
sensors

Article

Miniature Diamond-Based Fiber Optic Pressure
Sensor with Dual Polymer-Ceramic Adhesives

Hyungdae Bae 1,*, Ayush Giri 1, Oluwafikunwa Kolawole 1, Amin Azimi 1, Aaron Jackson 2

and Gary Harris 2

1 The Department of Mechanical Engineering, Howard University, Washington, DC 20059, USA;
ayush.giri@bison.howard.edu (A.G.); oluwafikunwa.kolawo@bison.howard.edu (O.K.);
amin.azimi@howard.edu (A.A.)

2 Howard Nanoscale Science and Engineering Facility, Department of Electrical and Computer Science,
NSF STC Center for Integrated Quantum Materials, Howard University, Washington, DC 20059, USA;
aaron.jackson@howard.edu (A.J.); gharris@howard.edu (G.H.)

* Correspondence: hyung.bae@howard.edu

Received: 26 March 2019; Accepted: 11 May 2019; Published: 13 May 2019
����������
�������

Abstract: Diamond is a good candidate for harsh environment sensing due to its high melting
temperature, Young’s modulus, and thermal conductivity. A sensor made of diamond will be even
more promising when combined with some advantages of optical sensing (i.e., EMI inertness, high
temperature operation, and miniaturization). We present a miniature diamond-based fiber optic
pressure sensor fabricated using dual polymer-ceramic adhesives. The UV curable polymer and the
heat-curing ceramic adhesive are employed for easy and reliable optical fiber mounting. The usage of
the two different adhesives considerably improves the manufacturability and linearity of the sensor,
while significantly decreasing the error from the temperature cross-sensitivity. Experimental study
shows that the sensor exhibits good linearity over a pressure range of 2.0–9.5 psi with a sensitivity
of 18.5 nm/psi (R2 = 0.9979). Around 275 ◦C of working temperature was achieved by using
polymer/ceramic dual adhesives. The sensor can benefit many fronts that require miniature,
low-cost, and high-accuracy sensors including biomedical and industrial applications. With an added
antioxidation layer on the diamond diaphragm, the sensor can also be applied for harsh environment
applications due to the high melting temperature and Young’s modulus of the material.

Keywords: fiber optic sensor; Fabry–Perot; micro-optical device; polycrystalline diamond

1. Introduction

Interest in the use of miniature fiber-optic pressure sensors for medical and industrial applications
has progressively increased over recent decades. The increased interest is due to their unique
attributes such as ultra-fast dynamic response, micro-scale size, high sensitivity, immunity to
electromagnetic interference, and the convenience of light transmission/detection through optical
fibers [1,2]. The compact dimensions of the fiber-optic sensors significantly improve the spatial
resolution of measurements and, in the case of medical applications, patients’ comfort level. The various
types of miniature optic sensors reported in the literature are based on the Fabry–Perot optical
cavity [3–16]. An extrinsic Fabry–Perot (FP) cavity is formed at the tip of an optical fiber by using
the end of the optical fiber surface and a reflective miniature diaphragm built on a support structure.
The diaphragm deflects in response to variations of ambient pressure and causes changes in the
interference signal generated by the FP cavity. Mainly, there are two different categories of materials for
fiber optic sensors that make use of extrinsic FP cavity structure. The first category is ceramic materials
(e.g., fused silica, silicon, zirconia, etc.) [4,11,17–20]. These materials are suitable for high-pressure
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and -temperature application due to the materials’ high mechanical strength and temperature stability.
Temperature sensitivities of the materials are relatively low, which give those sensors low-temperature
cross-sensitivities. The second category of materials is metals, polymers, and metal-polymer composites
(e.g., silver, aluminum, UV curable polymers, BoPET (biaxially-oriented polyethylene terephthalate),
etc.) [7,15,21–24]. It is more advantageous to achieve high-pressure sensitivity with these materials
compared to ceramic counterparts due to the materials’ relatively low Young’s moduli. However, the
sensors made of metal or polymers suffer from relatively high-temperature cross-sensitivity because
of the high thermal expansion of the materials. If the sensors are used in a temperature changing
environment, an additional temperature sensing and compensation schemes are required to compensate
for the temperature cross-sensitivity of the sensors, and the operation temperature is relatively low
due to the oxidation of metals or softening/burning of polymers (~200 ◦C).

Polycrystalline diamond can be grown by chemical vapor deposition (CVD) and has many unique
properties which can be exploited as a sensor material for various sensing applications. A scanning
electron micrograph of CVD diamond film is shown in Figure 1a. CVD polycrystalline diamond
films have outstanding properties of high Young’s modulus (1143 GPa) [25], low thermal coefficient
of expansion (1–1.5 µε/◦C), high melting temperature (above 1700 ◦C in vacuum or oxygen-free
environment), ultra-high thermal conductivity (2200 W/cm·K) [26], and inertness to most acids and
bases. The refractive index of diamond is 2.4168 (at 587.6 nm) and optically transparent between the
deep ultra-violate and the infrared ranges [27]. Although there have been other types of pressure
sensors based on diamond piezoresistors [28–32], there is only a limited number of works on optical
fiber pressure sensor made of the diamond diaphragm [33]. In this work, a fiber optic sensor fabrication
method was used, which makes use of dual polymer-ceramic adhesive for low-cost fabrication and
relatively high operation temperature (~275 ◦C).
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Figure 1. (a) A scanning electron micrograph of chemical vapor deposition (CVD) diamond film
and (b) schematic of the diamond-based pressure sensor with a polymer-ceramic hybrid adhesive;
(c) microscopic image of a fabricated sensor.

This study aims to design and fabricate a novel and miniature optical pressure sensor based on
a polycrystalline diamond diaphragm. Figure 1b illustrates the schematic of the proposed pressure
sensor, which consists of a cleaved or polished optical fiber, a silicon cavity structure, a UV curable
adhesive, ceramic adhesive, and a synthetic polycrystalline diamond pressure sensing diaphragm.
The UV curable adhesive was used for instant curing and sealing of the air cavity. The ceramic
adhesive was added on top of the UV curable adhesive for improved linearity of the sensor signal and
reduced variations in the pressure sensitivity. A microscopic image of a fabricated sensor is shown in
Figure 1c. For high temperature application, an anti-oxidation layer such as titanium oxide (TiO2) or
aluminum oxide (Al2O3) can be added to protect the diamond diaphragm from oxidation. The diamond
melts at very high temperatures (above 1700 ◦C), but it suffers from oxidation in an oxygen-rich
environment above 800 ◦C [34]. Exceptional thermal conductivity can help minimize thermal stress in
the material and the time constant of temperature measurement. However, high-temperature sensing
of the diamond-based pressure sensor is not within the scope of this work. The fabrication process
of the proposed sensor is cost-efficient and can provide a good device-to-device uniformity since the
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diamond diaphragm and the optical housing fabrication processes are performed in batch with very
good thickness and dimension control by using conventional semiconductor processes (e.g., CVD,
photolithography, and deep reactive ion etching). The rest of fabrication processes can be either easily
automated by using motorized precision stages with an optical vision system or performed in batch.
Therefore, sensor fabrication can be cost-effective and suitable for low-cost applications. The sensor
fabrication processes will be discussed in detail in the following section.

2. Sensor Design and Fabrication

The inner diameter of the optical cavity was chosen to be 135 µm considering the outer diameter
of the optical fiber (i.e., 125 µm), the cavity etching tolerance, and required tolerance for fiber assembly.
The thickness of the diamond layer was carefully designed to meet the designed pressure sensitivity
and maximum pressure range while ensuring a linear sensor response. The thickness of the diamond
diaphragm was designed to give a deflection of 10 nm/psi or higher and to operate at a pressure of
30 psi or higher using analytical solutions [22]. The analytical solution was verified based on the finite
element method based on COMSOL Multiphysics. Based on the design processes, the thickness of the
diamond diaphragm was selected to be 1.2 µm to achieve a pressure sensitivity of 14.3 nm/psi and a
maximum pressure range of 33.79 psi.

Sensor fabrication consists of three steps that include: i) Growth of the diamond diaphragm on
a silicon wafer, ii) fabrication of the optical housing structure, and iii) optical fiber alignment and
mounting. The detailed fabrication processes are demonstrated in Figure 2. The first step is to grow
the diamond layer on a silicon wafer. The 1.2 µm thick heteroepitaxial diamond film was grown in a
hot filament chemical vapor deposition (HFCVD) system on single side polished p-type silicon wafers
(Figure 2a). After cleaning and then removing the surface oxide, the Si wafers were sonicated in a
diamond nano-particle slurry to embed diamond seed particles on the surface. The average crystal
size in the diamond slurry we used is 5 nm. The diamond film was grown using hydrogen and
methane as the source gases. During growth, the silicon wafer was maintained at 800 ◦C. This elevated
temperature can generate residual stress in the deposited diamond film when the fabricated sensor
is used at ambient temperature. The pressure sensitivity of the sensor can be precisely tuned in this
step according to the application requirements. Optionally, the diamond layer can be patterned into
individual circular islands using photolithography and reactive ion etching processes to define each
pressure-sensing diaphragm. Secondly, the backside of the silicon wafer is patterned and etched using
deep reactive ion etching (DRIE) (Figure 2b). Each Si housing structure is created by etching through
the entire 350 µm thickness of the Si wafer. The diamond layer on the front side of the silicon wafer
acts as an etch stop because of the large etch ratio difference between silicon and diamond layer. Lastly,
an optical fiber is inserted into the Si housing defined by the DRIE process forming an FP optical cavity
(Figure 2c–e). A single mode optical fiber with a diameter of 125 µm (SMF-28 Ultra, Corning, Corning,
NY, USA) is first cleaved and cleaned to ensure particle free condition before the assembly. Then, the
cavity inlet and the fiber are aligned using manual/piezo stages under microscopes. The alignment
setup is comprised of two five-axis high-precision manual stages with attached piezo stages and two
optical microscopes with CCD cameras positioned with 90◦ angle separation. Next, the optical fiber is
carefully inserted into the housing structure while monitoring the gap distance between the cleaved
fiber end the diamond diaphragm surface. Monitoring is performed by using the same optical system
which will be used for the fabricated sensor interrogation. The optical interrogation system will be
discussed in the following section in detail. The cavity length can be precisely measured and controlled
with a resolution of less than 1 nm by using the optical interrogation system. Horizontal position
and tilt alignments are ensured by the clearance between the Si housing and the inserted optical fiber.
When the desired gap distance between the optical fiber and the diamond diaphragm is obtained,
a small drop of UV curable adhesive (OP-5-20632, Dymax, Torrington, CT, USA) is applied between the
fiber and silicon cavity inlet to fix the fiber and seal the formed optical cavity. Due to the capillary effect,
the gap between the cavity wall and the optical fiber is filled. The UV light from a spot light source (LC8,
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Hamamatsu, Shizuoka, Japan) is then exposed to the applied UV curable polymer, securing the optical
fiber to the cavity and sealing the air cavity at the vicinity of the end of the optical fiber (Figure 2e).
To minimize shrinkage of the UV curable polymer a low-intensity exposure (10% of the full intensity for
30 s) is applied followed by a high-intensity exposure (100% of the full intensity for 60 s). The structure
which holds the tube-shape silicon housing structure is then broken off by applying minimal force to the
silicon structure which loosely holds the housing structure. Additional ceramic adhesive (618-N-VFG,
Aremco, Valley Cottage, NY, USA) is applied on top of the cross-linked UV curable polymer and
thermally cured after 4 h of air drying (Figure 2f). Thermal curing was performed at 150 ◦C and 300 ◦C
for 2 h at each temperature. The addition of ceramic adhesive significantly improves the linearity of the
pressure and temperature response by minimizing the viscoelastic behavior of the UV curable polymer.
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3. Optical Interrogation and Signal Processing

The sensor was connected to a broadband optical interrogation system, which is composed of a
3 dB coupler (50:50 coupling ratio at λ= 780 nm, Thorlabs, Newton, NJ, USA), a broadband spectrometer
(wavelength range: 697–971 nm, flame-T, Ocean Optics, Largo, FL, USA) 0.4 nm wavelength resolution,
and a broadband light source (HL-2000-HP, Ocean Optics, Largo, FL, USA). Theoretically, SMF-28
Ultra used for sensors fabrication operates in single-mode in the wavelength range of the spectrometer.
However, the length of the fiber for sensors fabrication is relatively short (~30 cm) so the multi-mode
effect is not significant. The minor multi-mode effect is filtered during the signal processing using
a low-pass filter. The spectrum position and the output of the reference sensor were collected by
custom data acquisition code based on LabVIEW (National Instruments, Austin, TX, USA) while the
chamber pressure and temperature were changed independently using a pressure regulator (Type 10,
Bellofram Corp., Newell, WV, USA) and temperature controller (CN77332, Omega Engineering,
Norwalk, CT, USA) with a thermocouple (CO1-K, Omega Engineering, Norwalk, CT, USA) and two
heaters (KH-103/10, Omega Engineering, Norwalk, CT, USA). The experimental arrangement for
pressure and temperature calibration is illustrated in Figure 3. A detailed description of the calibration
setup can be found in one of the authors’ previous publications [35].
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Three optical cavity cavities are generated by three distinctive optical interfaces (i.e., M1, M2,
and M3 in Figure 1b) of the proposed sensor. The intensity profile of interference as a function of
wavelength generated by the three cavities can be described as below [18]:
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where A1, A2, and A3 are the amplitude of the reflected electric fields from the end of the optical
fiber (M1), the first diamond interface (M2), and the second diamond interface (M3), respectively,
nair is the refractive index of air, Lair is the length of the air cavity, ndiamond is the refractive index of
diamond, Ldiamond is the thinness of the diamond diaphragm, and λ is the free-space wavelength.
As the ambient pressure increases the sealed air cavity length (Lair) decreases due to the pressure
difference between the two area which will result in a blue shift of the frequency generated by the
air cavity. The diamond layer thickness (Ldiamond) can be considered constant since the stiffness of
the solid diamond layer is much larger than that of the air cavity. To monitor the change of air cavity
length with a high resolution, the optical frequency isolation and the one peak tracing were used in
this work [36]. At first, the measured spectrum was converted to the wavenumber domain for optical
frequency-based filtering. The converted wavenumber domain spectrum was interpolated to make it
evenly spaced and resampled to reduce the wavenumber step size for a better resolution processing.
The fast Fourier transform was applied to the spectrum to find the optical frequencies representing
individual optical cavities in the sensor. Figure 4a shows a representation of the fast Fourier transform
(FFT) result of the sensor wavelength spectrum. OPD1 (optical path difference) is from the optical
cavity defined by the two interfaces of the diamond diaphragm. OPD2 is from the air cavity formed by
the optical fiber end face and one of the diamond diaphragm interfaces (see Figure 1b). The optical
cavity generated by the combination of the two cavities was relatively weak visibility of the interference
signal. There is a relationship between the measured optical path difference (OPD) and the optical
frequency (f ) in the wavenumber domain which can be described as below:

OPD = 2nL = f , (2)

where n is the refractive index of the optical cavity medium and L is the optical cavity length. Due to the
limited wavelength range of the used spectrometer, the cavity length measurement based on the FFT is
not high enough (~0.5 µm). Therefore, the found optical frequency from the FFT was only used as
the center frequency for the following band-pass filtering of the spectrum using the Butterworth filter.
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The filter wavenumber spectrum was converted back to the wavelength domain and one peak tracing
method was used to monitor the change of cavity length with high resolution [36]. Representative
spectra from the tested sensor at two different pressures (2.0 and 9.5 psi) are shown in Figure 4b.
The detailed signal processing method can also be found in one of the authors’ previous works [35].
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4. Discussion: Sensor Calibration and Testing

Pressure calibration of the sensor was conducted in a pressure chamber with a reference pressure
sensor (MMG250V10, Omega Engineering Inc., Norwalk, CT, USA) to quantify the changes in the
sensor air cavity length with respect to the pressure changes. The calibration was performed in a
pressure range of 2 to 9.5 psi. However, the upper limit of the pressure range was chosen to be 9.5 psi
considering the limitation of the pressure chamber used for the calibration. The calibration result is
shown in Figure 5. Two different sets of calibration data overlap closely between pressure increase
and decrease cases showing relatively low hysteresis of the sensor. The calibration data show good
linearity with an R2 value of 0.9979 and sensitivity of 18.5 nm/psi for combined data from increasing
and decreasing pressure with a step size of 0.5 psi at room temperature of 24.5 ◦C. The sensitivity
number is a little higher than that of the FEM model (i.e., 14.3 nm/psi) even though the residual stress
in the diamond film reduce the sensitivity. It is believed that the sensitivity higher than the estimation
is attributed to the pressure sensitivity coming from the deformation of UV adhesive under pressure
change. The pressure resolution of the FP pressure sensor was determined to be 0.0075 psi by using the
RMS error divided by the measured pressure sensitivity of the sensor. The pressure calibration result
from a sensor before adding the ceramic adhesive is shown in the same plot of Figure 4 in red dots
and blue diamonds. The same pressure range, step size, and sequence were used for both datasets.
As shown in the result, R2 improved by 1.5% and the pressure sensitivity decreased by 48% after
applying the ceramic adhesive. It is believed that the applied ceramic adhesive significantly reduced
the deformation and viscoelastic behavior of the UV curable adhesive due to its high Young’s modulus
compared to that of the UV curable adhesive. Because of the UV curable polymer shrinkage during the
thermal curing of the ceramic adhesive, 8.3% cavity length shrinkage was also observed.

Pressure calibrations were performed at five different temperatures from 25 to 65 ◦C with 0.75 psi
step size (Figure 6a). The pressure sensitivity of the sensor was noted to increase from 18.6 to 23.7 nm/psi
when the temperature increased from 25 to 65 ◦C. The increase in the pressure sensitivity with the
increase in temperature is believed to come from softening of the UV curable adhesive in the sensor
that was used with ceramic adhesive. A sensor without the ceramic adhesive shows 4.3 times larger
sensitivity variation than that of a sensor with the ceramic adhesive in the same temperature range (i.e.,
from 25 to 65 ◦C). The pressure sensitivity change with respect to the temperature change is shown in
Figure 6b.
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To evaluate the temperature sensitivity of the sensor, a temperature calibration of the air cavity
was performed. To measure the temperature sensitivity, the sensor was heated from 25 to 65 ◦C with
an increment of 5 ◦C under the constant pressure of 2 psi. The cavity lengths were recorded at each
temperature level. The obtained temperature calibration results are shown in Figure 7a. According
to the result, a linear relationship between the air cavity length and temperature can be observed
with good linearity (R2 = 0.9965) and a sensitivity of about 6.4 nm/◦C. The temperature sensitivity of
the sensor is coming from the expansions of the silicon housing, air trapped in the cavity, and the
polymer-ceramic adhesive. Thermal expansion model of the sensor was not performed due to the large
shape variation of the applied polymer-ceramic adhesive. The expansion of the polymer is believed
to play a significant role in the overall thermal expansion because of its large coefficient of thermal
expansion (45 µε/◦C) compared to the rest of the materials [37]. The change of the cavity length due
to temperature change can be compensated by adding another Fabry–Perot sensor or other types of
temperature sensors (e.g., fiber Bragg grating) [35,38].

To investigate the maximum operating temperature of the sensor, an additional temperature
calibration was performed with a larger temperature range than the previous temperature calibration.
For the calibration, the sensor was heated from 25 to 325 ◦C with an increment of 25 ◦C under the
atmospheric pressure. The cavity lengths were recorded at each temperature level. The obtained
temperature calibration results are shown in Figure 7b. According to the result, a relatively linear
relationship between the air cavity length and temperature is observed up to 275 ◦C which is believed
to be the maximum operating temperature of the sensor. This operating temperature is much higher
than the glass transition temperature of the applied UV adhesive for sensor fabrication (glass transition
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temperature of the UV adhesive: 78 ◦C). The ceramic adhesive applied on top of the UV adhesive could
have increased the operating temperature of the sensor to a temperature that is much higher than
the glass transition temperature of the UV adhesive (operation temperature of the ceramic adhesive:
1760 ◦C). The increased manufacturability and the operating temperature of the sensor due to the
polymer/ceramic adhesive is one of the advantages of the proposed sensor fabrication method.Sensors 2019, 19, x FOR PEER REVIEW 8 of 10 
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5. Conclusions

In this article, a miniature diamond-based fiber optic sensor fabricated using a silicon housing,
optical fiber, and both polymer and ceramic adhesives is presented. The fabrication of the sensor
is scalable using a batch process for the diamond diaphragm and sensor housing structure and an
automated fiber insertion and mounting process. The polymer adhesive renders a good airtight sealing
of the cavity, and the ceramic adhesive ensures good linearity of pressure sensing in the temperature
range up to and 65 ◦C, which is the highest temperature at which pressure calibration was performed.
With the added ceramic adhesive, temperature measurement of the sensor could be performed up to
275 ◦C without significant signal degradation. The experimental study shows good linearity and high
sensitivity from the pressure calibration. The proposed sensor is expected to benefit various fields
such as biomedical sensing and industrial sensing by providing low-cost and high-accuracy sensors
with excellent chemical resistance and good temperature resistance.

Author Contributions: Conceptualization, H.B. and A.J.; methodology, A.J. and A.A.; validation, A.G.; data
curation, A.G. and O.K.; visualization, O.K.; writing—original draft preparation, A.A. and H.B.; writing—review
and editing, A.J. and G.H.; project administration, H.B.; funding acquisition, G.H.

Funding: This work was partially supported by National Science Foundation (NSF) (Grant No. DMR-1231319
and 1541959, Howard University, and Lockheed Martin Corporation. A portion of this work was performed at the
Center for Nanoscale Systems (CNS) at Harvard University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rao, Y.J.; Jackson, D.A. Recent progress in fibre optic low-coherence interferometry. Meas. Sci. Technol. 1996,
7, 981–999. [CrossRef]

2. Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot Interferometer
Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014, 14, 7451–7488. [CrossRef] [PubMed]

3. Jerman, J.H.; Clift, D.J.; Mallinson, S.R. A Miniature Fabry-Perot Interferometer with a Corrugated Silicon
Diaphragm Support. In Proceedings of the IEEE 4th Technical Digest on Solid-State Sensor and Actuator
Workshop, Hilton Head Island, SC, USA, 4–7 June 1990; pp. 140–144.

4. Abeysinghe, D.C.; Dasgupta, S.; Jackson, H.E.; Boyd, J.T. Novel MEMS Pressure and Temperature Sensors
Fabricated on Optical Fibers. J. Micromech. Microeng. 2002, 229, 229–235. [CrossRef]

http://dx.doi.org/10.1088/0957-0233/7/7/001
http://dx.doi.org/10.3390/s140407451
http://www.ncbi.nlm.nih.gov/pubmed/24763250
http://dx.doi.org/10.1088/0960-1317/12/3/306


Sensors 2019, 19, 2202 9 of 10

5. Wang, Y.; Wang, D.N.; Wang, C.; Hu, T. Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high
pressure sensitivity. Opt. Express 2013, 21, 14084. [CrossRef]

6. Xu, B.; Wang, C.; Wang, D.N.; Liu, Y.; Li, Y. Fiber-tip gas pressure sensor based on dual capillaries. Opt. Express
2015, 23, 23484. [CrossRef]

7. Melamud, R.; Davenport, A.A.; Hill, G.C.; Chan, I.H.; Declercq, F.; Hartwell, P.G.; Pruitt, B.L.;
De Microtechnique, S.; Polytechnique, E.; De Lausanne, F. Development of an SU-8 Fabry-Perot blood
pressure sensor. In Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical
Systems, Miami Beach, FL, USA, 30 January–3 February 2005; pp. 810–813.

8. Totsu, K.; Haga, Y.; Esashi, M. Ultra-miniature fiber-optic pressure sensor using white light interferometry.
J. Micromech. Microeng. 2005, 15, 71–75. [CrossRef]

9. Xu, J.; Wang, X.; Cooper, K.L.; Wang, A. Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett.
2005, 30, 3269–3271. [CrossRef] [PubMed]
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