signals
through the use of multiple acoustic absorber systems.
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