
sensors

Article

Real-Time Multi-Scale Face Detector on
Embedded Devices

Xu Zhao 1,2 , Xiaoqing Liang 1,2, Chaoyang Zhao 1,2,*, Ming Tang 1,2 and Jinqiao Wang 1,2

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China; xu.zhao@nlpr.ia.ac.cn (X.Z.); xiaoqing.liang@nlpr.ia.ac.cn (X.L.);
tangm@nlpr.ia.ac.cn (M.T.); jqwang@nlpr.ia.ac.cn (J.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: chaoyang.zhao@nlpr.ia.ac.cn; Tel.: +86-010-8244-9515

Received: 30 March 2019; Accepted: 6 May 2019; Published: 9 May 2019
����������
�������

Abstract: Face detection is the basic step in video face analysis and has been studied for many years.
However, achieving real-time performance on computation-resource-limited embedded devices
still remains an open challenge. To address this problem, in this paper we propose a face detector,
EagleEye, which shows a good trade-off between high accuracy and fast speed on the popular
embedded device with low computation power (e.g., the Raspberry Pi 3b+). The EagleEye is
designed to have low floating-point operations per second (FLOPS) as well as enough capacity,
and its accuracy is further improved without adding too much FLOPS. Specifically, we design five
strategies for building efficient face detectors with a good balance of accuracy and running speed. The
first two strategies help to build a detector with low computation complexity and enough capacity.
We use convolution factorization to change traditional convolutions into more sparse depth-wise
convolutions to save computation costs and we use successive downsampling convolutions at the
beginning of the face detection network. The latter three strategies significantly improve the accuracy
of the light-weight detector without adding too much computation costs. We design an efficient
context module to utilize context information to benefit the face detection. We also adopt information
preserving activation function to increase the network capacity. Finally, we use focal loss to further
improve the accuracy by handling the class imbalance problem better. Experiments show that the
EagleEye outperforms the other face detectors with the same order of computation costs, on both
runtime efficiency and accuracy.

Keywords: face detection; ARM-based devices; model acceleration; computer vision

1. Introduction

Face detection is a hot topic in computer vision. It is the basic step for face-related applications,
such as face recognition, face attribute classification, face beautification, etc. In the last two decades,
many approaches have been proposed to solve it [1–13]. The faces in the wild vary in scales and pose,
and they usually appear in cluttered backgrounds. These situations increase the difficulty of the face
detection.

The two main focuses of the face detection task are the speed and accuracy of the proposed
approaches. They are both important. Usually, the approaches with high computational complexity
perform better, but they run in a low running speed. Nowadays, most of the face detection applications
are deployed on embedded devices. Embedded devices usually have low computation resources.
Therefore, building efficient methods with a good balance of speed and accuracy is very important.
Another bottleneck of the embedded devices is the limited amount of available system memory, which
is discussed in [14,15]. Keeping the face detector’s memory complexity low is also important for

Sensors 2019, 19, 2158; doi:10.3390/s19092158 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5888-8872
http://www.mdpi.com/1424-8220/19/9/2158?type=check_update&version=1
http://dx.doi.org/10.3390/s19092158
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2158 2 of 22

embedded devices. Fortunately, modern embedded devices usually have large enough memory for
high-speed face detectors, for example the Raspberry Pi 3b+, the RK3399, and most recent mobile
phones. Therefore, this paper mainly focuses on designing effective strategies for building efficient
face detectors with a good balance between speed and accuracy.

Traditional face detection methods usually follow the sliding-window fashion. Viola–Jones [16]
is the pioneering method for face detection. It designs the Haar-like feature and uses the Adaboost
algorithm to classify each window on the image pyramid. After that, many traditional methods are
proposed. They focus on designing effective hand-craft features and building powerful classifiers. For
example, ACF (Aggregated Channel Features) [17] uses the aggregated channel features and adopts
the fast feature pyramid building strategy. These traditional methods could not deal with complex
situations because of their weak-semantic features. Moreover, since they usually adopt the image
pyramid to deal with the multiple face scales, they have limited advantage in running speed.

Currently, more and more deep learning-based methods are proposed. The state-of-the-art
methods usually regard the faces as a special case of general objects, and most of them are inherited
from general object detection methods. Some of them are based on faster RCNN (Region-based
Convolutional Neural Networks) [18], they follow the two-stage face detection pipeline. In the first
stage, they generate the candidate face proposals to filter out most of the background samples. Then,
in the second stage, they get the final detection result by classifying the proposals into faces and
non-faces, as well as further regressing them to the ground-truth location. Though there are some
works to improve the running efficiency of two-stage methods, the two-stage methods are still not
friendly with embedded devices.

On the other hand, most of the current state-of-the-art methods follow the single-stage framework.
Methods like SFD (Single Shot Scale-Invariant Face Detector) [10], SSH (Single Stage Headless Face
Detector) [5], PyramidBox [7], and FANet (Feature Agglomeration Networks) [9] are based on SSD
(Single Shot Multi-box Detector) [19] detector. SFD [10] adopts the VGG-16-based [20] SSD detector.
It proposes several guidelines about the anchor setting strategy to improve the recall rate of the face
detector. SSH [5] removes the fully-connected layers of VGG-16 to speed up the running speed. SSH
also designs a context module on the predicting layers to utilize context information. PyramidBox
[7] designs multiple strategies to utilize the context information to improve the face detection results.
FANet [9] designs a novel hierarchical feature pyramid to better merge the feature maps of different
stages. Another category of methods are based on RetinaNet [21], like SRN (Selective Refinement
Network) [2] and FAN (Face Attention Network) [22]. SRN [2] is inspired by the RefineDet [21]. It
appends a refinement branch to refine the classification results for small objects and regression results
for large objects. FAN [22] designs the attention module to improve the face detection performance in
some hard cases, like occlusions and person wearing masks. These single-stage methods are generally
faster than the two-stage methods. However, they tend to use large backbones (like VGG-16 or ResNet
[23]) or design heavy predicting heads to guarantee the performance, which makes them less efficient
on embedded devices.

There are only a few works aimed at designing highly efficient face detectors. MTCNN (Multi-Task
Convolutional Neural Network) [24] designs the cascade convolutional neural networks to filter
background patches in a coarse to fine way. MTCNN [24] is feasible to adapt different running speed
requirements of different devices, but its performance is not satisfactory in dealing with complex
situations. Faceboxes [25] is based on the SSD framework. They proposed two useful modules for
building efficient networks. The modules are the rapidly digested convolutional layers (RDCL) and the
multiple scale convolutional layers (MSCL). By designing an efficient face detection backbone based
on the two modules, the Faceboxes detector is able to run real-time on the x86 CPU based desktop.
However, it still cannot meet the real-time requirement for embedded devices.

Besides the above works that are specific to face detection, there are several works about
building efficient classification networks. MobileNet [26] uses depth-wise convolutions and point-wise
convolutions together to replace the regular convolutions. MobileNet-v2 [27] proposes the inverse

Sensors 2019, 19, 2158 3 of 22

residual blocks and linear bottlenecks to improve the accuracy of the depth-wise convolutions based
networks (i.e., MobileNet). ShuffleNet [28] converts the point-wise convolutions in MobileNet to group
point-wise convolutions and uses the channel-shuffle operation to exchange information between
channels. ShuffleNet-v2 is the improved version of ShuffleNet. ShuffleNet-v2 [29] find that beyond
minimizing the FLOPS, four practical guidelines should be considered for building efficient networks
that run fast on real devices. These networks are friendly with embedded devices, but they are mainly
designed for classification tasks. Although they can be directly applied in detection tasks, we think that
several modifications on them should be considered to build more efficient networks for detecting faces.

An efficient face detection network should achieve a good trade-off between speed and accuracy.
To build such an efficient network, we think there are two considerations. On one hand, the architecture
of the network should be efficient while it should maintain the necessary network capacity for being
accuracy. On the other hand, different from the general strategies proposed in recent face detectors
that improve the accuracy at the expense of reducing the speed a lot [2,7], the strategies to improve the
efficient network’s accuracy should bring less additional computation costs as possible. In this paper,
we use the floating-point operations per second (FLOPS) as the index of the detector’s speed, for it
reflects the computation complexity of the detection network and it is not affected by specific devices
and specific inference libraries. Therefore, the key is to build networks with low FLOPS and enough
capacity and propose strategies to improve its accuracy without adding too many FLOPS.

In this paper, to solve the problem that current face detectors could not reach a good balance
of speed and accuracy on embedded devices, we propose an arm based embedded devices oriented
face detector, EagleEye. The overview architecture of EagleEye is shown in Figure 1. EagleEye is
inspired by many of the above works. We first propose two strategies to reduce the computation cost
without reducing the accuracy too much. Then we propose three strategies to improve the accuracy
without adding too much computation cost. To reduce the FLOPS without sacrificing too much
capacity, firstly, we adopt the convolution factorization module to use the depth-wise convolutions
and point-wise convolutions to build the whole detector as efficient as possible; secondly, we set
the successive downsampling convolutions in the several beginning stages of the network which
remove the unnecessary layers. To improve the accuracy without adding too much computational
cost, firstly, we design an efficient multi-scale context module to utilize context information to improve
the detection accuracy; secondly, we use the information-preserving activation function to increase the
capacity of the network; thirdly, we introduce the focal loss to help the light-weight network to deal
with the class-imbalance problem during the training process. We build the EagleEye face detector
with the above four strategies. It achieves 50 ms per frame on an ARM A53 based embedded device,
the Raspberry Pi 3b+. It also achieves 96.1 mAP on FDDB dataset.

Dilation=2

Dilation=1

Detections

Successively Downsampling

Convolutions

Focal
Loss

Ground-truth

Depth-Wise
Convolution

PReLU
Point-Wise
Convolution

PReLU

Information Preserving Activation Function +

Convolution Factorization

Context Module

Figure 1. The overview of the network architecture of EagleEye face detector. The detection network is
built using the information preserving activation function and the convolution factorization in almost
all the backbone layers and the predicting layers.

Sensors 2019, 19, 2158 4 of 22

The contributions of this paper are two-fold. Firstly, we propose five guidelines for building
efficient face detectors. Secondly, we design the EagleEye face detector, which achieves good
performance on ARM devices.

2. Related Work

Our EagleEye detector is inspired by many previous works. MobileNet [26], MobileNet-v2 [27],
Xception [30], ShuffleNet [28], and ShuffleNet-v2 [29] also adopts the depthwise convolution for
efficient running on devices, but they are created as classification networks. We adopt the depth-wise
convolution to build more efficient networks and extend it to dilated depth-wise convolutions to
extract context information with little computation costs.

The Faceboxes [25] use a rapidly digested convolutional layers (RDCL) module to quickly reduce
the resolution of feature maps. This is similar to our successive downsampling convolutions module.
However, there are several differences between them. Firstly, EagleEye does not have the pooling layer
for it would decrease the accuracy of small faces. Secondly, we do not adopt the C.ReLu layer for its
limited improvements as shown in Faceboxes. Thirdly, we do not use the large kernel sizes of seven
or five in building EagleEye, for they are usually ignored by many the implement of deep learning
inference libraries and they would increase the number of parameters of the detector.

The dilation convolution is widely used in semantic segmentation to increase the scale of the
receptive field and introduce more context information, like the ASPP (Atrous Spatial Pyramid Pooling)
in DeepLab [31] method. In object detection tasks, RFBNet (Receptive Field Block Networks) [32] use
multiple dilation convolutions at each of the predicting branches. However, we think that adding a
multiple-dilation-convolution module at each of the predicting branches is not efficient enough, so
we propose to add it at the middle of the backbone to compute it only once. After that, the context
information is continuously fed into the following layers. Using multiple dilation convolutions in the
backbone as a context module is also proposed in ISSD (Improved Single Shot Object Detector) [33].
ISSD uses four split-dilatedConv-sum (dilatedConv means the dilated convolution operation) branches
to extract multi-scale information. Because ISSD is for general object detection in scenes and EagleEye
is for face detection, we remove the two branches with large dilation rates because only the human
body regions are helpful in detecting faces. Moreover, we use the slice-dilatedConv-concat branches to
reduce the input channels of each branch.

The non-saturated activation functions, like ReLU (Rectified Linear Unit), are the key to making
deep convolutional neural networks outstanding. As discussed in [34], the non-saturated activation
functions could solve the “exploding/vanishing gradient” problem and accelerate the convergence
speed. Besides the most widely used method ReLU [35], its variants like leaky ReLU [36], PReLU
(Parametric Rectified Linear Unit) [37], ELU (Exponential Rectified Linear Unit) [38], and Swish [39]
are also proposed. The ReLU has the dead region below 0, thus it limited the capacity of the network.
Many of these variants like ELU and Swish use the exponential function, which runs slowly on CPU.
To improve the capacity of the network as well as keep the network efficient, the leaky ReLU and
PReLU are suitable to be adopted to build the network. We find their effects are similar and choose the
PReLU in EagleEye.

The class imbalance is a traditional problem in machine learning and object detection. It is usually
alleviated by hard example mining [19,40] or re-weighting the loss values for different categories [41,42].
Lin et al. [43] proposed the Focal Loss for dealing with the class imbalance in one-stage detectors. In
this paper, to achieve faster running speed, we design a one-stage face detector. In the proposed face
detector, most of the anchors are in background regions. To make the gradient caused by different
classes more balanced, we introduce the focal loss in training the light-weight face detector.

3. EagleEye

In this section, we give a detailed description of the proposed face detector, EagleEye, as shown in
Figure 1. We use five key components for building it. Firstly, we adopt the depth-wise convolutions for

Sensors 2019, 19, 2158 5 of 22

building it. Secondly, we design a successive strided convolution layers module for downsampling the
resolution of feature maps rapidly. Thirdly, we use dilated depth-wise convolutions for increasing the
context information. Fourthly, we use the information preserving activation functions to increase the
network’s capacity. Finally, we introduce the modified focal loss to improve the detector’s performance
by handling the class imbalance better.

3.1. Baseline Detector

To better demonstrate the evolution of EagleEye, we firstly build a baseline backbone network.
Backbone. The baseline backbone network is built following the VGG-style, which is widely used

in single stage face detection methods. Its architecture is shown in Table 1. It consists of seven stages.
Like SSD and FPN, we predict the objects of different scales at multiple network layers with different
depth and different strides. Specifically, we choose one layer from each of the stages four to seven as
the predicting layers for four different face scales. These layers have the stride of 16, 32, 64, 128.

Table 1. Architecture of the backbone of the baseline face detector.

Type/Stride Filter Shape Anchor Size

Conv/s2 3× 3× 3× 4 —
Conv/s2 3× 3× 4× 16 —
Conv/s2 3× 3× 16× 32 —
Conv/s1 3× 3× 32× 32 —
Conv/s2 3× 3× 32× 64 —
4 × Conv/s1 3× 3× 64× 64 32, 32

√
2

Conv/s2 3× 3× 64× 128 —
Conv/s1 3× 3× 128× 128 64, 64

√
2

Conv/s1 1× 1× 128× 96 —
Conv/s2 1× 1× 96× 192 128, 128

√
2

Conv/s1 1× 1× 192× 96 —
Conv/s2 3× 3× 96× 192 256, 256

√
2

Multi-scale anchor Boxes. Following the strategy used in RPN (Region Proposal Networks) [44],
SSD [19], and Faceboxes [25], we use predefined multi-scale anchor boxes to predict the faces with
various scales. For each pixel on the feature maps of the predicting layer, we set two anchor boxes to it.
By matching the ground-truth face boxes to the anchor boxes, each ground-truth face box would be
matched with at least one anchor box. The scales of anchor boxes of each predicting layer are shown in
the last column of Table 1. Moreover, since the faces tend to be a square shape, we set the anchors of
the unified aspect ratio of 1:1.

As for the matching rules, we use the widely used IoU-based (IoU: Intersection over Union)
matching rules. According to this rule, an anchor is matched to a ground-truth box if the IoU overlap
between them is higher than a threshold. The definition of IoU is demonstrated in Equation (1).

IoU(BOX1, BOX2) =
BOX1 ∩ BOX2

BOX1 ∪ BOX2
. (1)

According to many previous works, like YOLOv2 (You Only Look Once, Version 2) [45] and
S3FD (Single Shot Scale-Invariant Face Detector) [10], the average number of matched anchor boxes of
each ground truth box should be high enough. This is the key to keep a high recall rate of detection
results. Therefore, we set a relatively low matching threshold.

Predicting targets. In EagleEye, we use a 3× 3 convolutional layers on the output feature maps of
each predicting layer to generate a five-element vector (score, ∆x, ∆y, ∆w, ∆h) for each anchor which is
assign to each one of its pixels. score ∈ [0, 1] is the confidentce that the anchor (xa, ya, wa, ha) is assigned

Sensors 2019, 19, 2158 6 of 22

to a face box. (∆x, ∆y, ∆w, ∆h) is the offset between the anchor box with the ground-truth box. We
could recover the detected bounding box (xdt, ydt, wdt, hdt) by:

xdt = xa + wa × ∆x,
ydt = ya + ha × ∆y,
wdt = wa × exp(∆w),
hdt = ha × exp(∆h).

(2)

After getting all predicted face bounding boxes, we use a standard greedy non-maximum
suppression (NMS) algorithm to generate the final detection results.

Loss function. The output five-element vector (score, ∆x, ∆y, ∆w, ∆h) consists of two parts. The
score is a classification task and the (∆x, ∆y, ∆w, ∆h) is the regression task. For the classification task,
we use the two-class cross entropy loss. Because the number of the positive samples is far lower than
that of the negative samples, in the baseline detector, we use the online hard negative mining strategy
to balance the ratio of them. For the regression task, we use the smooth-L1 loss for it is more robust.

Data augmentation. Data augmentation is widely used in single-stage object detection methods
to improve their performance. In this paper, we use three kinds of augmentation methods to make the
detectors fully trained.

• First, we randomly pad the sampled training images with 0 s to generate images with a larger
size. Then use the randomly cropping method to crop the image patches and resize them to the
unified size 512 × 512 as the training samples. When cropping, we make sure each cropped patch
would have at least one face in it. This would augment the faces of various scales to make each
predicting layer fully trained.

• Second, we randomly flip the images in the horizontal direction with a probability of 0.5 to
generate new samples.

• Third, we distort the image in various color spaces. This could increase the robustness of the
detector to illumination changes.

3.2. Convolution Factorization

Convolution factorization is the first strategy to reduce the computation complexity of the face
detection network. The convolution factorization means that we factorize each standard convolution
layer into a depth-wise convolution layer and a following point-wise convolution layer. The depth-wise
convolution is firstly proposed in Xception [30], and is adopted as the core element of MobileNet [26].
The point-wise convolution is the regular 1 × 1 convolution.

Depth-wise convolution. Figure 2 shows the computing process of the depth-wise convolution.
The input feature map and the output feature map have the same number of channels. Each channel
of the input feature map has a corresponding channel of the convolutional filters. Each filter only
operates on one input channel. Comparing the standard convolutions that each filter operates on all
input channels, the depth-wise convolution is very sparse, thus saving a lot of computation costs.

Point-wise Convolution. The point-wise convolution is the standard 1× 1 convolution. It is
used to aggregate the information among different channels. The standard convolution convolves
the input feature map both in the spatial-wise and the channel-wise dimensions. The depth-wise
convolution could convolve the input feature map in the spatial-wise dimension, but it loses
the information exchange among the different channels. Therefore, depth-wise convolutions and
point-wise convolutions are complementary to each other.

Effects of convolution factorization. By using convolution factorization, we factorize each
standard convolution layer of the baseline detection network into a depth-wise convolution layer
and a point-wise convolution layer. The convolution factorization has two advantages over
directly adopting standard convolutions. Firstly, the parameters of the network becomes much
less. We suppose the input channels is Nin and the output channels is Nout, the regular 3 × 3

Sensors 2019, 19, 2158 7 of 22

convolution has 3 × 3 × Nin × Nout parameters. After convolution factorization, the parameters
become 3× 3× Nin + 1× 1× Nin × Nout parameters. Secondly, the computation complexity is largely
reduced. We use FLOPS as the index of computation complexity. We suppose the above convolution
layer’s input and output feature maps’ spatial resolution are both H ∗W. The FLOPS of regulation
convolution would be H ×W × 3× 3× Nin × Nout, while after convolution factorization, the FLOPS
would be H ×W × 3× 3× Nin + 1× 1× Nin × Nout × H ×W.

3×3 filters

Figure 2. The illusion of the depth-wise convolution.

Since the convolution factorization could reduce much computation costs, we adopt it in all
convolutional layers of the face detection network except conv1, including the backbone and the
predicting layers. The regular convolutions with the same number of input and output channels
can easily be factorized into depth-wise and point-wise convolutions. For the convolution which
has a different number of channels between its input and output feature maps, the channel number
transformation is accomplished at the point-wise convolutions.

3.3. Successive Downsampling Convolutions

Successive downsampling convolutions is the second strategy to reduce the computation
complexity of the face detection network. There are two key considerations when designing the
network architectures, the network width, and network depth. Almost all base networks are like a
pyramid. In other words, the resolutions of network layers are successively shrunk. The shrinking is
usually done by a strided convolution layer or a pooling layer. We find that the pooling layers are not
suitable for small objects, because they would lose much detailed information. Therefore, we do not
use any pooling layer in building the backbone network of EagleEye.

The layers with the same output resolution are usually called a stage. In the popular network
architectures, it is common that in each stage, each downsampling layer (stride = 2) is followed by
several stride–1 (stride = 1) layers. This is to increase the depth of each stage. Each stage extracts
features of different levels of semantic representation ability. By increasing the depth of a stage, the
features it focuses on become finer. In this paper, since we are constrained by the low computation
ability of embedded devices, we should keep the computation complexity of the backbone network
low and reduce the number of the layers which come with fewer benefits. We think the stride–1 layers
in the first several stages are less important because the features output by downsampling layers are
already semantic strong enough to be input into their following stages. Therefore, we remove the
stride–1 layers in the first two stages to reduce the computation costs. The third stage has only one
stride–1 layer. We reserve it to prevent losing too much network capacity. Then we keep the stage
depth of the following stages unchanged. The faces start to be predicted on stage 4, so stage 4’s features
used for detecting faces should be semantic strong enough.

Sensors 2019, 19, 2158 8 of 22

3.4. Context Module

The context module is the first strategy to improve the detection accuracy without adding
too much additional computation costs of the face detection network. To reduce the computation
complexity of the designed network, we have to limit the capacity of the network. Therefore, the
detection results may become inaccurate. To make up for the decrease of accuracy, we introduce the
context information to help the network locate the faces. For example, the head–shoulder features are
usually the indicator of the existing of faces above the bodies, as shown in Figure 3.

As discussed in [33], using the dilated convolution is a natural way to introduce context in the
single stage detectors. Ref. [33] use four branches of convolutions with different dilation rates to
extract multi-scale context information. Following [33], we design a multi-branch module to utilize
multi-scale context information to improve detection performance. However, since our method is
designed to run on embedded devices, we should not increase too much computation cost. Therefore,
we made several modifications. Firstly, we use dilated depth-wise convolutions with different dilation
rate for each branch. This largely reduces the computation complexity. Secondly, we use slice operation
to equally divide the input feature map into two feature maps on the channel-wise dimension. This
could reduce the number of channels of each branch. Another choice of the multi-branch module
architecture is to make all branches share the same input feature map, as most of the modern networks
do, like Inception, ResNet, and Faceboxes. Compared to the latter choice, the slice-branch-concat
design leads to smaller inputs of each branch. Moreover, we do not set a large dilation rate for the
dilation convolutions. Ref. [33] use the dilation rates of two, four, six, and eight to extract multi-scale
contexts. However, unlike the general object detection tasks in [33] where the environment in the
whole image could give clues for detecting the object, the faces rely less on the whole-image-level
context. For example, the boats often appear on rivers, but the faces could appear at many scenes.
Therefore, we limit the field of context regions by not using large dilation rates. The proposed context
module in this paper is shown in Figure 4 and how the context module utilizes the head-shoulder
region to help the face detection is shown in Figure 3.

Figure 3. The illustration of using the head–shoulder region as the context information for face
detection.

Sensors 2019, 19, 2158 9 of 22

Slice Concat

dilation rate = 1

dilation rate = 2

Figure 4. The illustration of the context module.

3.5. Information Preserving Activation Function

The information preserving activation function is the second strategy to improve the detection
accuracy without adding too much additional computation costs of the face detection network. It is
an improvement on the ReLU activation function (Equation (3)), which is usually regarded to lose
some information because of its dead region of (−∞, 0]. Because the face detection network with low
computational cost has limited capacity, we could increase its capacity by reducing the information loss
caused by the ReLU activation function. Therefore, we propose to replace the ReLU activation function
with Leaky ReLU [36] or PReLU [37] in the baseline network. The leaky ReLU is demonstrated in
Equation (4) and PReLU is demonstrated in Equation (5). Note the λ in Equation (4) is a constant value
while the a in Equation (5) is the learnable parameter. The a is a vector whose length is the same as the
number of the channels of its input feature maps.

ReLU(x) =

{
x if x≥0,

0 if x < 0.
(3)

LeakyReLU(x) =

{
x if x≥0,

λx if x < 0.
(4)

PReLU(xi) =

{
xi if xi≥0,

aixi if xi < 0.
(5)

In experiments, we set the λ in Equation (4) to a fixed small value to 0.01. The leaky ReLu increases
little additional computation costs. The increased FLOPS is less than the convolutional layers in order
of magnitude. Therefore we note it is a good choice for improving the capacity of the light-weight
networks.

3.6. Focal Loss

Focal loss is the third strategy to improve the detection accuracy. It is used in the training process
and does not add any additional computation costs in the inference process. It improves the detector’s
performance by dealing with the class imbalance problem in the training process better. Though the
hard negative mining method used in the baseline can solve the class imbalance problem to some extent.
The hard negative mining is still sub-optimal since it is hand-craft and discard all not-highest samples
without considering whether these samples have high loss values or not. Suppose the output positive
probability of sample t is pt, the Focal Loss is shown in Equation (6). In Equation (6), α ∈ [0, 1] is the
weight for the losses of positive samples and γ ∈ [0,+ inf) is the scaling factor for downsampling the
easy samples. The optimal setting of α and γ in [21] is 0.25 and 2. In the embedded system based face
detection task, the extremely hard examples such as heavy occlusions are less important. Therefore, in
this paper, we change γ to 1 to avoid too much attention to the extremely hard examples.

Sensors 2019, 19, 2158 10 of 22

FL(pt) =

{
−α(1− pt)γlog(pt) if the sample t is positive,

−(1− α)(pt)γlog(1− pt) if the sample t is negative.
(6)

With the above strategies, we build the EagleEye based on the baseline detector, as shown in
Figure 1 and Table 2.

Table 2. Architecture of the backbone of EagleEye.

Type/Stride Filter Shape Anchor Size

Conv/s2 3× 3× 3× 4 —

Conv dw/s2 3× 3× 4 dw —

Conv/s1 1× 1× 4× 16 —

Conv dw/s2 3× 3× 16 dw —

Conv/s1 1× 1× 16× 32 —

Conv dw/s1 3× 3× 32 dw —

Conv/s1 1× 1× 32× 32 —

Conv dw/s2 3× 3× 32 dw —

Conv/s1 1× 1× 32× 64 —

4× Conv dw/s1 3× 3× 64 dw —
Conv/s1 1× 1× 64 —

Slice — —

Conv dw/s1/d1, 1× 1× 32 dw —
Conv dw/s1/d2 1× 1× 32 dw —

Concat — —

Conv/s1 1× 1× 64× 64 32, 32
√

2

Conv dw/s2 3× 3× 64 dw —

Conv/s1 1× 1× 64× 128 —

Conv dw/s1 3× 3× 128 dw —

Conv/s1 1× 1× 128× 128 64, 64
√

2

Conv/s1 1× 1× 128× 96 —

Conv dw/s2 1× 1× 96 dw —

Conv/s1 1× 1× 96× 192 128, 128
√

2

Conv/s1 1× 1× 192× 96 —

Conv dw/s2 3× 3× 96 dw —

Conv/s1 1× 1× 96× 192 256, 256
√

2

4. Experiment

In this section, we firstly do sufficient ablation studies to demonstrate the effect of each strategy on
the face detector’s speed and accuracy. Then we evaluate EagleEye on several common face detection
datasets.

4.1. Experimental Details

Our face detection method was trained with the CAFFE [46] framework and tested with the
NCNN (https://github.com/Tencent/ncnn) inference framework. NCNN is a high-performance
neural network inference framework optimized for the mobile platform. It is friendly with the ARM
processor based embedded devices. Equipped with the high-performance inference framework, the

https://github.com/Tencent/ncnn

Sensors 2019, 19, 2158 11 of 22

proposed efficient face detection method could run real-time on the embedded devices with low
computation power.

We trained our face detection methods on 4 NVIDIA Titan X GPUs, with a batch size of 64 (=16
× 4) for 50,000 iterations with the learning rate starting from 0.02 and multiplying 0.1 at the 30,000
iteration. All network parameters are randomly initialized with the Xavier method. To test the efficacy
of the proposed face detector, we use the Raspberry Pi1 3b+ which is an embedded device with very
low computation power. Its CPU processor is the ARM A53 processor which is of 1.4 GHz.

4.2. Ablation Study

The wider face dataset [47] is a large face detection dataset. It has 32,203 images with 393,703
annotated faces, varying largely in scales, poses, occlusions, and illuminations. The images are divided
into three splits, including 40% for training, 10% for validation, and 50% for testing. The faces are
classified into three subsets according to their levels of detection difficult: easy, medium, and hard.
Generally, the hard subset contains a great number of tiny faces. The official evaluation metric is the
average precision (AP) for each subset. Since the current embedded devices based face detection task
pays little attention to the small faces and extremely hard faces, we only choose the AP for the easy
subset as the evaluation metric for the detector’s accuracy. For the evaluation metric of running speed,
we choose the widely used metric: FLOPS, since it reflects the computation complexity of the networks
and is not affected by specific devices and specific inference frameworks. In this section, we report the
FLOPS of the models on VGA (Video Graphics Array) resolution inputs (i.e. 640 × 480).

In Table 3, we show the effectiveness of each strategy. The detectors are tested at the original
resolution of each image. Firstly, the baseline designed in Section 3.1 reached 87.9 mAP. However, its
FLOPS reached 440.3 M. On the NCNN based implementation, its running speed was 296 ms per
image in VGA resolution, which is far from the real-time requirement. By convolution factorization,
with a decrease of 4.2% mAP (easy), the FLOPS were largely reduced to 87.5 M (around 80% faster).
After we adopted the successive downsampling module, the FLOPS were further reduced to 72.6 M
and the mAP (easy) slightly dropped by 1.5%. The FLOPS of the light-weight detector were far lower
than that of Faceboxes, which was 1796 M. Then we added the three strategies which aimed to improve
the performance of the light-weight detector. The context module could improve 0.7% mAP (easy)
without any increase on FLOPS. Moreover, when replacing the ReLU operation with information
preserving activation function, PReLU, the mAP (easy) was raised by 0.4%. Finally, the focal loss
improved the mAP (easy) to 84.1%. Thus Table 3 shows the convolution factorization and successive
downsampling convolutions reduced the computation costs largely with sacrificing the accuracy
by 5.7%, resulting in a light-weight detector. However, the following three strategies improved the
accuracy of the light-weight detector by about 2%, making the light-weight detector more accurate.

In Table 4, we compare the result of using different activation functions. All three methods did
not use the focal loss. We also kept other hyper-parameters’ setting the same among them. Generally,
PReLU was better than the other two activation functions. Therefore we choose to use PReLU to build
the EagleEye.

From Table 3, it can be seen that with the same settings about the hyper-parameters, the
performance of EagleEye was still less than the baseline, but the FLOPS of EagleEye was far less
than the baseline. This is reasonable because the models with fewer computation costs are usually less
accurate than the complex one. To demonstrate the superiority of the architecture of EagleEye, we
built a detector with roughly the same FLOPS with EagleEye by cutting 3/4 of the layer channels of
the baseline, which is shown in Table 5 as 1

4 Baseline. It can be seen that the EagleEye outperformed its
counterpart method, 1

4 baseline by a very large margin. This shows that the five strategies in Table 3 are
important in designing light-weight networks. Firstly, the first two strategies can reduce the FLOPS
while keeping the accuracy from dropping too large. Secondly, the latter three strategies can improve
the performance of the detector, while keeping its low computation costs.

Sensors 2019, 19, 2158 12 of 22

Table 3. Ablation study on wider face’s validation set.

Contributions Baseline EagleEye512

Convolution Factorization X X X X X
Successive Downsampling Convolutions X X X X

Context Module X X X
Information Preserving Activation Function X X

Focal Loss X

Accuracy (mAP[easy]) 87.9 83.7 82.2 82.9 83.3 84.1

FLOPS 440.3 M 87.5 M 72.6 M 78.7 M 75.3 M 75.3 M

Table 4. Comparisons between different activation functions.

Method mAP [Easy] mAP [Medium] mAP [Hard] FLOPS

ReLU 82.9 76.5 46.5 72.6 M
PReLU 83.3 77.1 49.5 75.3 M

Leaky ReLU 83.4 76.8 48.2 75.3 M

Table 5. Comparison EagleEye with directly pruning on the baseline on wider face’s validation set.

Method mAP [Easy] mAP [Medium] mAP [Hard] FLOPS

Baseline 87.9 84.0 61.4 440.3 M
1
4 Baseline 74.7 65.5 34.7 80.7 M

EagleEye512 84.1 79.1 46.2 75.3 M

4.3. Runtime Efficiency

Following the common practice, we reported the runtime speed of EagleEye on the FDDB
dataset [48] and compared it with the other methods. Since the previous methods all report their
speed on desktop computers with Intel CPUs, we first tested the EagleEye using CAFFE library on
Intel CPUs to directly compare their speeds. Besides, we tested the speed of two state-of-the-art
methods: Faceboxes and MTCNN, on Raspberry Pi 3b+, an ARM Cortex-A53 based embedded device,
by reimplementing them using NCNN library. Moreover, we also created another detector by simply
replacing the backbone VGG network of the original SSD with 1/8 MobileNet network, to further
show the effectiveness of our strategies. We reported these methods’ frames per second (FPS) on both
devices. The results are shown in Table 6. It can be seen that the EagleEye ran fastest on both devices,
especially on the ARM Cortex-A53 based embedded device. We note although the FLOPS of EagleEye
was far lower than Faceboxes (75.3 M vs. 1796 M, on VGA resolution), fully exploiting its advantage
needs proper implementation in the inference library. With proper optimization of the depth-wise
convolutional layer, the EagleEye has the potential to have better runtime efficiency.

Table 6. Speed comparison with other face detection methods on FDDB with VGA input (640 × 480).

Method mAP on FDDB Desktop ARM Based Embedded Devices

FPS CPU (Desktop Devices) FPS CPU (Embedded)

ACF [17] 85.2 20 i7-3770@3.40 N/A ARM Cortex-A53@1.4GHz
MTCNN [24] 94.4 16 N/A@2.60 5.4 ARM Cortex-A53@1.4GHz

Faceboxes [25] 96.0 20 E5-2660v3@2.60 3.4 ARM Cortex-A53@1.4GHz
1
8 -SSD-MobileNet 96.0 20 E5-2660v3@2.60 10 ARM Cortex-A53@1.4GHz

EagleEye 96.1 21 E5-2660v3@2.60 20 ARM Cortex-A53@1.4GHz

Moreover, Figure 5 shows the trade-off of the running efficiency and the accuracy among different
methods on Raspberry Pi 3b+. It can be seen that EagleEye outperforms the other methods on both
speed and accuracy.

Sensors 2019, 19, 2158 13 of 22

Figure 5. Speed (frames per second (FPS)) versus accuracy (mAP) on FDDB dataset. The speed (FPS) is
tested on the ARM Cortex-A53 based embedded device.

4.4. Memory Complexity

As mentioned in the introduction of this paper, the memory complexity of the algorithm has to be
low enough to run on the embedded devices. Table 7 compares the EagleEye with other methods on
the number of parameters, the model size, and the memory footprint. It can be concluded that the
EagleEye achieved the lowest memory complexity among these methods. Moreover, EagleEye’s low
memory complexity made it possible for EagleEye to run on almost all common embedded devices,
for example the Raspberry Pi 3b+ (with the memory size of 1 GB) and the recent mobile phones (with
memory size of >3 GB).

Table 7. Memory complexity comparisons between different methods with VGA input.

Method Parameters Model Size Memory Footprint

MTCNN [24] 0.50 M 1.90 MB 33.4 MB
Faceboxes [25] 0.91 M 3.87 MB 24.0 MB

1
8 -SSD-MobileNet 0.93 M 3.59 MB 32.5 MB

EagleEye 0.23 M 0.952 MB 13.9 MB

4.5. Comparison with State-of-the-Art on Wider Face Dataset

To compare the EagleEye’s performance with other state-of-the-art methods, we trained it with
1024 × 1024 image patches, instead of 512 × 512 image patches as in Section 4.2, to have a better
performance. The precision-recall curves and mAP values are shown in Figures 6–8. Since some
detectors like MTCNN [24] use the image pyramid as input for better dealing with multi-scale faces,
we also report the results of EagleEye by using multi-scale testing (image pyramid). In Figures 6–8,
“EagleEye” refers to the single-scale testing result of EagleEye, and “EagleEye*” refers to the multi-scale
testing result. Generally, the EagleEye was better than most of the other methods [17,24,25,47,49] on
three subsets, including Faceboxes [25], and it was better than all methods on the easy subset. After
adopting multi-scale testing like MTCNN, EagleEye was able to outperform all methods on all three

Sensors 2019, 19, 2158 14 of 22

subsets. This experiment shows that besides the high runtime efficiency, EagleEye is also good in
accuracy. Figure 9 shows some qualitative results on the wider face dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
ci

si
on

EagleEye*-0.887
EagleEye-0.863
MTCNN-0.848
FaceBoxes-0.846
Faceness-WIDER-0.713
Multiscale Cascade CNN-0.691
Two-stage CNN-0.681
ACF-WIDER-0.659

Figure 6. Precision-recall curve on wider face validation (easy) set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

EagleEye*-0.857
MTCNN-0.825
EagleEye-0.792
FaceBoxes-0.742
Multiscale Cascade CNN-0.664
Faceness-WIDER-0.634
Two-stage CNN-0.618
ACF-WIDER-0.541

Figure 7. Precision-recall curve on wider face validation (medium) set.

Sensors 2019, 19, 2158 15 of 22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

EagleEye*-0.662
MTCNN-0.598
EagleEye-0.462
Multiscale Cascade CNN-0.424
Faceness-WIDER-0.345
FaceBoxes-0.345
Two-stage CNN-0.323
ACF-WIDER-0.273

Figure 8. Precision-recall curve on wider face validation (hard) set.

Sensors 2019, 19, 2158 16 of 22

Figure 9. Visualization of the results of EagleEye on wider face dataset.

4.6. Comparison with State-of-the-Arts on FDDB Dataset

The FDDB [48] dataset has 2845 images for testing the face detectors. It has 5171 annotated faces.
We directly tested the detector trained on wider face in Section 4.5 on FDDB dataset and compared it
with other state-of-the-art methods [24,25,49–63]. Figure 10 gives the discontinuous receiver operating
characteristic (ROC) curve of the evaluation results. The performance of FDDB shown in Figure 10 is

Sensors 2019, 19, 2158 17 of 22

the true positive rate at 1000 false positives. It shows that EagleEye achieved the new state-of-the-art.
Figure 11 shows some qualitative results on the FDDB dataset.

0 250 500 750 1000 1250 1500 1750 2000
False positives

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te

EagleEye (0.961)
FaceBoxes (0.959)
MTCNN (0.944)
HeadHunter (0.871)
Structured Models [33] (0.846)
Olaworks (0.843)
Face++ (0.839)

SURF Cascade multiview[6] (0.837)
PEP-Adapt (0.809)
XZJY (0.786)
TSM [36] (0.766)
Illuxtech (0.718)
Viola Jones [30] (0.597)
Mikolajczyk et al (0.548)

Figure 10. Discontinuous receiver operating characteristic (ROC) curves on the FDDB dataset.

Figure 11. Visualization of the results of EagleEye on FDDB dataset.

4.7. Comparison with State-of-the-Arts on PASCAL Face Dataset

PASCAL face dataset consists of 851 images with 1335 faces. It is collected from the test set of
PASCAL person layout dataset. The faces have large variations in appearances and poses. Like on
FDDB, we tested the wider face trained detector on this dataset and compared it with other methods
[25,49,64–68]. Figure 12 shows EagleEye also outperforms others at PASCAL face dataset. Figure 13
shows some qualitative results on the PASCAL face dataset.

Sensors 2019, 19, 2158 18 of 22

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

EagleEye (AP 97.13)
FaceBoxes (AP 96.77)
DPM (AP 90.29)
Headhunter (AP 89.63)
SquaresChnFtrs-5 (AP 85.57)
Structured Models (AP 83.87)
TSM (AP 76.35)
W.S. Boosting (AP 59.72)

Figure 12. Precision-recall curves on PASCAL face dataset.

Figure 13. Visualization of the results of EagleEye on Pascal face dataset.

5. Conclusions

In this paper, we propose a new face detector, EagleEye, which is specially designed for embedded
devices. We propose five strategies for building it. The first two strategies are used to build efficient
face detection networks that have low computation cost with enough capacity. We use convolution
factorization to build the network with sparse connections and we use successive downsampling
convolutions to remove the unnecessary layers in the first several stages. The latter three strategies
are designed to improve the detection accuracy without affecting the FLOPS too much. We design
the context module and insert it in the backbone network to extract context information for better
detection and we choose the information preserving activation function, i.e., PReLU, to increase the
capacity of the face detection network. We further use focal loss to get better performance by handling
the class imbalance problem. With the five strategies, the EagleEye runs on the ARM Cortex-A53
based embedded device (Raspberry Pi1 3b+) at 21FPS with the input of VGA resolution with the better
precision than the methods with the same order of computation complexity.

Sensors 2019, 19, 2158 19 of 22

Author Contributions: Data curation, X.L.; Funding acquisition, C.Z., M.T. and J.W.; Methodology, X.Z.;
Project administration, J.W.; Resources, J.W.; Software, X.L.; Supervision, M.T.; Writing—original draft, X.Z.;
Writing—review & editing, C.Z.

Funding: This research was funded by Natural Science Foundation of China under Grants 61772527, 61806200,
and 61876086.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, J.C.; Lin, W.A.; Zheng, J.; Chellappa, R. A Real-Time Multi-Task Single Shot Face Detector.
In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece,
7–10 October 2018; pp. 176–180.

2. Chi, C.; Zhang, S.; Xing, J.; Lei, Z.; Li, S.Z.; Zou, X. Selective Refinement Network for High Performance Face
Detection. In Proceedings of the Association for the Advancement of Artificial Intelligence, Honolulu, HI,
USA, 27 January–1 February 2019.

3. Hu, P.; Ramanan, D. Finding Tiny Faces. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1522–1530.

4. Li, J.; Wang, Y.; Wang, C.; Tai, Y.; Qian, J.; Yang, J.; Wang, C.; Li, J.; Huang, F. DSFD: Dual Shot Face Detector.
arXiv 2018, arXiv:1810.10220.

5. Najibi, M.; Samangouei, P.; Chellappa, R.; Davis, L.S. SSH: Single Stage Headless Face Detector.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29
October 2017; pp. 4885–4894.

6. Tian, W.; Wang, Z.; Shen, H.; Deng, W.; Chen, B.; Zhang, X. Learning Better Features for Face Detection with
Feature Fusion and Segmentation Supervision. arXiv 2018, arXiv:1811.08557.

7. Tang, X.; Du, D.K.; He, Z.; Liu, J. PyramidBox: A Context-Assisted Single Shot Face Detector. In Proceedings
of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 812–828.

8. Wang, Y.; Ji, X.; Zhou, Z.; Wang, H.; Li, Z. Detecting Faces Using Region-based Fully Convolutional Networks.
arXiv 2017, arXiv:1709.05256.

9. Zhang, J.; Wu, X.; Zhu, J.; Hoi, S.C.H. Feature Agglomeration Networks for Single Stage Face Detection.
arXiv 2017, arXiv:1712.00721.

10. Zhang, S.; Zhu, X.; Lei, Z.; Shi, H.; Wang, X.; Li, S.Z. S3FD: Single Shot Scale-Invariant Face Detector. In
Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29
October 2017; pp. 192–201.

11. Zhang, Y.; Xu, X.; Liu, X. Robust and High Performance Face Detector. arXiv 2019, arXiv:1901.02350.
12. Zhu, C.; Tao, R.; Luu, K.; Savvides, M. Seeing Small Faces from Robust Anchor’s Perspective. In Proceedings

of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, 18–22
June 2018; pp. 5127–5136.

13. Zhuang, C.; Zhang, S.; Zhu, X.; Lei, Z.; Li, S.Z. Single Shot Attention-Based Face Detector. In Proceedings of
the Chinese Conference on Biometric Recognition, Urumqi, China, 11–12 August 2018; pp. 285–293.

14. Tartaglione, E.; Lepsøy, S.; Fiandrotti, A.; Francini, G. Learning Sparse Neural Networks via
Sensitivity-Driven Regularization. Available online: http://papers.nips.cc/paper/7644-learning-sparse-
neural-networks-via-sensitivity-driven-regularization.pdf (accessed on 8 May 2019).

15. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50× fewer parameters and <0.5 mb model size. arXiv 2016, arXiv:1602.07360.

16. Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154.
17. Yang, B.; Yan, J.; Lei, Z.; Li, S.Z. Aggregate channel features for multi-view face detection. In Proceedings of

the 2014 IEEE International Joint Conference on Biometrics (IJCB), Clearwater, FL, USA, 29 September–2
October 2014; pp. 1–8.

18. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

19. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14
October 2016; pp. 21–37.

http://papers.nips.cc/paper/7644-learning-sparse-neural-networks-via-sensitivity-driven-regularization.pdf
http://papers.nips.cc/paper/7644-learning-sparse-neural-networks-via-sensitivity-driven-regularization.pdf

Sensors 2019, 19, 2158 20 of 22

20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

21. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

22. Wang, J.; Yuan, Y.; Yu, G. Face attention network: An effective face detector for the occluded faces. arXiv
2017, arXiv:1711.07246.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

24. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503.

25. Zhang, S.; Zhu, X.; Lei, Z.; Shi, H.; Wang, X.; Li, S.Z. Faceboxes: A CPU real-time face detector with high
accuracy. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO,
USA, 1–4 October 2017; pp. 1–9.

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam,
H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017,
arXiv:1704.04861.

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018; pp. 4510–4520.

28. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856.

29. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture
design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 116–131.

30. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

31. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach.
Intell. 2018, 40, 834–848.

32. Liu, S.; Huang, D. Receptive field block net for accurate and fast object detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400.

33. Zhao, X.; Zhao, C.; Zhu, Y.; Tang, M.; Wang, J. Improved Single Shot Object Detector Using Enhanced
Features and Predicting Heads. In Proceedings of the 2018 IEEE Fourth International Conference on
Multimedia Big Data (BigMM), Xi’an, China, 14–15 September 2018; pp. 1–5.

34. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network.
arXiv 2015, arXiv:1505.00853.

35. Hinton, G.E.; Nair, V. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June
2010.

36. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc.
ICML 2013, 30, 3.

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1026–1034.

38. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear
units (elus). arXiv 2015, arXiv:1511.07289.

39. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
40. Shrivastava, A.; Gupta, A.; Girshick, R. Training region-based object detectors with online hard example

mining. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 27–30 June 2016; pp. 761–769.

Sensors 2019, 19, 2158 21 of 22

41. Zhou, X.; Yao, C.; Wen, H.; Wang, Y.; Zhou, S.; He, W.; Liang, J. EAST: An efficient and accurate scene text
detector. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 5551–5560.

42. Deng, D.; Liu, H.; Li, X.; Cai, D. Pixellink: Detecting scene text via instance segmentation. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

43. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 2117–2125.

44. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. Available online: http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-
object-detection-with-region-proposal-networks.pdf (accessed on 8 May 2019).

45. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

46. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International
Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

47. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. Wider face: A face detection benchmark. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp.
5525–5533.

48. Jain, V.; Learned-Miller, E. Fddb: A Benchmark for Face Detection in Unconstrained Settings; Technical Report,
UMass Amherst Technical Report; UM-CS-2010-009; University of Massachusetts: Amherst, MA, USA, 2010.

49. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. From Facial Parts Responses to Face Detection: A Deep Learning
Approach. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago,
Chile, 7–13 December 2015; pp. 3676–3684.

50. Barbu, A.; Lay, N.; Gramajo, G. Face detection with a 3d model. In Academic Press Library in Signal Processing;
Elsevier: Amsterdam, The Netherlands, 2018; Volume 6, pp. 237–259.

51. Farfade, S.S.; Saberian, M.J.; Li, L.J. Multi-view face detection using deep convolutional neural networks. In
Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, China, 23–26
June 2015; pp. 643–650.

52. Ghiasi, G.; Fowlkes, C.C. Occlusion coherence: Detecting and localizing occluded faces. arXiv 2015,
arXiv:1506.08347.

53. Kumar, V.; Namboodiri, A.; Jawahar, C. Visual phrases for exemplar face detection. In Proceedings of the
IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1994–2002.

54. Li, H.; Hua, G.; Lin, Z.; Brandt, J.; Yang, J. Probabilistic elastic part model for unsupervised face detector
adaptation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia,
1–8 December 2013; pp. 793–800.

55. Li, H.; Lin, Z.; Brandt, J.; Shen, X.; Hua, G. Efficient boosted exemplar-based face detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 1843–1850.

56. Li, J.; Zhang, Y. Learning surf cascade for fast and accurate object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp.
3468–3475.

57. Li, Y.; Sun, B.; Wu, T.; Wang, Y. Face detection with end-to-end integration of a convnet and a 3d model. In
Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October
2016; pp. 420–436.

58. Liao, S.; Jain, A.K.; Li, S.Z. A fast and accurate unconstrained face detector. IEEE Trans. Pattern Anal. Mach.
Intell. 2016, 38, 211–223.

59. Ohn-Bar, E.; Trivedi, M.M. To boost or not to boost? on the limits of boosted trees for object detection.
In Proceedings of the 2016 23rd International Conference on Pattern Recognition, Cancun, Mexico, 4–8
December 2016; pp. 3350–3355.

60. Ranjan, R.; Patel, V.M.; Chellappa, R. A deep pyramid deformable part model for face detection. In
Proceedings of the 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems
(BTAS), Arlington, VA, USA, 8–11 September 2015.; pp. 1–8.

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

Sensors 2019, 19, 2158 22 of 22

61. Triantafyllidou, D.; Tefas, A. A fast deep convolutional neural network for face detection in big visual data.
In Proceedings of the INNS Conference on Big Data, Thessaloniki, Greece, 23–25 October 2016 ; pp. 61–70.

62. Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings
of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October
2016.; pp. 516–520.

63. Ranjan, R.; Patel, V.M.; Chellappa, R. Hyperface: A deep multi-task learning framework for face detection,
landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2019,
41, 121–135.

64. Chen, D.; Hua, G.; Wen, F.; Sun, J. Supervised transformer network for efficient face detection. In Proceedings
of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp.
122–138.

65. Kalal, Z.; Matas, J.; Mikolajczyk, K. Weighted Sampling for Large-Scale Boosting. Available online: http:
//epubs.surrey.ac.uk/806150/1/2008_bmvc.pdf (accessed on 8 May 2019).

66. Mathias, M.; Benenson, R.; Pedersoli, M.; Van Gool, L. Face detection without bells and whistles. In
Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
pp. 720–735.

67. Yan, J.; Zhang, X.; Lei, Z.; Li, S.Z. Face detection by structural models. Image Vis. Comput. 2014, 32, 790–799.
68. Ramanan, D.; Zhu, X. Face detection, pose estimation, and landmark localization in the Wild. In Proceedings

of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June
2012; pp. 2879–2886.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://epubs.surrey.ac.uk/806150/1/2008_bmvc.pdf
http://epubs.surrey.ac.uk/806150/1/2008_bmvc.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	EagleEye
	Baseline Detector
	Convolution Factorization
	Successive Downsampling Convolutions
	Context Module
	Information Preserving Activation Function
	Focal Loss

	Experiment
	Experimental Details
	Ablation Study
	Runtime Efficiency
	Memory Complexity
	Comparison with State-of-the-Art on Wider Face Dataset
	Comparison with State-of-the-Arts on FDDB Dataset
	Comparison with State-of-the-Arts on PASCAL Face Dataset

	Conclusions
	References

