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Abstract: In this paper, an improved two-dimensional (2-D) direction of arrival (DOA) estimation
algorithm for L-shaped nested arrays is proposed. Unlike the approach for a classical nested array,
which use the auto-correlation matrix (ACM) to increase the degrees of freedom (DOF), we utilize
the cross-correlation matrix (CCM) of different sub-arrays to generate two long consecutive virtual
arrays. These acquire a large number of DOF without redundant elements and eliminate noise effects.
Furthermore, we reconstruct the CCM based on the singular value decomposition (SVD) operation in
order to reduce the perturbation of noise for small numbers of samples. To cope with the matrix rank
deficiency of the virtual arrays, we construct the full rank equivalent covariance matrices by using
the output and its conjugate vector of virtual arrays. The unitary estimation of signal parameters via
rotational invariance technique (ESPRIT) is then performed on the covariance matrices to obtain the
DOA of incident signals with low computational complexity. Finally, angle pairing is achieved by
deriving the equivalent signal vector of the virtual arrays using the estimated angles. Numerical
simulation results show that the proposed algorithm not only provides more accurate 2-D DOA
estimation performance with low complexity, but also achieves angle estimation for small numbers of
samples compared to existing similar methods.

Keywords: 2-D DOA estimation; L-shaped nested arrays; small numbers of samples; cross-correlation
matrix

1. Introduction

As an important field of array signal processing, direction of arrival (DOA) estimation has been
applied in a wide range of applications such as wireless communications, sonar, radar, and acoustic
localization [1–3]. Furthermore, signal sources location and identification are essential for monitoring
the electromagnetic environment, and several different technologies based on parameter estimation
have been applied to it [4–7]. The key problem of parameter estimation is estimating the azimuth and
elevation angles. To obtain these angles, several DOA estimation methods have been proposed, such as
multiple signal classification (MUSIC) [8], Time-Reversal MUSIC (TR-MUSIC) [9–11], Root-MUSIC [12],
estimation of signal parameters via rotational invariance technique (ESPRIT) [13], and so on. Compared
with 1-D DOA estimation, the study of 2-D DOA estimation, which can obtain the azimuth and
elevation angles simultaneously, has attracted much attention. Numerous high-resolution 2-D DOA
estimation methods with different structured arrays have been proposed, including the two-parallel
arrays [14,15], circular arrays [16,17], uniform rectangular arrays [18–20], and L-shaped arrays [21–30].
Due to the wider coverage area and lower Cram’er-Rao boundary (CRB) [31], great efforts have been
focused on 2-D DOA estimation for L-shaped arrays.
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Due to the geometric configuration of L-shaped arrays, the elevation and azimuth angles can
be estimated independently from each linear arrays. As the classical subspace method, MUSIC can
be directly employed to the received data matrix of L-shaped arrays [21], but 2-D pseudo-spectrum
searching of MUSIC requires a large number of calculations. An algorithm based on the propagator
method (PM) has been proposed to estimate the angles with two L-shaped arrays [22], but the algorithm
needs an extra pair-matching method. Consequently, a pair-matching algorithm has been proposed by
utilizing the diagonal factors of the cross-correlation matrix (CCM) [23]. To avoid pair-matching of
azimuth and elevation angles, an estimation algorithm based on joint singular value decomposition
(JSVD) has been proposed to obtain the auto-matched azimuth and elevation angles [24]. However,
the beamforming-like operation of the algorithm requires heavy calculations. By employing the
shift-invariance property of the CCM, an algorithm based on ESPRIT has been proposed [25], which
performs eigenvalue decomposition (EVD) on improved CCMs to estimate the angles. Considering the
properties of several CCMs with the same signal subspace, a subspace-based algorithm without singular
value decomposition (SVD) or EVD has been proposed to obtain the azimuth and elevation angles [26].
Although this algorithm can acquire the signal subspace without SVD or EVD, the algorithm needs to
minimize a cost function, which requires heavy calculations. In order to expand the array aperture and
snapshots, the researchers have proposed an estimation algorithm based on the conjugate symmetry
property of the uniform array’s manifold matrix [27]. However, the expanded snapshots only benefit
the azimuth or elevation angles. Nie, X. [28] has presented a 2-D DOA estimation algorithm for closely
spaced sources, which performs SVD on two matrices constructed by CCMs to estimate the azimuth
and elevation angles. Pair-matching is achieved by using the conjugate property of the non-zero
eigenvalues of two matrices. To reduce the complexity of 2-D DOA estimation, a novel auto-matched
PM for L-shaped array has been presented [29]. Unfortunately, the signal subspace is obtained directly
from CCM, and thus the performance of the method is affected by the residual correlations of noise
vectors. Liang, J. [30] has proposed a joint 2-D DOA estimation algorithm, which constructs a new angle
with the elevation and azimuth angle and divides the arrays into two sub-arrays. The ESPRIT algorithm
is then performed to obtain the azimuth and elevation angles without additional pair-matching.

All of the algorithms mentioned above are applied to the L-shaped uniform arrays, which confine
the aperture and the maximum number of incident signal sources to be estimated. In contrast to the
uniform arrays, sparse arrays with more degrees of freedom (DOF) and larger apertures have aroused
the interest of scholars and researchers, such as minimum redundancy arrays [32], co-prime arrays [33],
and nested arrays [34]. Co-prime arrays have been proposed for increasing the DOFs and improving
the estimation resolution. However, the co-arrays of co-prime arrays are usually not a filled uniform,
which may lead to phase ambiguity. To make the utmost of the co-arrays, an off-grid method has
been proposed [35], which interpolates the additional sensors to the generated co-arrays to convert the
non-uniform arrays into uniform linear arrays (ULA). Zhou, C.W. [36] has proposed an estimation
method based on virtual arrays interpolation to reconstruct the covariance matrix of co-arrays, which
can utilize all the derived co-arrays. Compared with other sparse arrays, nested arrays with N physical
sensors can generate O(N2) DOF with a closed-form expression. Therefore, several algorithms based
on sparse L-shaped arrays have been proposed for 2-D DOA estimation. Jian-F. G. [37] has proposed a
joint 2-D DOA estimation algorithm for the L-shaped sparse arrays, that are composed of one uniform
linear arrays and one sparse linear arrays (SLA). In order to obtain the auto-matching angles, the
elevation angle is estimated first, and the azimuth angle is estimated using the estimated elevation
angle. The resolution of the elevation angle estimated by the ULA is not as high as the azimuth angle
estimated by the SLA. To make use of the advantages of nested arrays, an interlaced double precision
2-D DOA estimation algorithm using L-shaped nested arrays has been presented [38]. However,
the azimuth or elevation angle is achieved based on solving a least-squares problem with another
estimated angle. Influenced by noise perturbations, high-precision estimation can only be obtained
for either the azimuth or elevation angle. By utilizing the spatial-temporal property of signals, Dong,
Y.Y. [39] has proposed an algorithm for L-shaped nested arrays, which constructs several CCMs with
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different time lags and performs a signal subspace joint diagonalization technique (SSJD) to estimate
the azimuth and elevation angles simultaneously. However, the number of valid snapshots is reduced
by dividing output dates into several frames, and the SSJD technique requires a loop iterative operation
which requires heavy calculations.

In this paper, we propose an improved algorithm for L-shaped nested arrays in order to estimate
the azimuth and elevation angles with a small number of snapshots. The array configuration is
composed of two orthogonal nested arrays in the X-Y plane. Rather than using the auto-correlation
matrix (ACM) of nested arrays, we calculate the CCM using the output of different sub-arrays,
which removes the noise vector. Considering the perturbation of the sample cross-correlation matrix
under a small number of snapshots, we reconstruct the CCM by using SVD. The sub-matrices of the
reconstructed CCM are used to generate two large consecutive virtual arrays without an overlap
element or residual noise. Since the equivalent received signals of virtual arrays behave like coherent
sources, the output of the virtual arrays and their conjugate vectors are used to construct the full
rank Toeplitz matrix as the equivalent covariance matrix. This process overcomes the rank deficiency
of the virtual arrays. To reduce the computational complexity of the algorithm, a unitary ESPRIT
method is performed on the equivalent covariance matrix to estimate the azimuth and elevation angles,
separately. Since the azimuth and elevation angles are obtained, we achieve the pair-matched angles
by deriving the equivalent source vector of the virtual arrays with the estimated angles. Our procedure
can also estimate the power of the incident signals. Detailed analysis and numerical simulation are
provided to demonstrate the lower complexity and better performance of the proposed algorithm.

The rest of the paper is organized as follows. The array configuration and signal model are
illustrated in Section 2. A description of the proposed algorithm is introduced in Section 3. The
simulation results and analysis are shown in Section 4, and the conclusion is presented in Section 5.

The following notations will be used throughout the paper. Vectors and matrices are denoted
by using lower-case and capital bold letters, respectively. The superscripts (·)∗, (·)T, (·)+, and (·)H

represent the conjugate, transpose, pseudo-inverse, and conjugate transpose operations, respectively.
The symbol � denotes the Khatri-Rao product between two matrices, and vec(·) denotes the column
vectorization operator, which turns a matrix into a column vector. The symbol E(·) represents the
expectation operator. Finally, the notation

∏
N denotes an N ×N exchange matrix with ones on its

anti-diagonal and zeros elsewhere.

2. Array Configuration and Signal Model

The array geometric configuration is illustrated in Figure 1; the L-shaped nested arrays are
composed of two orthogonal nested arrays in the X-Y plane. Each nested arrays consists of two ULAs,
where the inner ULA contains N sensors with inter-sensor spacing d and the outer ULA contains
N − 1 sensors with inter-sensor spacing Nd, where d = 1/2λ, and λ is the wavelength of the incident
signal. The sensor at the origin is seen as the reference sensor. All sensors are assumed to be identical,
omnidirectional, and isotropic. Suppose that there are K far-field, uncorrelated, narrowband signals
si(t) (i = 1, . . . , K), impinging from distinct directions. Note that there are two ways to define the
incident angles of sources. The first way is in terms of the azimuth angle θi, measured between the
projection of i-th incident signal in the X-Y plane and the X-axis, and the elevation angle φi, measured
between the i-th incident signal and the Z-axis. The second set of angles included the angle αi, which is
measured between the i-th incident signal and the X-axis, and the angle βi, which is measured between
the i-th incident signal and the Y-axis. It is easy to verify that a relationship between the angles (αi, βi)

and the angles (θi,φi) exists, as shown in:

cosαi = cosθi sinφi
cos βi = sinθi sinφi

(1)
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Figure 1. The geometry of the L-shaped nested array. Black dots indicate sensors of inner ULA with 
inter-spacing d, while blue dots show sensors of outer ULA with inter-spacing Nd. 

3. The Proposed Method 

3.1. Constructing the Cross-Correlation Matrix for a Small Number of Snapshots 

We divide the nested arrays of the X-axis into two subarrays, as shown in Figure 2. Since the 
arrays along the X-axis and Y-axis have similar structures, the sub-array division of Y-axis is 
analogously divided. The nested array along the X-axis is composed of 2N−1 sensors, there are N 
sensors in each sub-array, where the N-th sensor is shared by both sub-arrays. Sub-array 1 is a 
uniform linear array containing N sensors with spacing 1 / 2d λ= , and sub-array 2 is a uniform linear 
arrays contained N sensors with spacing 2 / 2d Nλ= . The output vectors of sub-array 1 and sub-
array 2 are given respectively by: 
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Where ( )tx1N  and ( )tx2N  are the noise vectors of sub-array 1 and sub-array 2, respectively. In 
addition, 1 1 1 2 1( ) [ ( ), ( ),..., ( )]x x x ka a aα α α α=x1A  and 2 1 2 2 2( ) [ ( ), ( ),..., ( )]x x x ka a aα α α α=x2A  denote the 
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manifold matrices are written as 
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Figure 1. The geometry of the L-shaped nested array. Black dots indicate sensors of inner ULA with
inter-spacing d, while blue dots show sensors of outer ULA with inter-spacing Nd.

The array output vectors at the sub-array along the X-axis and Y-axis are written in matrix form
as follows:

X(t) = [x1(t), x2(t), . . . , x2N−1(t)]
T

= Ax(α)S(t) + Nx(t)
(2)

Y(t) = [y1(t), y2(t), . . . , y2N−1(t)]
T

= Ay(β)S(t) + Ny(t)
(3)

where Ax(α) = [ax(α1), ax(α2), . . . , ax(αk)] , Ay
(
β) = [ay(β1), ay(β2), . . . , ay(βk)] are the (2N − 1) × K

array manifold matrices of the X-axis and Y-axis, respectively, and the i-th manifold vectors ax(αi) and
ay(βi) are expressed as follows:

ax(αi) = [1, e− jπ cosαi , . . . , e− jπ(N−1) cosαi ,

e− jπ(2N−1) cosαi , . . . , e− jπ(N2
−1) cosαi ]T

(4)

ay(βi) = [1, e− jπ cos βi , . . . , e− jπ(N−1) cos βi ,

e− jπ(2N−1) cos βi , . . . , e− jπ(N2
−1) cos βi ]T

(5)

Additionally, S(t) = [s1(t), s2(t), . . . , sk(t)]
T is the source signal vector, Nx(t) =

[nx1(t), nx2(t), . . . , nx2N−1(t)]
T and Ny(t) = [ny1(t), ny2(t), . . . , ny2N−1(t)]

T are the additive noise vectors.
In this paper, we suppose the incident signals with variances [σ2

1, σ2
2, . . . , σ2

k ] are uncorrelated to each
other, the additive noise is temporally and spatially complex white Gaussian noise with zero mean and
variance σn

2, which are statistically independent of the signals. The number of incident signals k has
already been estimated by a number detection technique. These properties of the source signal vector
and additive noise vectors can be written as:

E[S(t)SH(t)] = diag(σ2
1, σ2

2, . . . , σ2
k) (6)

E[S(t)Ni
H(t)] = 0 (7)
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E[Ni(t)NH
j (t)] =

 σn
2I i = j

0 i , j
, (8)

where I and 0 indicate identity and null matrices, respectively.

3. The Proposed Method

3.1. Constructing the Cross-Correlation Matrix for a Small Number of Snapshots

We divide the nested arrays of the X-axis into two subarrays, as shown in Figure 2. Since the arrays
along the X-axis and Y-axis have similar structures, the sub-array division of Y-axis is analogously
divided. The nested array along the X-axis is composed of 2N−1 sensors, there are N sensors in each
sub-array, where the N-th sensor is shared by both sub-arrays. Sub-array 1 is a uniform linear array
containing N sensors with spacing d1 = λ/2, and sub-array 2 is a uniform linear arrays contained
N sensors with spacing d2 = Nλ/2. The output vectors of sub-array 1 and sub-array 2 are given
respectively by:

X1(t) = [x1(t), x2(t), . . . , xN(t)]
T

= Ax1(α)S(t) + Nx1(t)
(9)

X2(t) = [xN(t), xN+1(t), . . . , x2N−1(t)]
T

= Ax2(α)S(t) + Nx2(t)
(10)

where Nx1(t) and Nx2(t) are the noise vectors of sub-array 1 and sub-array 2, respectively. In
addition, Ax1(α) = [ax1(α1), ax1(α2), . . . , ax1(αk)] and Ax2(α) = [ax2(α1), ax2(α2), . . . , ax2(αk)] denote
the manifold matrices of sub-array 1 and sub-array 2, respectively, where the i-th column of these two
manifold matrices are written as

ax1(αi) = [1, e− jπ cosαi . . . , e− j(N−1)π cosαi ]
T

(11)

ax2(αi) = [e− j(N−1)π cosαi , . . . , e− j(N2
−1)π cosαi ]

T
(12)
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Figure 2. Subarray selection from the nested arrays of the X-axis. Black dots indicate sensors of
sub-array 1 with inter-spacing d, while blue dots show sensors of sub-array 2 with inter-spacing Nd, the
N-th sensor is shared by both sub-arrays, symbol denotes the location of sensor.

Similarly, sub-array 3 along the Y-axis is a uniform linear array containing N sensors with spacing
d1 = λ/2, and the sub-array 4 along the Y-axis is a uniform linear array containing N sensors with
spacing d2 = Nλ/2, the output vector can be written as:

Y1(t) = [y1(t), y2(t), . . . , yN(t)]
T

= Ay1(β)S(t) + Ny1(t)
(13)
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Y2(t) = [yN(t), yN+1(t), . . . , y2N−1(t)]
T

= Ay2(β)S(t) + Ny2(t)
(14)

where Ny1(t) and Ny2(t) are the noise vectors of sub-arrays 3 and 4, respectively, Ay1(β) =

[ay1(β1), ay1(β2), . . . , ay1(βk)] and Ay2(β) = [ay2(β1), ay2(β2), . . . , ay2(βk)] are the manifold matrices
of sub-array 3 and 4, respectively, where the i-th column of these two manifold matrices are written as:

ay1(βi) = [1, e− jπ cos βi . . . , e− jπ(N−1) cos βi ]
T

(15)

ay2(βi) = [e− j(N−1)π cos βi , . . . , e− j(N2
−1)π cos βi ]

T
. (16)

By constructing the vectors with the outputs of the subarrays Z1(t) = [X1(t), Y1(t)]
T and Z2(t) =

[X2(t), Y2(t)]
T, the CCM of the two vectors can be computed as:

Rz = E[Z1(t)ZH
2 (t)] =

[
X1(t)
Y1(t)

][
X2(t)
Y2(t)

]H

=

[
Rx1x2 Rx1y2

Ry1x2 Ry1y2

]
. (17)

According to the Equation (17), the submatrices of Rz can be expressed as:

Rx1x2 = E[X1(t)XH
2 (t)] = Ax1(α)RsAH

x2(α) + σn
2Rn0 ≈ Ax1(α)RsAH

x2(α) (18)

Rx1y2= E[X1(t)YH
2 (t)] = Ax1(α)RsAH

y2(β) (19)

Ry1x2= E[Y1(t)XH
2 (t)] = Ay1(β)RsAH

x2(α) (20)

Ry1y2= E[Y1(t)YH
2 (t)] = Ay1(β)RsAH

y2(β) + σn
2Rn0 ≈ Ay1(β)RsAH

y2(β), (21)

where Rs = E[S(t)SH(t)] = diag[σ2
1, σ2

2, . . . , σ2
k ], and σ2

k denotes the power of the k-th signal source.
Since the noise vectors of different sensors are spatially independent and uncorrelated, the elements
of Rn0 are all zeros except for the element Rn0(N, 1) = 1. Considering that the matrix σn

2Rn0 is an
extremely sparse matrix, with only one non-zero element, it has little effect on the cross variance matrix
Rz, so we omit it here and in the coming analysis. The noise term σn

2Rn0 is omitted only for simplifying
analysis. The effect of omitting noise term σn

2Rn0 on DOA estimation is examined in Section 4. From
Equations (18)–(21), the noise vector is removed by the cross-correlation operation.

We perform SVD on Rz, which can be expressed as:

Rz = [USUN]

[
ΛS 0
0 ΛN

]
[VS VN]

H. (22)

According to the second-order statistical properties of array signals, ΛS and ΛN are rectangular
diagonal matrices with the K large singular values and other small singular values on the diagonal; US,
UN, VS, and VN are unitary matrices whose columns are left-singular vectors and right-singular vectors
corresponding to ΛS and ΛN. Considering the noise vectors are removed by the cross-correlation
operation, ΛN should be the null matrix.

In practice, the CCM Rz is replaced by the sample CCM R̂z. Assuming that L snapshots are
available, the sample CCM matrix R̂z is:

R̂z =
1
L

L∑
t=1

Z1(t)ZH
2 (t). (23)
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Performing SVD on R̂z can be thus expressed as:

R̂z = [ÛS ÛN]

 Λ̂S 0
0 Λ̂N

[V̂S V̂N]
H

. (24)

For small numbers of samples, the additive noise vectors does not satisfy the statistical assumptions
in Equation (8). As mentioned in Ref. [40], if the number of samples is high, the singular values of the
sample CCM will converge to the singular values of the CCM. On the contrary, the eigenvalues of the
sample CCM will diverge in a large cluster. Therefore, Λ̂N may not equal the null matrix for small
numbers of samples.

To reduce the perturbation of additive noise in the sample CCM R̂z with small numbers of samples,
we make the matrix Λ̂N = 0 to reconstruct the modified CCM Rz1:

Rz1 = [ÛS ÛN]

[
Λ̂S 0
0 0

]
[V̂S V̂N]

H
= ÛSΛ̂SV̂S

H. (25)

Comparing Equation (25) with Equation (24), it can be concluded that using the matrix Rz1 instead

of R̂z means that the sub-matrix ÛNΛ̂NV̂
H
N is omitted.

3.2. Virtual Arrays Generation Based on the CCM for Nested Arrays

In this section, we first review the virtual arrays of the original nested arrays. As mentioned in
Ref. [34], the nested arrays were proposed to obtain O(M2) DOF from M sensors by vectorizing the
ACM of the received signals as follows:

z = vec(Rxx) = (A∗ �A)p + σ2
n
→

ln, (26)

where Rxx = E[X(t)XH(t)] = ARsAH + σ2
nI is the ACM of the received signals, X(t) is the output of

the physical array, p = [σ2
1, σ2

2, . . . , σ2
k ]

T denotes the equivalent signal vector,
→

ln = [eT
1 eT

2 . . . eT
N] is the

noise vector of the virtual arrays, ei is a column vector of all zeros except a 1 at the i-th position, and
A∗ �A can be seen as the manifold matrix of the virtual arrays.

The locations of virtual arrays can be expressed by the set D =
{⇀

d i −
⇀
d j, 1 ≤ i, j ≤ N

}
, where

⇀
d i

denote the position vector of the i-th sensor. According to the analysis in Ref. [33], the set D contains
the self-differences set Ds and the cross-differences set Dc, defined as:

Ds =
{
(N1 + 1)(k1 − k2)

}
∪

{
(l1 − l2)

}
, 1 < k1, k2 < N2, 1 < l1, l2 < N1 (27)

Dc =
{
(N1 + 1)k− l

}
∪

{
l− (N1 + 1)k

}
, 1 < k < N2, 1 < l < N1, (28)

where l denotes the position vector of first level subarray with spacing d1 = λ/2, k denotes the position
vector of second level sub-array with spacing d2 = (N1 + 1)λ/2, N1 is the number of sensors in the
first level subarray, and N2 is the number of sensors in the second level subarray. From Equations (27)
and (28), the cross-differences set Dc contributes the majority of sensor locations, the self-differences
set Ds contributes the remaining sensor locations, which contain some overlapping ones. In addition,

the output of the virtual arrays contains noise
→

ln, which need an extra operation to remove. In order
to obtain the virtual arrays without the overlapping element and noise, we propose an improved
L-shaped nested arrays based on CCM, in order to take full advantage of the cross-differences property.
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We divide the modified CCM Rz1 into four sub-matrices as shown in Equation (17), and then
reverse the matrices Rx1x2 and Ry1y2 according to the columns, which can be expressed as:

Rx =
∏

N Rx1x2

=
k∑

i=1
σ2

i


1 e jNπ cosαi · · · e j(N2

−N)π cosαi

e jπ cosαi e j(N+1)π cosαi · · · e j(N2
−N+1)π cosαi

...
...

...
...

e j(N−1)π cosαi e j(2N−1)π cosαi · · · e j(N2
−1)π cosαi


(29)

Ry =
∏

N Ry1y2

=
k∑

i=1
σ2

i


1 e jNπ cos βi · · · e j(N2

−N)π cos βi

e jπ cos βi e j(N+1)π cos βi · · · e j(N2
−N+1)π cos βi

...
...

...
...

e j(N−1)π cos βi e j(2N−1)π cos βi · · · e j(N2
−1)π cos βi


(30)

We utilize the matrices Rx and Ry to calculate the following vectors:

rx = vec(Rx) = vec(
∏

N Ax1(α)RsAH
x2(α))

= (A∗x2(α) �Ax1z(α))p

= Ax(α)p

(31)

ry = vec(Ry) = vec(
∏

N Ay1(β)RsAH
y2(β))

= (A∗y2(β) �Ay1z(β))p

= Ay(β)p

(32)

where Ax1z(α) =
∏

N Ax1(α) , Ay1z
(
α) =

∏
N Ay1(β) , and the equivalent signal vector is expressed

by p = [σ2
1, σ2

2, . . . , σ2
k ]

T. Additionally, rx can be seen as the output of the virtual arrays along the
X-axis, whose manifold is given by Ax= [ax(α1), ax(α2), . . . , ax(αk)]; ry can be seen as the output of the
virtual arrays along the Y-axis, whose manifold is given by Ay= [ay(β1), ay(β2), . . . , ay(βk)]; and the
i-th column of matrix Ax and Ay are respectively written as:

ax(αi) = [1, e jπ cosαi , . . . , e jπ(N2
−1) cosαi ] ∈ CN2

×1 (33)

ay(βi) = [1, e jπ cos βi , . . . , e jπ(N2
−1) cos βi ] ∈ CN2

×1. (34)

Defining rx = [x1, x2, . . . , xN2 ]
T and ry = [y1, y2, . . . , yN2 ]

T as the outputs of the virtual arrays,
where xi and yi denote the output of i-th virtual array along the X-axis and Y-axis, respectively. The
conjugate vectors of rx and ry are expressed as follows:

rx
∗ = [x1

∗, x2
∗, . . . , xN2

∗]
T

=
(
Ax(α)p

)∗
= Ax

∗

(α)p

(35)

ry
∗ = [y1

∗, y2
∗, . . . , yN2

∗]
T

=
(
Ay(β)p

)∗
=Ay

∗

(β)p

(36)
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where xi
∗ and yi

∗ denote the conjugate vector of the i-th virtual array’s output along the X-axis and Y-axis,
p∗ = p = [σ2

1, σ2
2, . . . , σ2

k ]
T, Ax

∗

= [ax
∗(α1), ax

∗(α2), . . . , ax
∗(αk)], and Ay

∗

= [ay
∗(β1), ay

∗(β2), . . . , ay
∗(βk)].

The i-th column of the matrices of Ax
∗

and Ay
∗

are written as:

ax
∗(αi) = [1, e− jπ cosαi , . . . , e− j(N2

−1)π cosαi ] ∈ CN2
×1 (37)

ay
∗(βi) = [1, e− jπ cos βi , . . . , e− jπ(N2

−1) cos βi ] ∈ CN2
×1. (38)

According to the Equations (35) and (36), rx
∗ and ry

∗ can be seen as the outputs of virtual arrays
whose manifold are given by Ax

∗

and Ay
∗

, respectively. Defining X = [xN2
∗, . . . , x2

∗, x1, . . . , xN2 ]
T, which

behaves like the output of a uniform linear array along the X-axis containing 2N2
− 1 elements with

spacing d1 = λ/2, and Y = [yN2
∗, . . . , y2

∗, y1, . . . , yN2 ]
T, which behaves like the output of a uniform

linear array along the Y-axis containing 2N2
− 1 elements with spacing d1 = λ/2. Thus, we obtain

the virtual arrays of 4N2
−2 elements in the X-Y plane using only 4N − 2 physical sensors, which

dramatically increases the DOF.

3.3. Improved Unitary ESPRIT Algorithm for Received Signals of Virtual Arrays

According to the outputs of the virtual arrays in Equations (31), (32), (35), and (36), the equivalent
signal vector p behaves like coherent signal sources that lead to a rank deficiency of the covariance
matrix. Hence, the conventional high-resolution DOA estimation algorithm such as MUSIC or ESPRIT
can’t be directly used for the virtual arrays. In this subsection, the equivalent covariance matrix is
constructed to estimate the DOA of the virtual arrays.

Since the covariance matrix is a Toeplitz matrix, we can use X to construct the equivalent covariance
matrix RX:

RX =


x1 x2∗ x3∗ . . . xN2 ∗

x2 x1 x2∗ . . . xN2−1
∗

...
...

...
...

...
xN2 xN2−1 xN2−2 . . . x1

 =Ax


σ2

1 . . . 0
...

. . .
...

0 · · · σ2
k

Ax
H

. (39)

From Equation (33), Ax is Vandermonde matrix that satisfies the property of rotational invariance.
After performing the EVD of the matrix RX, the rotational invariance property can be expressed as:

J1UsΦx = J2Us, (40)

where Us is the matrix composed of eigenvector corresponding to the K largest eigenvalues, J1 =

[IN2−1, 0(N2−1)×1], J2 = [0(N2−1)×1, IN2−1], and Φx = diag[e jπ cosα1 , e jπ cosα2 , . . . , e jπ cosαk ].
The ESPRIT algorithm needs to perform SVD or EVD on the complex covariance matrix which

means leads to a high computational burden. To reduce the computational complexity of the algorithm,
the unitary transformation is used to transform the complex covariance matrix into a real-valued
matrix [41]. We construct the Centro-Hermitian matrix RX1:

RX1 =
1
2
(RX +

∏
N2

R∗X
∏
N2

). (41)

Additionally, we define the unitary matrix:

Qn =



1
√

2

[
Im jIm∏

m −j
∏

m

]
n= 2m

1
√

2


Im 0(m×1) jIm

0(1×m)

√
2 0(1×m)∏

m 0(m×1) − j
∏

m

 n= 2m+1
. (42)
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We use the unitary matrix Qn to transform the complex matrix RX1 into real matrix RX2 via:

RX2 = 1
2 QH

N2(RX +
∏

N2 R∗X
∏

N2)QN2

= 1
2 (Q

H
N2RXQN2 + QH

N2

∏
N2 R∗X

∏
N2 QN2)

= 1
2 (Q

H
N2RXQN2 + QT

N2R∗XQ∗N2)

= Re(QH
N2RXQN2)

(43)

After the unitary transformation, the complex rotational invariance property of Equation (40) becomes
the real-valued rotation; invariance property as follows:

K1EsxΨx = K2Esx, (44)

where K1 = QH
N2−1

(J1 + J2)QN2 , K2 = QH
N2−1

j(J1 − J2)QN2 , and Ψx =

diag[tan(π cosα1/2), . . . , tan(π cosαk/2)].
From the Equation (44), the Ψx can be obtained by the least square method:

Ψx = (K1Esx)
+K2Esx. (45)

By performing EVD on Ψx, the angle α̂i can be obtained from the i-th eigenvalue ai of Ψx as follow:

α̂i = arccos(2arctan(ai)/π). (46)

Similarly, we use ry and ry
∗ to construct the equivalent covariance matrix RY:

RY =


y1 y2∗ y3∗ . . . yN2 ∗

y2 y1 y2∗ . . . yN2−1
∗

...
...

...
...

...
yN2 yN2−1 yN2−2 . . . y1

 = Ay


σ2

1 . . . 0
...

. . .
...

0 · · · σ2
k

Ay
H

. (47)

We then use the unitary matrix Qn to transform RY into real matrix RY1 as follow:

RY1 = 1
2 QH

N2

(
RY +

∏
N2 R∗Y

∏
N2)QN2

= Re(QH
N2RYQN2)

(48)

After the unitary transformation, the real-valued rotation invariant property is written as:

K1EsyΨy = K2Esy (49)

where Ψy = diag[tan(π cos β1/2), . . . , tan(π cos βk/2)].
Then Ψy can be obtained by the least square method. After performing EVD on Ψy, the angle β̂i

can be obtained from the i-th eigenvalue bi of the matrix Ψy as follows:

Ψy =
(
K1Esy

)+
K2Esy (50)

β̂i = arccos(2arctan(bi)/π). (51)

3.4. Pair Matching

Since the angles α̂ and β̂ are separately obtained by 1-D DOA estimation. This may lead to a
mismatch between angle α̂ and angle β̂ with more than one incident signal. From Equations (31) and
(32), the equivalent signal vector p of different virtual arrays is the same vector. The manifold matrix of
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virtual arrays Ax(α̂) can be calculated with the estimated angle α̂. From Equation (31), the equivalent
signal vector p1 can be derived by the least square method as follows:

p̂1 = argmin
p
‖rx −Ax(α̂)p̂1‖

2
(52)

p̂1 =
[
Ax

H
(α̂)Ax(α̂)

]−1
Ax

H
(α̂)rx (53)

Similarly, the manifold matirx Ay(β) can be calculated with the estimated angle β̂. From Equation (32),
the equivalent signal vector p2 can be derived via:

p̂2 = argmin
p
‖ry −Ay(β̂)p̂2‖

2
(54)

p̂2 =
[
Ay

H
(β̂)Ay(β̂)

]−1
Ay

H
(β̂)ry. (55)

The elements of the equivalent signal vector p = [σ2
1, σ2

2, . . . , σ2
k ]

T denote the powers of the incident
signals. Due to the different power of incident signals, the pair matching problem can be done by
sorting the elements of p̂1 and p̂2: ∐

= argmin∐ ‖̂p1 −
∐

p̂2‖, (56)

where the
∐

is the sorting matrix. Then the result of pair matching is the following:

α̂ =
∐

β̂. (57)

According to Equations (53) and (55), the powers of incident signals have also been estimated.

3.5. Algorithm Implementation and Complexity Analysis

The proposed algorithm can be summarized as follows:

Step 1: Divide the nested arrays of into four subarrays. Construct the vectors Z1(t) and Z2(t) with the
outputs of the subarrays. Then calculate the CCM Rz = E[Z1(t)ZH

2 (t)].
Step 2: Perform SVD on the matrix Rz to reconstruct the modified CCM Rz1 via Equation (25).
Step 3: Divide the modified CCM Rz1 into four sub-matrices as in Equation (17), then use the
submatrices Rx1x2 and Ry1y2 to obtain the output of the virtual arrays via Equations (29)–(32).
Step 4: Construct the equivalent covariance matrices RX and RY with the output of the virtual arrays
via Equations (39) and (47).
Step 5: Utilize the unitary matrix to transform the covariance matrix into a real-valued covariance
matrix. Then conduct the ESPRIT algorithm on the real-valued covariance matrix to estimate the angles
α̂ and β̂.
Step 6: Derive the equivalent source signal vectors p1 and p2 with the estimated angles α̂ and β̂ via
Equations (52) and (54), respectively. Derive the sorting matrix

∐
, and pair the angles α̂ and β̂ by using

the sorting matrix
∐

.

As for the complexity of algorithm, the main computation of algorithm contains the reconstructing
CCM, SVD operation, pseudo-inverse operation and the least square method. Considering that the
virtual arrays extend the dimension of the equivalent covariance matrix, which need a lot of calculations,
the unitary transformation is performed on equivalent covariance matrix to reduce the computational
complexity of the proposed algorithm. The main computational complexity of our proposed algorithm is
O[(M + 1)2L + (M + 1)3 + (M + 1)6/128 + 5(M + 1)2k2/8 + (M + 1)2k/8 + k3/2], where M denotes
the number of sensors, L denotes the number of snapshots, k denotes the number of incident
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signals. The algorithm of joint singular value decomposition (JSVD) [24] involves a beamforming-like
spectral search. By defining the search step of 0.1 degree, the computational complexity of JSVD
is about O[M2L + 8M3 + 1800M2]. On the other hand, the method of cross-correlation matrices
propagator method (CCMs-PM) [29], which obtain the DOAs without EVD or SVD, cost approximately
O[M2L + 2k3 + (7M− 4)k2 + k(M− 1)(2M− k)]. The methods of JSVD and CCMs-PM are applied on
L-shaped uniform arrays. The method of signal subspace joint diagonalization (SSJD) [39], performed
on nested arrays, requires a complexity of O[3M2L(2N − 1) + 4((M2

− 1)/2 + M2 + M)
2
(2N − 1) +

8((M2
− 1)/2 + M2 + M)

3
+ 10k3], where the N is frame number of the method. For the sake of clarity,

the main complexity of the proposed algorithm, the JSVD algorithm, the SSJD algorithm, and the
CCMs-PM algorithm are listed in Table 1.

Table 1. Comparison of the computational complexity for different algorithms.

Algorithm Main Computational Complexity

Proposed algorithm O[(M + 1)2L + (M + 1)3 + (M + 1)6/128 + 5(M + 1)2k2/8 + (M + 1)2k/8 + k3/2]
JSVD
SSJD

CCMs-PM

O[M2L + 8M3 + 1800M2]

O[3M2L(2N− 1)+ 4((M2
− 1)/2 + M2 + M)

2
(2N− 1)+ 8((M2

− 1)/2 + M2 + M)
3
+ 10k3]

O[M2L + 2k3 + (7M− 4)k2 + k(M− 1)(2M− k)]

Figure 3 shows the complexity comparison of algorithms versus the number of sensors, where the
number of snapshots L is 100, the number of incident signals k is 3. Figure 4 shows the complexity
comparison of algorithms versus the number of snapshots, where the number of sensors M is 9, the
number of incident signals k is 3. From Figures 3 and 4, the complexity of the proposed algorithm is
much lower than the JSVD and SSJD algorithms. The low computational complexity is obtained from
the unitary transformation of the complex matrix into a real-valued matrix. Although the complexity
of the proposed algorithm is a bit higher than the CCMs-PM, the computational complexity of the
proposed algorithm is basically on the same order as the complexity of CCMs-PM.   

Sensors 2018, 18, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/sensors 

 
Figure 3. Comparison of complexity versus the number of sensors. 

 
Figure 4. Comparison of complexity versus the number of snapshots. 

5 6 7 8 9 10

M( number of sensors)

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

co
m

pl
ex

ity

JSVD

SSJD

CCMs-PM

Proposed Algorithm

10 20 30 40 50 60 70 80 90 100

L(number of snapshots)

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

co
m

pl
ex

ity

JSVD

SSJD

CCMs-PM

Proposed Algorithm

Figure 3. Comparison of complexity versus the number of sensors.



Sensors 2019, 19, 2176 13 of 22

  

Sensors 2018, 18, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/sensors 

 
Figure 3. Comparison of complexity versus the number of sensors. 

 
Figure 4. Comparison of complexity versus the number of snapshots. 

5 6 7 8 9 10

M( number of sensors)

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

co
m

pl
ex

ity

JSVD

SSJD

CCMs-PM

Proposed Algorithm

10 20 30 40 50 60 70 80 90 100

L(number of snapshots)

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8
co

m
pl

ex
ity

JSVD

SSJD

CCMs-PM

Proposed Algorithm

Figure 4. Comparison of complexity versus the number of snapshots.

4. Simulation Results and Performance Analysis

In this section, several simulation experiments are conducted to verify the performance of the
proposed algorithm. Consider L-shaped nested arrays consisting of two orthogonal nested arrays,
where each nested array contains nine sensors, of which the inner ULA contains five sensors with an
inter-sensor spacing of λ/2 and the outer ULA contains four sensors with an inter-sensor spacing
5λ/2, where λ is the wavelength of the incident waves. Consider that three signals are impinging
from the locations (α1, β1) = (25◦, 30◦), (α2, β2) = (35◦, 40◦), and (α3, β3) = (45◦, 50◦). The power
of signals are set as σ2

1 = 3, σ2
2 = 4, and σ2

3= 5. The input signal-to-noise-ratio (SNR) is defined as
SNR = 10 log10(σs

2/σn
2), where σs

2 and σn
2 denote the power of signal and noise, respectively.

Two criteria for assessing the performance of the DOA estimation algorithm are the probability
of resolution and the root mean square error (RMSE). The probability of resolution is defined as the
probability that the angle difference between the estimated angle and the real angle is less than half of
the beam width among several Monte-Carlo experiments, which can be expressed as follows:

P = P
(
max

{∣∣∣̂αi, j − α j
∣∣∣, ∣∣∣∣β̂i, j − β j

∣∣∣∣} ≤ BW
2

)
(58)

where BW denotes the beam width.
The definition of RMSE is as follows:

RMSE =

√√√√
1

nk

n∑
i=1

k∑
j=1

((α̂i, j − α j)
2 + (β̂i, j − β j)2) (59)

where α̂i, j and β̂i, j are the estimated angles of j-th incident signal for i-th Monte-Carlo experiment.
Likewise, α j and β j are the true angles of j-th incident signal. Additionally, n is the number of
Monte-Carlo trials, and k denotes the number of incident signals.

In first experiment, we examine the effect of the noise term σn
2Rn0 in Equations (18) and (21) on

DOA estimation. We compare the RMSE of the proposed algorithm with the denoising algorithm,
which removed the noise term σn

2Rn0 from the CCM and the other steps are the same as the proposed
algorithm. The RMSE of the proposed algorithm and denoising algorithm versus SNR under 1000
Monte-Carlo simulations is shown in Figure 5, where the number of snapshots L is 10, 20 and 100,
respectively. From Figure 5, the RMSE of the proposed algorithm and denoising algorithm under
different numbers of snapshots are almost overlapping in all cases, which verifies the rationality of
omitting the noise term in Equations (18) and (21).
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In the second experiment, we examine the DOA estimation performance of the proposed algorithm
versus the SNR in terms of the root mean square error (RMSE). We also compare the proposed algorithm
with the CRB, and the JSVD [24], CCMs-PM [29], SSJD algorithms [39]. The JSVD and CCMs-PM
algorithms are performed on L-shaped uniform arrays, whose sensor spacing is λ/2. The SSJD
algorithm is performed on the L-shaped nested arrays. The CRB of L-shaped nested arrays is derived
in Appendix A. Figures 6 and 7 show the RMSE and the probability of resolution of the different
algorithms versus the SNR for 1000 Monte-Carlo simulations, where the number of snapshots L is 100.
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As shown in Figure 6, the RMSE of the proposed algorithm is lower than other compared
algorithms for all SNRs. From Figure 7, we see the probability of resolution for all algorithms is
improved with the increase of SNR, and the probability of resolution for the proposed algorithm is
constant equal to 100%, which is obviously better than other compared algorithms. These results
confirm that our proposed algorithm outperforms the JSVD algorithm and CCMs-PM algorithm due to
the larger DOF obtained from nested arrays. Moreover, the computational complexity of the proposed
algorithm is not higher than the JSVD algorithm and CCMs-PM algorithm. Compared with the SSJD
algorithm, our algorithm also has better angle estimation performance by utilizing the reconstructed
CCM instead of the ACM, which removes the noise vector.
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In the third experiment, we evaluate the DOA estimation performance of the proposed algorithm
versus the number of snapshots. The SNR is set to 10 dB and 20 dB. The number of snapshots varies
from 20 to 200. Similarly, we compare the performance of the proposed algorithm with CRB, and the
JSVD, CCMs-PM, and SSJD algorithms with 1000 Monte Carlo trials.

As shown in Figures 8 and 9, the RMSE and the probability of resolution depicts that the
performance of the proposed algorithm still outperforms the contrasting algorithms for the studied
numbers of snapshots. Since the JSVD and CCMs-PM are vulnerable to noise, the performance of these
algorithms seriously deteriorates under a low SNR environment. From Figures 8 and 9, when SNR = 0
dB and the number of snapshots is less than 60, the RMSE of the proposed algorithm decreases rapidly
with the increasing of snapshots, which is closed to the RMSE of SSJD. When the SNR is 0 dB and the
number of snapshots is more than 60, the RMSE of the proposed algorithm decreases smoothly with the
increasing number of snapshots, and the probability of resolution of the proposed algorithm is above
90%. When SNR = 10 dB, the RMSE of the proposed algorithm decrease smoothly with the increasing
number of snapshots, and when the number of snapshots is more than 60, the proposed algorithm’s
probability of resolution is almost 100%. Figures 8 and 9 indicate that our proposed algorithm has a
better performance under the conditions of low SNR and a small number of snapshots.
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In the fourth experiment, we examine the estimation performance of the proposed algorithm
versus SNR for a small number of snapshots, where the SNR varies from 0 dB to 20 dB, and the number
of snapshots are 10 and 20. Similarly, we compare the performance of the proposed algorithm with the
CRB, and the JSVD, CCMs-PM, and SSJD algorithms with 1000 Monte Carlo trials. Figures 10 and 11
show the performance of the above algorithms versus SNR for a small number of snapshots.
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Figure 10. RMSE performance versus SNR for a small number of snapshots with (a) snapshots = 10; (b)
snapshots = 20.

As shown in Figure 10, the proposed algorithm can obtain better estimation performance than the
other algorithms. From Figure 10, the RMSE of the JSVD and CCMs-PM algorithms decline slowly
at low SNR for a small number of snapshots. These results show that the effect of removing noise
through the CCM is sensitive to the number of snapshots. The performance of SSJD is better than
the JSVD and CCMs-PM algorithms, but inferior to the proposed algorithm. With an increase in the
SNR, the estimation performance of the proposed algorithm dramatic decreased compared to the
above algorithms, for a small number of snapshots. This is due to the reconstruction of the CCM
based on SVD. When the SNR is greater than 10 dB, the RMSE of our algorithm is less than 1 degree
with 10 snapshots, which verifies the effectiveness of the proposed algorithm under a small number
of snapshots.
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From Figure 11, when the number of snapshots is 10 and SNR is lower than 15 dB, the probability
of the proposed algorithm is higher than other algorithms. When the number of snapshots is 10
and the SNR is higher than 15 dB, the probability of the JSVD algorithm, performed on the uniform
arrays, is better than the proposed algorithm. The beam width is proportional to the array aperture.
Therefore, the beam width for uniform L-shaped arrays is much higher than the nested L-shaped arrays,
which make the probability of JSVD higher than the proposed algorithm in a high SNR environment.
When the number of snapshots is 20, the probability of resolution for proposed algorithm is higher
than the other compared algorithms for all studied SNRs. Furthermore, when SNR is higher than
10 dB, the probability of the proposed algorithm is 100%, which denotes the optimal performance of
our algorithm.

For the sake of clarity, the RMSE of the proposed algorithm, the JSVD, the SSJD, and the CCMs-PM
algorithms are listed in Table 2, where the number of snapshots are 10 and 20, the SNR are 0 dB, 5 dB,
10 dB.

Table 2. Comparison of estimation RMSE for different algorithms.

Algorithm Snapshots RMSE (0 dB) RMSE (5 dB) RMSE (10 dB)

JSVD 10 36.63◦ 35.52◦ 34.70◦

CCMs-PM 10 49.84◦ 40.54◦ 29.28◦

SSJD 10 33.44◦ 7.40◦ 2.33◦

Proposed Algorithm 10 32.40◦ 3.52◦ 0.42◦

JSVD 20 34.63◦ 35.12◦ 30.88◦

CCMs-PM 20 46.68◦ 39.79◦ 24.43◦

SSJD 20 18.28◦ 2.32◦ 1.21◦

Proposed Algorithm 20 16.93◦ 0.5◦ 0.30◦

As described in Table 2, the RMSE of the proposed algorithm is obviously lower than other
compared algorithms, which indicates the best estimation performance among all considered algorithms
for a small number of samples.

In the last experiment, the estimation performance of the proposed algorithm versus SNR for
different sensor spacing. The SNR varies from 0 dB to 20 dB, and the number of snapshots is 20. The
sensor spacing of inner ULA of nested arrays for simulation are 0.5λ and 0.4λ, respectively. The sensor
spacing of outer ULA of nested arrays for simulation are 2.5λ and 2λ, respectively. Similarly, the
sensor spacing of L-shaped uniform arrays for simulation are 0.5λ and 0.4λ, respectively. For ease of
expression in the following analysis, we define the symbol d as the sensor spacing of L-shaped uniform
arrays and the sensor spacing of inner ULA of nested arrays. We compare the performance of the
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proposed algorithm with Cramér–Rao bound (CRB), JSVD, CCMs-PM, and SSJD algorithms with 1000
Monte Carlo trials.

As shown in Figure 12, as the increasing of SNR, the RMSE of the proposed algorithm is the lower
than the other algorithms for different sensor spacing, which indicates the best performance of the
proposed algorithm. From Figure 13, the probability of resolution of proposed algorithm is higher
than the compared algorithms. When SNR is higher than 5 dB, the RMSE of the proposed algorithm is
lower than 1 degree and the probability of resolution is almost 100% with both of the sensor spacing.
Compare the RMSE curves and the probability of resolution curves with different sensor spacing, the
RMSE for all of the algorithms with sensor spacing d = 0.5λ are lower than these with sensor spacing
d = 0.4λ. The probability of resolution with sensor spacing d = 0.5λ of all the algorithms is higher than
these with sensor spacing d = 0.4λ. This indicates that the estimation performance with bigger sensor
spacing is better than the one with little sensor spacing. This is because that the sensor spacing is
proportional to the effective array aperture, which determines the estimation accuracy of the estimation.
However, the DOA estimation will lead to angle ambiguity when the sensor spacing of d is bigger than
0.5λ. Therefore, we choose the sensor spacing d = λ/2 as the array configuration of array sensor.
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5. Conclusions

In this paper, we have presented an improved 2-D DOA estimation algorithm using an L-shaped
nested array. To improve the estimation of CCM under small numbers of samples, a new CCM based
on SVD was constructed. A novel virtual generation of nested array is considered by utilizing the
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reconstructed CCM without the overlapping element and noise vector. After obtaining the virtual
arrays, an improved unitary ESPRIT algorithm is performed on the full rank equivalent variance
matrices, which are constructed by the output of the virtual arrays and their conjugate vectors, to
estimate the azimuth, and elevation angles. The pair-matching method is presented by estimating
the equivalent signal vector of the virtual arrays, which also estimate the power of incident signals.
Several numerical experiments show a better estimation performance of the proposed algorithm in
contrast to others, especially under a small number of snapshots. Considering the outperformance of
the proposed algorithm under small samples, our algorithm can be directly used on mono-pulse angle
measurement for radar and close-range directional detection.
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Abbreviations

DOA direction of arrival
CRB Cram’er-Rao boundary
JSVD joint singular value decomposition
ACM autocorrelation matrix
CCM cross correlation matrix
ESPRIT estimation of signal parameters via rotational invariance technique
EVD eigenvalue decomposition
PM propagator method
ULA uniform linear array
SLA sparse linear arrays
SSJD signal subspace joint diagonalization technique
SNR signal-to-noise-ratio
SVD singular value decomposition

Appendix A. CRB Analysis of L-Shaped Nested Arrays

The celebrated CRB expression which offers a theoretical lower bound on the unbiased DOA
estimation for uniform arrays is not suitable for nested arrays. According to Refs. [42,43], we derive
the CRB expression for L-shaped nested arrays.

From Equations (2) and (3), the combined received signal Z(t) is defined as:

Z(t) =
[

X(t)
Y(t)

]
=

[
Ax(α)
Ay(β)

]
S(t) +

[
Nx(t)
Ny(t)

]
= AS(t) + N(t), (A1)

where A =
[
AT

x (α) ,AT
y (β)

]T
, and N(t) =

[
NT

x (t) ,NT
y (t)

]T
.

The covariance matrix is calculated via:

R = E[Z(t)ZH(t)] = ARsAH + σ2I (A2)
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where Rs = S(t)SH(t)/N = diag(p1, p2, . . . , pk) denotes the source covariance matrix. Furthermore,
define η as the parameter vector:

η= [α1, . . . ,αk, β1, . . . , βk, p1, p2, . . . , pk, σ2]T. (A3)

The (m, n)-th element of Fisher Information Matrix (FIM) is given by

F(m,n) = Ntr
(
R−1 ∂R

∂ηm
R−1 ∂R

∂ηn

)
= N

[
vec

(
∂R
∂ηm

)]H(
RT
⊗R

)−1
vec

(
∂R
∂ηn

)
= N

(
∂r
∂ηm

)H(
RT
⊗R

)−1
(
∂r
∂ηn

) (A4)

where r = vec(R) = (A∗ �A)p + σ2ln = Ap + σ2ln, and p = [p1, p2, . . . , pk]
T.

From Equations (A2) and (A3),

∂r
∂η =

[
∂r
∂α1

, . . . , ∂r
∂αk

, ∂r
∂β1

, . . . , ∂r
∂βk

, ∂r
∂p1

, . . . , ∂r
∂pk

, ∂r
∂σ2

]
=

[(
∂A∗
∂α �A + A∗ � ∂A

∂α

)
P,

(
∂A∗
∂β �A + A∗ � ∂A

∂β

)
P, (A∗ �A), ln

] (A5)

where P= diag(p) = diag[p1, p2, . . . , pk],θ = [α1, . . . ,αk, β1, . . . , βk].
According to Equation (A4), the FIM can be expressed as:

F = N
[

MH
θMθMH

θMs

MH
s MθMH

s Ms

]
(A6)

where Mθ = (RT
⊗R)

−1/2 ∂A
∂θP, and Ms = (RT

⊗R)
−1/2

[(A∗ �A), ln]. Thus, the CRB can be obtained
by block-wise inversion:

CRBθ =
1
N

[
MH
θ

(
I−Ms

(
MH

s Ms
)−1

MH
s

)
Mθ

]−1
. (A7)
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