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Abstract: In this work, a high sensitivity micro-thermal conductivity detector (µTCD) with four
thermal conductivity cells was proposed. Compared with conventional TCD sensors, the thermal
conductivity cell in this work was designed as a streamlined structure; the thermistors were supported
by a strong cantilever beam and suspended in the center of the thermal conductivity cell, which
was able to greatly reduce the dead volume of the thermal conductivity cell and the heat loss of the
substrate, improving the detection sensitivity. The experimental results demonstrated that the µTCD
shows good stability and high sensitivity, which could rapidly detect light gases with a detection
limit of 10 ppm and a quantitative repeatability of less than 1.1%.

Keywords: microelectromechanical system; micro-thermal conductivity detector; dissolved gases;
high sensitivity

1. Introduction

The gas monitoring system of transformer oil is very important to the ensure safe operation of
power transformers [1–3]. Existing dissolved gas detection technologies mainly include photoacoustic
spectroscopy, electronic nose, and other technologies. However, photoacoustic spectroscopy requires
expensive optical components and lasers, and the application of this technique in dissolved gas
detection is greatly limited. Electronic nose technology is relatively much more economical, but this
technology is integrated by multiple sensors and low detection sensitivity, and a short sensor life limits
its popularity. A thermal conductivity detector (TCD) is a broad-spectrum detector that can respond to
small-molecule gases such as CO, H2, C2H2, and C2H6 [4,5]. However, traditional TCD is difficult to
be applied to trace gas detection [6] due to its large volume and low detection sensitivity. Due to the
adoption of MEMS technology, the volume of the thermal conductivity detector is reduced from the
traditional micro-upgrade to the nano upgrade. Therefore, its sensitivity is greatly improved, which is
an order of magnitude higher than the traditional structure. Due to its high sensitivity, this kind of
sensor has attracted great attention from researchers.

Chen researched the micro-channel flow of µTCD and analyzed the influence of channel size and
gas properties on the heat transfer rate in detail [7]. Cruz reported a µTCD that was capable of detecting
chemical species at several ppm concentration levels [8]. Kaanta realized the monolithic integration
of the micro-thermal conductivity detector and the micro-chromatographic column, which reduced
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the volume of the detector [9]. Narayanan designed a four-cell µTCD, but the thermistors adopted a
non-suspension structure with large thermal loss, reducing the sensitivity of the detector [10].

In order to improve the sensitivity of TCD, a high sensitivity µTCD with four-cell based on MEMS
is proposed in this work. The thermal conductivity cell of the sensor is consistent with the structure of
the air flow channel, presenting a streamlined structure. The whole airflow channel has no diameter
variation, and the thermal conductivity cell has no obvious dead volume, thus greatly improving
the sensitivity of the detector. Moreover, the beam supporting the thermistors is formed by thicker
low-stress silicon nitride. The thicker beam can avoid thermal stress caused by the impact of airflow
and affect the stability of the detector.

2. Analysis and Design

The µTCD in this paper consists of four resistors with the same resistance, and the four thermistors
form a Wheatstone bridge. If only pure carrier gas is transported into the channels at the same time,
the bridge is balanced because the resistance values of these thermistors are the same. When carrier
gas with sample flows through the analysis channel and pure carrier gas flows through the reference
channel, the balance of the bridge will be broken and an output voltage will be obtained [11]. In order
to obtain higher sensitivity, four resistors supported by a beam were suspended in the center of the
airflow channel (as shown in Figure 1), which was released by deep reactive ion etching (DRIE) [12]
and KOH etching [8,13].
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Figure 1. Schematic diagram of the micro-thermal conductivity detector (µTCD).

The principle of µTCD is a concentration detector that responds to the difference in thermal
conductivity between the tested component and carrier gas. From the perspective of heat exchange,
the heat loss of µTCD mainly includes heat conduction, heat convection, and heat radiation. Heat
conduction is the main research section, while the effect of natural convection and thermal radiation
on µTCD are negligible. According to the principle of heat balance, the heat generated by the current
of the thermistor is equal to the total heat loss energy. The heat generated by the thermistor can be
represented by the following Equation [14]:

P = I2R = I2R0[1 + α(Th − Tv)] (1)
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where I is the loading current, R0 is the resistance value of the thermistor, Th is the temperature of
thermistor, Tv is the temperature of fluid, and α is the temperature coefficient of thermistor. The heat
loss also includes the heat of the thermal sensor convection to the fluid (Q1) and the heat of the thermal
sensor conduction to the insulation layer (Q2). Q2 is further divided into three parts: the heat stored in
the insulation layer (Q2a), the heat of convection from the insulation layer to air (Q2b), and the heat of
conduction from the insulation layer to the substrate (Q2c). The Q1 can be expressed as following [15]:

Q1 = hAs(Th − Tv) (2)

where h is the forced convection coefficient and As is the contact area of gas and thermistor. The results
show that the sensitivity of the sensor can be improved by increasing the proportion of Q1 [16].
Therefore, opening a cavity in the base structure of the thermal conductivity detector is helpful to
increase Q1 and reduce the heat of the base or insulation layer.

3. Optimization and Fabrication of the µTCD

3.1. Configuration of µTCD

Compared with the conventional TCD (Figure 2a) [10], the micro-thermal conductivity detector
adopted a streamlined structure and the four thermistors were suspended in the center of the cell
(Figure 2b), which decreases the dead volume and the heat loss of the base. The sensitivity of µTCD [17]
can be expressed as:

S = KI3R
λc − λs

λc
(T f − Tw) (3)

where K is the geometric constant of the thermal conductivity cell, I is the bridge current, R is the
resistance, λc is the thermal conductivity of the carrier gas, λs is thermal conductivity of the sample
gas, Tf is the temperature of thermistors, and Tw is the temperature in the thermal conductivity cell.
According to Formula (3), the value of is Tf − Tw is greater and the sensitivity of the detector is much
higher. In this work, the sensitivity of the detector was mainly improved by reducing the temperature
of the thermal conductivity cell. Therefore, the thermistors supported by a cantilever beam were
suspended in the center of the cell in this design, which can reduce the heat loss of the thermistors and
greatly decrease the temperature of the thermal conductivity cell.
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Figure 2. (a) Configuration of the conventional TCD. (b) Thermistors with suspended structure of
µTCD.

Figure 3 shows the thermal distribution of thermistors. It can be seen that the surface temperature
of thermistors with suspended configuration in the cell (Figure 3a) was much higher than that of
conventional structure (Figure 3b) as the heat loss of the thermistors was smaller, so the thermistors
with suspended structure were able to improve the sensitivity by reducing the thermal loss of the base.
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Figure 3. Surface temperature of thermistors: (a) conventional structure; (b) thermistors with
suspended structure.

3.2. Optimization of Supporting Beam

Thermistors supported by cantilever beams were suspended in the thermal conductivity cell,
which was able to reduce the heat loss of the substrate, thus improving the detection sensitivity.
However, the cantilever beam will vibrate under the impact of the carrier airflow, resulting in stress
and deformation, thus causing greater thermal noise. Thermal noise is an important factor affecting
the sensitivity of the sensor, which will reduce the sensitivity and stability of the sensor. In order
to reduce the thermal noise, the thickness of the cantilever beam is simulated. Figure 4 shows the
relationship between the stress on the cantilever beam and the film thickness under certain loading
conditions (constant flow rate and loading power). The results (as shown in Table 1) show that the
stress decreases greatly with the increase of the thickness of the cantilever beam. Therefore, a layer
of low-stress silicon nitride film in which the maximum thickness can be processed is selected as the
supporting beam, improving the consistency and reliability of the detector.
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1 2 3 4

Thickness (µm) 0.4 0.6 0.8 1
Maximum Stress
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3.3. Effects of Loading Conditions

According to the sensitivity of the sensor, the loading condition is a key factor. Therefore, different
loading conditions were analyzed in this work. The relationship between temperature and power can
be obtained as follows:

∆T =
Pt
cm

(4)

where P is power, c is specific heat capacity, m is mass, t is time, and ∆T is temperature change. Figure 5
shows the heat distribution of the thermistors with suspended structure at a constant flow rate (5
mL/min) and different power. It can be seen that the sensitivity of the detector can be rapidly improved
by increasing the power. However, the life of the thermistor will be affected if the temperature is too
high and, therefore, a suitable amount of power is used to drive the sensor.
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In addition, the influence of carrier gas velocity on sensitivity is also evaluated. Table 2 shows the
relationship between the surface stress of the thermistor and the flow rate under a constant power
of the sensor. Table 3 shows the mechanical properties of the SiN [18]. The results show that the
stress in the thermistor increases rapidly with the increase of the carrier gas velocity, and the increased
amplitude is very large. The stress at the flow rate of 10 mL/min is five times higher than that at the
flow rate of 2 mL/min. Excessive stress will cause deformation or even collapse of the supporting beam.
Therefore, a small carrier gas velocity can improve the stability of the detector.

Table 2. Maximum stress of thermistors at different gas velocity.

1 2 3 4 5 6

Gas Velocity (mL/min) 0 2 4 6 8 10
Maximum Stress (MPa) 0.13 2.5 5.43 8.42 11.3 14.1

Table 3. Mechanical properties of the SiN.

Material Young’s Modulus
(GPa)

Residual Stress
(MPa)

Bending Strength
(GPa)

SiN 308.4 ± 24.1 252.9 ± 32.4 6.2 ± 1.3

3.4. Fabrication of the µTCD

The fabrication process of the sensor based on MEMS is shown in Figure 6.
(A) SiN with a thickness of 1500 nm for insulating was deposited on the surface of the silicon

wafer by low-pressure chemical vapor deposition (LPCVD) after the wafer was thoroughly cleaned by
boiled sulfuric acid and deionized water.
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(B) At first, the mask of thermistors pattern (AZ1500 photoresist) was prepared on the surface of
SiN film by photolithography and then cleaned by oxygen plasma (2 min). Cr (20 nm) and platinum
Pt (200 nm) were sputtered in sequence on the patterned surface of the SiN film. Subsequently, the
thermistors were formed by lift-off technology after the underneath photoresist was removed by
acetone, alcohol, and deionized water. Finally, the electrodes were obtained in the same way by
replacing the metal sputtered with Cr (20 nm) and Au (200 nm).

(C) For protecting the surface of thermistors and electrodes, the photoresist mask pattern (AZ4620
photoresist) was formed on the surface by photolithography. Then, SiN where there were no resistors
and electrodes, were removed by trifluoromethane etching to form the supporting beam.

(D) The supporting beam was released by DRIE and potassium hydroxide etching to obtain a
gas flow channel and finally bonded to the pyrex 7740 glass to obtain µTCD. Figure 7 indicates the
micrograph of the µTCD and the photo of the sensor.
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4. Results and Discussion

4.1. Experimental Setup

In this work, a portable gas chromatography system integrated with a GC column and µTCD was
proposed for monitoring small molecular gas. The proposed system (refer to Figure 8) was mainly
composed of sample pretreatment, carrier gas, pneumatic control system, chromatographic column,
µTCD, signal acquisition, and a processing module. To obtain high sensitivity and working life, a
constant current of 75 mA was applied to the sensor. H2 was used as carrier gas due to its high
thermal conductivity, and the flow rate of the carrier gas was precisely controlled by the EPC valve.
The injection volume was controlled by a 0.2 mL quantitative ring. The dissolved gas was quickly
separated by chromatographic column and then transported into the detector by carrier gas, so as to
realize accurate quantitative detection of each component.
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4.2. Detection of Dissolved Gas

In this work, in order to evaluate that the developed system has the ability to detect trace samples,
two standard samples were used for experiments. In the experiment, the samples were dissolved into
the naphthenic transformer oil and then extracted and detected. Firstly, a sample containing four kinds
of dissolved gases was used to perform the separation and detection performance of the system, where
the concentrations of CH4, C2H2, C2H4, and CO were 109.2 ppm, 95.7 ppm, 115.6 ppm, and 106.1 ppm,
respectively. The experiment was performed under isothermal conditions at 80 ◦C with carrier gas
velocity of 5 mL/min. Figure 9a shows the chromatogram of the four dissolved gases, which show that
these trace components are highly responsive and effectively detected.
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In addition, three low-concentration components (C2H2, C2H6, and CO2 with concentrations
of 9.0 ppm, 9.5 ppm, and 11 ppm, respectively) were used to evaluate the minimum detectable
concentration of the system. The experiment was performed under isothermal conditions at 90 ◦C with
carrier gas velocity of 5 mL/min. Figure 9b shows the chromatogram of the system for the detection
of these three trace components and the results show that the minimum detected concentration of
dissolved gas in oil can be less than 10 ppm.

4.3. Quantitative Repeatability of Sensors

In order to evaluate the quantitative repeatability (relative standard deviation, RSD) of the sensor,
eight consecutive experiments were carried out under the same experimental conditions with 105.0 ppm
ethane at the carrier gas velocity of 5 mL/min. Table 4 indicates the retention time and peak area of
chromatographic peaks obtained from these experiments. According to these data, the RSD of retention
time was 0.37% and RSD of the peak area was 1.10%, which proved that the developed detector has
high stability and consistency.

Table 4. The retention time and peak area of chromatographic peaks obtained from 8
repeated experiments.

1 2 3 4 5 6 7 8

Retention Time (tr) 150.6 151.1 152.1 150.2 151.6 152.0 151.2 151.3
Peak Area (mV × tr) 63.66 64.68 65.54 63.84 65.38 65.80 64.78 64.96

5. Conclusions

In this work, a high sensitivity micro-thermal conductivity detector (µTCD) with four-cell was
successfully developed. The microstructure and loading conditions of the detector were successfully
optimized. This fabricated µTCD had the advantages of smaller dead volume, high detection sensitivity,
and good stability. Compared with Agilent 3000, the developed system reaches the same level in
detection limit, analysis time, RSD, and other core indicators. Therefore, the µTCD can be widely used
in power transformer fault diagnosis, natural gas and oil exploration, industrial waste gas monitoring,
and other fields.
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