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Abstract: Heterogeneous networks (HetNets), consisting of macro-cells and overlaying pico-cells,
have been recognized as a promising paradigm to support the exponential growth of data traffic
demands and high network energy efficiency (EE). However, for two-tier heterogeneous architecture
deployment of HetNets, the inter-tier interference will be challenging. Time domain further-enhanced
inter-cell interference coordination (FeICIC) proposed in 3GPP Release-11 becomes necessary to
mitigate the inter-tier interference by applying low power almost blank subframe (ABS) scheme.
Therefore, for HetNets deployment in reality, the pico-cell range expansion (CRE) bias, the power
of ABS and the density of pico base stations (PBSs) are three important factors for the network EE
improvement. Aiming to improve the network EE, the above three factors are jointly considered in
this paper. In particular, we first derive the closed-form expression of the network EE as a function
of pico CRE bias, power reduction factor of low power ABS and PBS density based on stochastic
geometry model. Then, the approximate relationship between pico CRE bias and power reduction
factor is deduced, followed by a linear search algorithm to get the near-optimal pico CRE bias and
power reduction factor together at a given PBS density. Next, a linear search algorithm is further
proposed to optimize PBS density based on fixed pico CRE bias and power reduction factor. Due
to the fact that the above pico CRE bias and power reduction factor optimization and PBS density
optimization are optimized separately, a heuristic algorithm is further proposed to optimize pico
CRE bias, power reduction factor and PBS density jointly to achieve global network EE maximization.
Numerical simulation results show that our proposed heuristic algorithm can significantly enhance
the network EE while incurring low computational complexity.

Keywords: HetNets; interference coordination; energy efficiency; stochastic geometry

1. Introduction

The exponential growth of data traffic demand, huge energy consumption and large amounts
of global carbon dioxide emissions severely restrict the sustainable development of wireless cellular
networks. According to the statistics, the data traffic volume demand in the fifth-generation (5G)
wireless communication network will increase of 1000× by 2020. Moreover, the limited spectrum
resources also constrain the network capacity improvement [1]. Therefore, the network energy
efficiency (EE) which considers both spectral efficiency (SE) and energy consumption has been valued
not only as an important network performance indicator for modern wireless networks, but also for
the operational expenditure reduction and sustainable development [2].
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Heterogeneous networks (HetNets) consisting of macro base stations (MBSs) and low-power
pico base stations (PBSs) can improve SE by reusing the spectrum geographically [3] and enhance
the wireless link quality by shortening the distance between the transmitter and the receiver [4].
Therefore, HetNets are deemed as a promising technique to support the deluge of data traffic with
high network EE. Nonetheless, due to the complex two-tier heterogeneous architecture deployment
of HetNets, the challenging inter-tier interference and PBS deployment density will deteriorate the
network EE if they are not treated carefully, which are the concerns of this paper for aiming to improve
the network EE.

1.1. Motivation

In HetNets consisting of MBSs and PBSs, as shown in Figure 1, the great difference of transmitter
power leads to load imbalance between macro tier and pico tier. To address this issue, PBSs adopt
cell range expansion (CRE) technology to enlarge the PBS coverage area by adding a positive bias on
the reference signal received power (RSRP) of PBSs without increasing transmission power [5,6].
Unfortunately, CRE user equipments (UEs) located in the pico CRE region will suffer serious
downlink interference from dominating MBSs, even causing the outage of control signals. As a result,
it is important to mitigate the downlink interference to improve the wireless link quality between
transmitter and receiver. Then the network EE can be improved.
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Figure 1. The network scenario.

To mitigate the downlink inter-tier interference for HetNets, further enhanced inter-cell
interference coordination (FeICIC) scheme has been specified in 3GPP Release 11 [7]. In FeICIC
scheme, MBSs can transmit data to macro center UEs with low transmission power over certain
subframes, termed as low power almost blank subframes (ABS), over which PBSs can schedule CRE
UEs with reduced interference [8]. On the basis of FeICIC technique, for user association, the pico CRE
bias will directly affect the value of user received RSRP from PBSs, which will eventually affect the
number of CRE UEs associated to PBSs. As CRE UEs are scheduled in the subframes corresponding to
the ABS of MBSs, the transmission power of MBSs in ABS, i.e., ABS power, will decide the interference
degree suffered by CRE UEs. Therefore, pico CRE bias and ABS power are two important factors for
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the wireless link quality of UEs, especially for CRE UEs, which eventually have significant effect on
the network EE performance.

To meet the super-large capacity demand in 5G wireless communication networks, more and
more base stations (BSs), especially small base stations (SBSs), are deployed in HetNets [9,10]. On the
one hand, irregular deployment of massive BSs causes additional and intractable inter-tier interference.
On the other hand, although high-density PBSs are deployed to satisfy the peak traffic volume, highly
dynamic wireless traffic may deteriorate EE if the capacity gains of numerous PBSs are utilized
insufficiently. In short, the BSs deployment strategy based on network load is also one of the key issues
to realize 5G green cellular network [11].

In addition, the network EE of HetNets is also affected by some other aspects of factors.
For instance, it is proved that the reasonable adjustments of BS transmit power, inter-site distances and
the number of MBSs or SBSs contribute to the improvement of EE of HetNets [12]. In [13], assuming
that SBSs have performed traffic offloading from MBS, the authors investigated the MBS and SBS
power allocation scheme to improve network EE. In [14], the authors investigated the user scheduling
and resource allocation method to optimize the network EE for HetNets.

To sum up, for complex HetNets, network EE is affected by many different aspects of factors,
e.g., MBS transmit power in low power ABS, MBS transmit power in non-ABS, MBS density, ABS ratio,
pico CRE bias, PBS density, PBS transmit power in low power ABS, PBS transmit power in non-ABS,
etc. Thus, it will be a very challenging work to analyze the effects of all of these factors together on
network EE. In this paper, for HetNets deployment in reality with inter-tier interference coordination
by adopting FeICIC scheme, the pico CRE bias, the power reduction factor of low power ABS, and the
density of PBSs are three more related factors for the network EE improvement compared with others.
Therefore, the above three factors are focused and jointly optimized for the network EE maximization
in this paper.

1.2. Contributions

In this paper, we investigate the joint optimization of FeICIC parameters and PBS density in
HetNets for network EE improvement. Initially, the system model for two-tier HetNets by using
stochastic geometry is described. Then, an analytical expression of the network EE as a function of pico
CRE bias, power reduction factor and PBS density is derived. At last, heuristic algorithms are proposed
to obtain the optimal values of pico CRE bias, power reduction factor and PBS density to maximize
the network EE. The main contributions of this paper are summarized as follows: (1) the closed-form
expression of network EE as a function of pico CRE bias, power reduction factor and PBS density
is deduced by stochastic geometry theory. (2) The equivalent relationship between pico CRE bias
and the power reduction factor is obtained by an approximation calculation. Based on the equivalent
relationship, an efficient optimization algorithm is designed to get the near-optimal values of pico
CRE bias and power reduction factor at a given PBS density. (3) To achieve the global optimization of
network EE, a low computational complexity heuristic algorithm is proposed to jointly optimize pico
CRE bias, power reduction factor, and PBS density.

1.3. Organization

The rest of this paper is organized as follows. The system model and user association strategy
are described in Section 3. In Section 4, we deduce the closed-form expression of network EE. A low
complexity heuristic algorithm is proposed to optimize pico CRE bias, power reduction factor, and PBS
density jointly for the network EE maximization in Section 5. Numerical results and discussions are
presented in Section 6. Concluding remarks are given in Section 7.

2. Related Works

Early literatures mainly focused on pico CRE bias, ABS ratio, and ABS power optimization for
the network capacity maximization [15–18] and recent works began to investigate the network EE
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improvement from different perspectives including resource management [19–23], FeICIC parameters
optimization [24–31] and BS deployment strategy [32–39]. As for resource management, centralized
resource allocation algorithms based on convex-optimization [19,20], graph-theory [21] or even
game-theory [22,23] were proposed to achieve the maximum EE gain.

As for FeICIC parameter optimization, the ABS ratio dynamical optimization algorithm based on
network load was proposed to enhance the network EE in [24]. For improving the network capacity
and EE, pico CRE bias optimization problem was further developed combined with power control
in [29]. Using the stochastic geometric approach, the expressions for SE and cell-edge throughputs
have been derived as a function of the power reduction factor of low power ABS in [30]. To move one
step further, pico CRE bias, ABS ratio and ABS power are jointly optimized by a robust EE optimization
framework in [25]. In [31], it was proved that FeICIC can achieve a better gain in view of network EE,
cell-edge throughput and user fairness compared with eICIC. In addition, the distributed algorithms
based on the exact potential game framework for both eICIC and FeICIC optimizations were proposed
to offer better network performance. The authors of [26] deducted and analyzed the EE coverage
performance of FeICIC with extra pico CRE bias. In [28], FeICIC technique was applied to mitigate the
inter-tier interference in HetNets deployed with unmanned aerial vehicles (UAVs). In such a scenario,
the locations of UAVs, pico CRE bias and inter-cell interference coordination parameters were jointly
optimized by using a genetic algorithm. In [27], the EE of HetNets with joint FeICIC and adaptive
spectrum allocation was analyzed by the stochastic geometric approach. The research on FeICIC
parameters optimization on the basis of stochastic geometry is relatively few in the existing literatures.

As for BS deployment strategy, general linear power consumption models were developed by
means of linear regression in [38]. Meanwhile, the effects of MBS transmition power and on/off
switching on instantaneous MBS power consumption were analyzed. A threshold of SBS density in
ultra-dense HetNets was investigated in consideration of the backhaul network capacity and network
EE in [32]. In [33], the authors came up with an approximation algorithm to solve the intractable user
association problem by controlling the PBS density dynamically. The relationship between PBS density
and network EE was analyzed under different UE density in [34]. It was proved that both PBS density
and MBS density have a notable impact on the network EE in [35]. In [36,37], PBS density and MBS
density were jointly optimized based on traffic-aware sleeping strategies and stochastic geometry
to enhance the network EE, respectively. In [39], taking the traffic pattern variations into account,
the BSs can not only adaptively switch on/off states but also can dynamically scale its transmit power
according to network capacity demands. In this way, network energy consumption is reduced.

Despite the aforementioned research works, few works in the literatures focused on FeICIC
parameters and PBS density joint optimization for network EE improvement in HetNets, which will be
investigated and developed in this paper.

3. System Model

The traditional network models with a hexagonal grid cannot accurately match the actual network
deployment. Under such deterministic grid models, Monte Carlo simulations consume huge amounts
of time and resources to obtain the statistical results. Recently, a stochastic geometry model was
proven to be a tractable analytical model for homogeneous networks and HetNets, where the location
distribution of BSs is modeled as a spatial Poisson point process (PPP) [40]. Using PPP, the network
performance, like signal to interference plus noise ratio (SINR) coverage [41], rate coverage [8], average
rate [42], can be analyzed conveniently by theoretical derivation. Thus, we adopt a stochastic geometry
model to model a two-tier HetNets consisting of MBSs and PBSs in this paper.

Let k ∈ {m, p} denote the subscripts of a tier, where k = m represents macro tier and k = p
denotes pico tier. MBSs and PBSs are modeled as two identically independent distributions (iid.) PPPs
Φm and Φp with density λm and λp in the Euclidean plane, respectively. The UEs are also distributed
according to a different iid PPP Φu with density λu. The total spectrum bandwidth is defined as W.
To mitigate the downlink interference over the control channel from MBSs to CRE UEs, MBSs adopt the
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FeICIC scheme, where all the subframes are divided into protected subframes (PSF), i.e., low power
ABS, and unprotected subframes (USF), i.e., non-ABS. The MBSs transmit data at reduced power ρPm

on PSF, where 0 ≤ ρ < 1 is the power reduction factor. In fact MBS transmit power in USF and PBS
transmit power will also have effects on network EE. However, to focus on the effects of PBS density,
pico CRE bias and power reduction factor on network EE and also for analysis simplification, we
assume that MBSs transmit power in USF and PBSs transmit power are set to be the maximum fixed
power Pm and Pp, respectively. Let θ to be PSF ratio, which is defined as the proportion between the
number of PSF subframes and that of all subframes. Each user is associated with the strongest BS
according to the biased received reference signal received power (RSRP) at the user. In this paper,
the association bias for MBS is assumed to be unity (Bm = 1 = 0 dB) and that of PBS is pico CRE bias
depicted as Bp, where Bp ≥ 0 dB.

Based on the user association strategy, all UEs can be divided into four different types: the type
of PSF macro-cell UEs (MUEs) contains the users within the macro-cell center region, the type of
USF MUEs includes the users outside the macro-cell center region, the type of PSF pico-cell UEs
(PUEs) correspond the users located in the pico CRE region and the type of USF PUEs comprises
the users scattered in the original coverage of pico-cell. As shown in Figure 1, we adopt the index
l ∈ L = {pm, um, pp, up} to denote the indication of the above four types of users, respectively, where
pm represents PSF MUEs, um denotes USF MUEs, pp signifies PSF PUEs, and up indicates USF PUEs.
In HetNets with FeICIC, the UEs scheduling strategy for MBS and PBS is shown in Figure 2. The USF
MUEs and USF PUEs are scheduled by MBSs and PBSs on USF, respectively. Each MBS schedules PSF
MUEs on PSF with reduced power. Then PBS can schedule PSF PUEs in the corresponding subframes
with reduced interference.

PBS

MBS

PSF

(low power ABS)

USF (non-ABS)

1 q- q

m
ρP

m
P

p
P

frame duration

PSF MUE

PSF PUE

USF MUE

USF PUE

Figure 2. The user equipments (UEs) scheduling strategy for macro base station (MBS) and pico base
stations (PBS) with the further-enhanced inter-cell interference coordination (FeICIC) scheme.

According to the Slivyak theorem, there is no difference in properties observed either at a point of
the PPP or at an arbitrary point [8]. Therefore, we can simply analyze a typical UE located at the origin.
The received signal power of a typical user l from a BS of k tier at a distance of rk can be represented as
Pkhr−α

k , where Pk is the full transmission power of BS in k tier, h represents the channel fast fading gain,
which is defined as Rayleigh distributed with average unit power, i.e., h ∼ exp(1). The term α denotes
the large-scale path loss exponent, which is assumed to be the same in both macro tier and pico tier for
convenient analysis. Hence, the SINR of a typical user l based on its user type can be depicted as:
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γl =



ρPmhr−α
m

ρIm + Ip + σ2 , if l = pm

Pphr−α
p

ρIm + Ip + σ2 , if l = pp

Pmhr−α
m

Im + Ip + σ2 , if l = um

Pphr−α
p

Im + Ip + σ2 , if l = up

, (1)

where Im and Ip denote the full power aggregate interference from the macro tier and pico tier to UE l,
respectively, σ2 represents the thermal noise, ρ is the power reduction factor of MBS transmit power
in PSF. Pm and Pp are the full transmission power of MBSs and PBSs, respectively. rm and rp are the
nearest distance from MBSs and PBSs to a typical UE l, respectively.

The notations used in this paper are shown in Table 1.

Table 1. Notations summary.

Notation Description

λm, λp, λu Density of MBS, PBS and UE
L, l Set of user types, indication of the user type
W Total spectrum bandwidth
h Channel fast fading gain
α Large-scale path loss exponent
σ2 Thermal noise
Pm, Pp Maximum transmission power of MBS and PBS
ρ Power reduction factor
θ PSF ratio
Bp Pico CRE bias
γl SINR of a typical UE l
Im, Ip Full power aggregate interference from macro tier and pico tier
rm, rp Distance from a UE to its nearest MBS and its nearest PBS
Al Probability of a typical UE belongs to the user type l
kc, ke, kp Factor of macro-cell center region, pico CRE region and pico-cell original coverage region
rl Distance from a typical UE l and its serving BS
fl(r) PDF of the distance between a UE and its serving BS
λl Density of BSs associated with user type l
Rl Mean achievable downlink data rate of a typical UE l
Wl Spectrum bandwidth allocated to a typical UE l
Nl , Ntotal

l Mean number of UEs with user type l in a Voronoi cell, total number of UEs with user type l
Pm,s, Pp,s Static power of MBS and PBS
P̂m Proportion between maximum transmission power of MBS and that of PBS
P̂p Proportion between maximum transmission power of PBS and that of MBS
λp,m Proportion between PBS density and MBS density
Rtotal Total network throughput
Ptotal Total network power consumption
ρ′ Approximate value of power reduction factor
B̂∗p, ρ̂∗, λ̂∗p Near-optimal value of pico CRE bias, power reduction factor and PBS density
B∗p, ρ∗, λ∗p, EE∗ Optimal value of pico CRE bias, power reduction factor, PBS density and EE

3.1. User Type Probability

Normally, the user type of a typical UE l can be decided by the relationship between the biased
RSRP from its nearest MBS and its nearest PBS as follow:

l =


pm, if ρPmhr−α

m > BpPphr−α
p

pp, if Pphr−α
p < Pmhr−α

m < BpPphr−α
p

um, if ρPmhr−α
m < BpPphr−α

p < Pmhr−α
m

up, if Pmhr−α
m < Pphr−α

p

, (2)



Sensors 2019, 19, 2154 7 of 24

where Bp is the pico CRE bias. In Equation (2), the conditions for determining user type can be
further translated from biased RSRP based inequation into distance based inequation, which is shown
as Equation (3).

l =


pm, if kcrm < rp

pp, if kprm < rp < kerm

um, if kerm < rp < kcrm

up, if kprm > rp

, (3)

where kc =
[
BpPp/ (Pmρ)

]1/α, ke =
(

BpPp/Pm
)1/α and kp =

(
Pp/Pm

)1/α are defined as macro-cell
center region factor, pico CRE region factor and pico-cell original coverage region factor, respectively [8],
determining the coverage bound of the macro-cell center region, the pico CRE coverage region and the
pico-cell original coverage region, respectively.

In order to obtain the probabilities of four user types, the following lemma is proposed.

Lemma 1. Due to the locations of MBSs and PBSs follow two iid. PPPs, given two arbitrary coefficient values
of na and nb, the probability of narm < rp < nbrm can be expressed as:

Prob
(
narm < rp < nbrm

)
= Prob

(
rp > narm

)
− Prob

(
rp > nbrm

)
= λm

λm+n2
aλp
− λm

λm+n2
bλp

, (4)

where λm and λp are the MBS density and PBS density.

Proof. The proof of Lemma 1 is presented in Appendix A.

Then, the probabilities of the PSF MUEs and the USF PUEs can be calculated similarly based
on Lemma 1 and can be expressed by Prob

(
rp > narm

)
= λm

λm+n2
aλp

and Prob
(
rp < nbrm

)
= 1 −

Prob
(
rp > nbrm

)
= 1 − λm

λm+n2
bλp

, respectively. Combining Equation (4) with the user association

strategy in Equation (3), the probability of this typical UE belonging to the user type l can be defined
as Al = Prob(l ∈ L), which is expressed as:

Al=



λm

λm + k2
c λp

, if l = pm

λmλp

(
k2

e − k2
p

)
(

λm + k2
pλp

) (
λm + k2

e λp
) , if l = pp

λmλp
(
k2

c − k2
e
)(

λm + k2
e λp
) (

λm + k2
c λp
) , if l = um

k2
pλp

λm + k2
pλp

, if l = up

. (5)

In particular, if ρ = 0, then kc = ∞ and Apm = 0, which means that the PSFs are zero power ABS.
The association probabilities of USF MUEs and PSF MUEs versus ρ with different Bp are simulated
according to Equation (5) in Figure 3. As shown in Figure 3, with the increase of power reduction
factor ρ, the transmission power of MBSs over PSF will increase, resulting in the association probability
of USF MUEs decreasing and that of PSF MUEs increasing. It can also be found that the sum of Apm

and Aum will decrease with the growth of Bp, because more UEs will be offloaded into pico-cells with
larger Bp.
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Figure 3. The user association probability of unprotected subframes (USF) micro-cell user equipments
(MUEs) and protected subframes (PSF) MUEs versus ρ with fixed λp = 3λm and fixed λu = 0.0018.

3.2. Distribution of Serving BS Distance

After a typical UE type is classified according to the user association strategy, the probability
density function (PDF) of distance r between this typical UE and its serving BS can be obtained
according to Lemma 2 as below.

Lemma 2. On the basis of user association probability deduced in Equation (5), the probability density function
(PDF) fl(r) of the distance r between the typical UE l and its serving BS can be derived as:

fl(r) =



2πrλm

Apm
exp

[
−πr2

(
λm + k2

c λp

)]
, if l = pm

2πrλp

App

{
exp

[
−πr2

(
λm/k2

e + λp

)]
− exp

[
−πr2

(
λm/k2

p + λp

)]}
, if l = pp

2πrλm

Aum

{
exp

[
−πr2

(
λm + k2

e λp

)]
− exp

[
−πr2

(
λm + k2

c λp

)]}
, if l = um

2πrλp

Aup
exp

[
−πr2

(
λm/k2

p + λp

)]
, if l = up

. (6)

Proof. The proof is shown in Appendix B.

4. Derivation of Energy Efficiency Expression

This section introduces our main analysis model and derives the closed-form expressions of the
average achievable downlink rate, the network power consumption and the network EE, respectively.
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4.1. The Ratio of PSF

PSF ratio can be denoted to be the proportion between the association probability of PSF PUE and
the sum of the association probability of PSF PUE and that of USF PUE, as shown in Equation (7).

θ =
App

App + Aup
=

λm

(
k2

e − k2
p

)
k2

e

(
λm + k2

pλp

) , (7)

where the expressions of App and Aup are obtained according to Equation (5).
Referring to Equation (7), the PSF ratio versus Bp with different PBS densities λp is depicted in

Figure 4. As shown in Figure 4, with Bp increasing, the pico CRE area will be enlarged. As a result,
the PSF ratio will rise. Moreover, with the PBS density λp increasing, the distance between PBSs will
be smaller, which will limit the further expansion of pico CRE area, so that the effect of Bp on θ will be
weakened with λp increasing.
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Figure 4. The PSF ratio versus Bp with fixed λu = 0.0018.

4.2. Average Achievable Downlink Rate

Assume that the network system adopts full buffer model and the frequency resource is allocated
to all UEs in the coverage of a BS equally. Thus, the mean achievable downlink data rate of a typical
UE l can be denoted as:

Rl =
Wl

E [Nl ]
E [log2 (1 + γl)] (8)

where Wl is the spectrum bandwidth allocated to UE l. Specifically, when l ∈ {pm, pp}, Wl = θW
and when l ∈ {um, up}, Wl = (1− θ)W. Nl is the mean number of serving UEs with user type l in
a Voronoi cell and its expectation is E [Nl ] = (Alλu/λl) + 1. If l ∈ {pm, um} , λl = λm, otherwise
λl = λp.

According to the analysis above, we get Lemma 3 as follow:
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Lemma 3. The average achievable downlink rate of a typical UE l can be further represented by

Rl =
2πλlWl

Al Nl

∫ ∞

0

∫ ∞

0
exp

(
−ϕl − πr2Cl

)
fl (r)drdt (9)

where τ = 2t − 1, ϕl = −τσ2rα
l ρ−1

l P−1
l ,

Cl =


λmZ (τ, α, 1) + λp

(
P̂p/ρ

)2/αZ
(
τ, α, Bp

)
, when l = pm

λm
(
ρP̂m

)2/αZ
(

τ, α, Bp
−1ρ−1

)
+ λpZ (τ, α, 1) , when l = pp

λmZ (τ, α, 1) + λp(P̂p)2/αZ
(
τ, α, Bp

)
, when l = um

λm
(

P̂m
)2/αZ (τ, α, 1) + λpZ (τ, α, 1) , when l = up

,

where Z (τ, α, β) = τ2/α
∫ ∞
(β/τ)2/α

1
1+xα/2 dx, P̂m = Pm/Pp and P̂p = Pp/Pm.

Proof. The proof is presented in Appendix C.

Corollary 1. To further simplify the analysis, we ignore the noise, i.e., σ2 = 0 and set the large-scale path loss
exponent α= 4. In that case, corresponding to the user type, the average achievable downlink rate of four user
types can be expressed as:

Rpm =
∫ ∞

0
θW/ApmNpm

λp,mQ
(

P̂pτ/ρ, Bp P̂p/ρ
)
+Q (τ, 1)

dt

Rpp =
∫ ∞

0
θW/AppNpp

λ−1
p,mQ

(
ρP̂mτ, Bp

−1P̂m

)
+ Q (τ, 1)

−
θW/AppNpp

λ−1
p,m

[
Q
(

ρP̂mτ, Bp
−1P̂m

)
− k−2

e +k−2
p

]
+ Q (τ, 1)

dt

Rum =
∫ ∞

0
(1− θ)W/AumNum

λp,mQ
(

P̂pτ, Bp P̂p
)
+ Q (τ, 1)

− (1− θ)W/AumNum

λp,m
[
Q
(

P̂pτ, Bp P̂p
)
− k2

e + k2
c
]
+ Q (τ, 1)

dt

Rup =
∫ ∞

0
(1− θ)W/AupNup

λ−1
p,mQ

(
P̂mτ, P̂m

)
+ Q (τ, 1)

dt,

(10)

where Q (τ, x) =
√

x +
√

τ arctan
(√

τ/x
)
, λp,m = λp/λm, P̂p = Pp/Pm, P̂m = Pm/Pp.

Proof. Set α = 4 and σ2 = 0, then we can get ϕl = 0 and Z (τ, α, β) =
√

τ
∫ ∞√

β/τ
1

1+x2 dx =
√

τ arctan
(√

τ
/

β
)

. Combining with Equation (6), the desired results in Equation (9) can
be obtained.

4.3. Network Power Consumption

Generally, the BS power consumption comprises static power consumption and transmit power
consumption [35]. The static power consumption is caused by signal processing, battery backup,
as well as site cooling, and independent with the BS transmit power consumption. The transmit power
consumption is determined by the transmission power of this BS and the load-dependent power
consumption coefficient of this BS which is denoted as the number of its serving UEs. Define Pm,s and
Pp,s are the static power consumption of each MBS and each PBS, respectively. With FeICIC scheme,
the power consumptions of each MBS in PSF and USF can be expressed as PPFS

m = Pm,s + NpmρPm and
PUFS

m = Pm,s + NumPm, respectively. Similarly, the power consumptions of each PBS in PSF and USF
can be given as PPFS

p = Pp,s + NppPp and PUFS
p = Pp,s + NupPp , respectively.

In PFS, the unit area mean power consumption PPFS can be expressed as:

PPFS = λmPPFS
m + λpPPFS

p = λmPm,s + λpPp,s + ApmλuρPm + AppλuPp. (11)

Similarly, the unit area mean power consumption in UFS PUFS can be obtained as follow:

PUFS = λmPUFS
m + λpPUFS

p = λmPm,s + λpPp,s + AumλuPm + AupλuPp. (12)
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Hence, the network power consumption can be expressed as:

Ptotal = θPPFS + (1− θ) PUFS
= λmPm,s + θ

(
ApmλuρPm + AppλuPp

)
+ λpPp,s + (1− θ)

(
AumλuPm + AupλuPp

)
.

(13)

4.4. Network Energy Efficiency

The network EE can be defined as the ratio of the achievable network throughput to the network
power consumption [37]. For the convenience of derivation, we set σ2 = 0 and α = 4. Based on
Equations (10) and (13), we can get the closed-form expression of network EE in the following:

EE = Rtotal

Ptotal =
λu(Rpm Apm+Rpp App+Rum Aum+Rup Aup)

Ptotal

= λu
Ptotal

∞∫
0

θW/Npm

λp,mQ(P̂pτ/ρ,Bp P̂p/ρ)+Q(τ,1)

+
θW/Npp

λ−1
p,mQ(ρP̂mτ,Bp

−1 P̂m)+Q(τ,1)
− θW/Npp

λ−1
p,m[Q(ρP̂mτ,Bp

−1 P̂m)−k−2
e +k−2

p ]+Q(τ,1)

+ (1−θ)W/Num
λp,mQ(P̂pτ,Bp P̂p)+Q(τ,1)

− (1−θ)W/Num
λp,m[Q(P̂pτ,Bp P̂p)−k2

e+k2
c ]+Q(τ,1)

+
(1−θ)W/Nup

λ−1
p,mQ(P̂mτ,P̂m)+Q(τ,1)

dt

(14)

5. Joint Optimization of FeICIC Parameters and Base-Station Density

Due to the fact that MBSs are usually deployed by network operators, MBS density will change
slowly and can be assumed to be constant for analysis simplification. Further simplification of the
problem analysis, MBS transmit power in USF and PBS transmit power can also be assumed to be
constant without considering power control. Moreover, the PSF ratio can be calculated according to
Equation (7). Hence, the network EE is mainly impacted by pico CRE bias, power reduction factor,
and PBS density under different UE density, i.e., network load. As MBS density is a constant value, we
can first obtain the optimal value of the ratio between PBS density and MBS density λp,m, denoted as
λ∗p,m, to maximize the network EE. Then the optimal PBS density λ∗p can be calculated by λ∗p = λmλ∗p,m.
Thus, the joint optimization problem with the object of network EE maximization can be formulated
as follows:

arg max
ρ,Bp ,λp,m

EE

s.t. 0 <Bp ≤ 25 dB
0 ≤ ρ < 1
0 <λp,m ≤ 30

(15)

However, the network EE is nonlinear with λp,m, Bp and ρ, which is difficult to obtain the
optimal λp,m, Bp and ρ at the same time with reasonable complexity. Note that the value ranges of
λp,m, Bp and ρ are limited, which make it possible to seek out the optimal values of λp,m, Bp and
ρ through a linear search algorithm by fixing two of these three variables, respectively. Therefore,
we propose a heuristic algorithm to obtain the sub-optimal solution of the joint optimization problem
in Equation (15). The proposed heuristic algorithm decomposes the original optimization problem
into two sub-problems including FeICIC parameters optimization and PBS density optimization.
For FeICIC parameters optimization, we first derive the approximate relation between Bp and ρ.
Then, we get the sub-optimal values of Bp and ρ with given λp,m by an alternating algorithm. For PBS
density optimization, the optimal value of λp,m can be obtained by a linear search method based on
fixed Bp and ρ. Finally, we alternately solve two sub-problems to achieve globally optimal values of
these variables.
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5.1. Joint Optimization of Pico CRE Bias and Power Reduction Factor

In order to get the optimal values of Bp and ρ for network EE maximization, suppose that λp,m

and λu are given. Thus, the pico CRE bias and power reduction factor joint optimization problem can
be formulated as follow:

ρ∗, B∗p = arg max
ρ,Bp

EE|λp,m

s.t. 0 <Bp ≤ 25 dB
0 ≤ ρ < 1
λp,m is an arbitrary constant between 0 and 30,

(16)

where B∗p and ρ∗ are the optimal values of pico CRE bias and power reduction factor, respectively.
To simplify the solving process, we assume that the overall SINR of PSF MUEs is identical to that of
the USF MUEs. Hence, the result of resource allocation will have a direct influence on the network EE.
In view of user fairness, the optimal network EE can be achieved when the relationship of association
probabilities of PSF MUEs and USF MUEs obey the Equation (17).

θ =
Apm

Apm + Aum
. (17)

Combining with Equation (7), we can get the approximate relation of ρ and Bp as:

ρ′=
BpPp

Pm

(
k2

e /App − λm/λp

)2 , (18)

where ρ′ denotes the approximate near-optimal value of ρ. The relationships between ρ and Bp under
different λp are shown in Figure 5. We can find that ρ′ is a strictly increasing function with respect to
Bp at a given PBS density.
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Figure 5. The near-optimal power reduction factor ρ′ versus Bp with fixed λu = 0.0018.
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Substituting ρ′ into Equation (14), we can get the near-optimal value of Bp, denoted as B̂∗p by
solving the following univariate problem.

B̂∗p = arg max
Bp

EE|λp,m, ρ = ρ′

s.t. 0 <Bp ≤ 25 dB
λp,m is an arbitrary constant between 0 and 30

(19)

Then, combining the value of B̂∗p with Equation (14), the near-optimal value of ρ, denoted as ρ̂∗

can be obtained by following univariate problem.

ρ̂∗ = arg max
ρ

EE|λp,m, B̂∗p

s.t. 0 ≤ ρ < 1
λp,m is an arbitrary constant between 0 and 30

(20)

Thus, B̂∗p and ρ̂∗ are obtained by an alternating algorithm, which is shown in Algorithm 1. ∆1 and
∆2 represent the step lengths of Bp and ρ, which are set to be 0.1 and 0.05, respectively. EE∗ denotes the
optimal value of the network EE. The main idea of this altering algorithm is to obtain the near-optimal
values of pico CRE bias and power reduction factor by a two-step linear search approach on the basis of
the approximate relationship between them. In line 1 of Algorithm 1, the network scenario and relative
parameters are initialized. From line 2 to line 10, the optimal pico CRE bias is obtained by a linear
search way on the basis of approximate relationship between pico CRE bias and power reduction
factor. From line 11 to line 18, the optimal power reduction factor is calculated based on Equation (14).

Algorithm 1: Joint pico CRE bias and power reduction factor optimization (JBPO) algorithm.
1: Initialization: Initialize the network scenario and the values λu, λm and λp,m, where

λp,m ∈ (0, 30]. Set ∆1 = 0.5 dB, ∆2 = 0.05, B̂∗p = Bp = 0.5 dB and EE∗ = 0.
2: while Bp ≤ 25 dB do
3: Substituting Bp into Equation (18), the approximate near-optimal value of the power

reduction factor ρ can be obtained as ρ′.
4: ρ = ρ′.
5: Substituting Bp and ρ into Equation (14) with given λu, λm and λp,m, the current network

energy efficiency EE′ can be obtained as: EE′ = EE
(

Bp, ρ
)
|λu, λm, λp,m.

6: if EE′ > EE∗ then
7: B̂∗p = Bp, EE∗ = EE′.
8: end if
9: Bp = Bp + ∆1.

10: end while
11: ρ̂∗ = ρ = 0, Bp = B̂∗p.
12: while ρ < 1 do
13: Substituting ρ into Equation (14) with given λu, λm, λp,m and Bp, the current network

energy efficiency EE′ can be obtained as: EE′ = EE (ρ) |λu, λm, λp,m, Bp.
14: if EE′ > EE∗ then
15: ρ̂∗ = ρ, EE∗ = EE′.
16: end if
17: ρ = ρ + ∆2.
18: end while
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5.2. Optimization of PBS Density

Similarly, suppose that Bp, ρ and λu are known. Thus, the PBS density optimization problem can
be formulated as follow:

λ∗p,m = arg max
λp,m

EE|ρ, Bp

s.t. 0 <λp,m ≤ 30
Bp is an arbitrary constant between 0 and 25
ρ is an arbitrary constant between 0 and 1

(21)

Assume that the step length of λp,m is ∆3, which is set to be 0.03. Thus, the optimal PBS density
can be obtained by a linear search algorithm to maximize the network EE, which is described in
Algorithm 2. Line 1 of Algorithm 2 indicates the network scenario and parameters initialization.
From line 2 to line 8, the optimal PBS density is acquired by a linear search method to maximize the
network EE.

Algorithm 2: Pico base stations (PBS) density optimization (PDO) algorithm.
1: Initialization: Initialize the network scenario and the values λu, λm, Bp and ρ, where

Bp ∈ (0, 25] and ρ ∈ [0, 1). Set ∆3 = 0.03, λp,m = 0.3, λ∗p = λp,mλm and EE∗ = 0.
2: while λp,m ≤ 30 do
3: Substituting λp,m into Equation (14) with given λu, λm, Bp and ρ, the current network

energy efficiency EE′ can be obtained as: EE′ = EE
(
λp,m

)
|λu, λm, Bp, ρ.

4: if EE′ > EE∗ then
5: λ∗p = λp,mλm, EE∗ = EE′.
6: end if
7: λp,m = λp,m + ∆3.
8: end while

5.3. Joint Optimization of Pico CRE Bias, Power Reduction Factor and PBS Density

The FeICIC parameter optimization sub-problem and the PBS density optimization sub-problem
are solved independently by the aforementioned optimization algorithms. Due to the fact that these
variables are affected by each other, we further propose a heuristic pico CRE bias, power reduction
factor and PBS density joint optimization algorithm to globally optimize network EE based on the
joint pico CRE bias and power reduction factor optimization (JBPO) algorithm and PDO algorithm.
The detailed procedure of our proposed heuristic algorithm is summarized in Algorithm 3. ε represents
the positive tolerance value. Nloop is the iteration times of the algorithm. Line 1 of Algorithm 3 signifies
the network scenario and parameters initialization. From line 3 to line 4, the JBPO algorithm is
executed to obtain the current optimal pico CRE bias and power reduction factor at a given PBS density.
From line 5 to line 6, the PDO algorithm is performed to acquire the current optimal PBS density based
on the above obtained pico CRE bias and power reduction factor. From line 2 to line 9, the network
EE is iteratively optimized until it cannot improve further within an arbitrary value ε. As a result,
the optimal pico CRE bias, power reduction factor and PBS density are obtained and the network EE
is maximized.
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Algorithm 3: Joint pico pico-cell range expansion (CRE) bias, power reduction factor and PBS
density optimization (JBPDO) algorithm.

1: Initialization: Initialize the network scenario and the values λu, λm, Bp, ρ and λp,m, where
Bp ∈ (0, 25], ρ ∈ [0, 1) and λp,m ∈ (0, 30]. Set EE∗ = 0, Nloop = 0 and ε > 0.

2: repeat
3: Solving the optimization problem in Equation (16), the near-optimal pico CRE bias B̂∗p

and the near-optimal power reduction factor ρ̂∗ at given λp,m can be obtained based on
the JBPO algorithm.

4: Bp = B̂∗p, ρ = ρ̂∗.
5: Solving the optimization problem in Equation (21), the near-optimal PBS density λ̂∗p at

given Bp and ρ can be obtained based on the PDO algorithm.
6: λp = λ̂∗p, λp,m = λ̂∗p/λm.
7: Substituting Bp, ρ and λp,m into Equation (14) with given λu and λm, the current network

energy efficiency EE′ can be obtained as: EE′ = EE
(

Bp, ρ, λp,m
)
|λu, λm.

8: B∗p = Bp, ρ∗ = ρ, λ∗p = λp, EE∗ = EE′, Nloop = Nloop + 1.
9: until |EE′ − EE∗| < ε

5.4. Computational Complexity

The computational complexity of the JBPO algorithm can be calculated as O
(

nBp + nρ

)
, where

nBp and nρ are the space sizes of the linear search for Bp and ρ, respectively. The computational

complexity of the PDO algorithm is O
(

nλp

)
, where nλp is the space size of the linear search for λp.

Thus, the computational complexity of the JBPDO algorithm is O
[(

nBp + nρ+nλp

)
× Nloop

]
.

Due to the fact that there does not an exist effective algorithm for solving Equation (15),
we compare the computational complexity of our proposed JBPDO algorithm with that of a traversal
algorithm. As for solving Equation (15), the optimal values of pico CRE bias, power reduction factor
and PBS density can be obtained by a traversal way, i.e., traversal pico CRE bias, power reduction
factor and PBS density optimization (TBPDO) algorithm, which refers to traversing all possible values
of these three parameters to maximize the objective function in Equation (15). Thus, the computational
complexity of TBPDO algorithm will be O

(
nBp × nρ × nλp

)
, which signifies that the computational

complexity of our proposed JBPDO algorithm is reduced effectively.
As for solving the objective function in Equation (16), the optimal values of pico CRE bias and

power reduction factor can also be obtained by a traversal way, i.e., traversal pico CRE bias and
power reduction factor optimization (TBPO) algorithm, which refers to traversing all possible values
of these two parameters to maximize the objective function in Equation (16). Indeed, TBPO algorithm
consists of two nested ergodic sub-processes: (1) traversal pico CRE bias optimization (TBO) algorithm,
which is executed by traversing all pico CRE bias to maximize the objective function in Equation (19)
under fixed power reduction factor and PBS density; (2) traversal power reduction factor optimization
(TPO) algorithm, which is executed by traversing all power reduction factor to maximize the objective
function in Equation (20) under fixed pico CRE bias and PBS density. Therefore, the computational
complexities of the TBO and TPO algorithms are O

(
nBp

)
and O

(
nρ

)
, respectively. As a result,

the computational complexity of the TBPO algorithm will be O
(

nBp × nρ

)
, which is obviously higher

than that of our proposed JBPO algorithm.

6. Numerical Results and Analysis

In this section, we not only provide theoretical simulation, but also verify the effectiveness of
proposed heuristic algorithms by Monte Carlo simulation. In the theoretical simulation, we considerws
a network coverage area within a square region of 1000 m× 1000 m. The deployments of PBS and
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MBS follow the PPP model and the typical UE is deployed in the origin. The simulation parameters
used in this paper are summarized in Table 2. We took the average results from 30 times of network
implementations as Monte Carlo simulations results. In each network implementation, the locations of
MBSs, PBSs and UEs were modeled as spatial PPP, respectively. Then, the network EEs was calculated
for all the different combination of pico CRE bias, power reduction factor, and PBS density values
within their value ranges based on wireless channel quality. Finally, the maximum network EE and
the optimal pico CRE bias, power reduction factor and PBS density can be obtained by comparing
the calculated network EEs under all combinations. Indeed, the results of Monte Carlo simulation,
including the maximal network EE, the optimal pico CRE bias, the optimal power reduction factor and
the optimal PBS density, were obtained by a traversal way in each network implementation. Meanwhile,
the performances of algorithms shown in the following simulation figures were just simulated based on
theoretical derived Equation (14). Therefore, Monte Carlo simulation results had the best performance
and can be referred to as a baseline for valuing the performances of those algorithms.

Table 2. Network scenario parameters.

Parameters Value

Carrier frequency f 2 GHz
Total spectrum bandwidth W 10 MHz

Path loss exponent α 4

Path loss L
L = 10 log (L0) + α10 log (r),

where L0 =
(
4π f

/
c
)2,

c = 3× 108 m/s
MBS transmission power Pm 43 dBm
PBS transmission power Pp 30 dBm

MBS static power Pm,s 800 W
PBS static power Pp,s 130 W

MBS density λm 0.00003

At first, the network EE performances of the JBPO algorithm were compared with those of the
TPO algorithm, TBO algorithm, theoretical simulation and Monte Carlo simulation, as shown in
Figures 6 and 7, respectively. As shown in Figure 6, with the increase of PBS density, network EE
increased accordingly. With PBS density increase, more UEs were offloaded into the coverage of low
power PBSs. Then the distance between the transmitter and the receiver was shorted, resulting in
network EE improvement. As shown in Figure 7, with the increase of UE density, the curves of network
EE also rose accordingly. As the UE density increased, more UEs can be offloaded into the coverage of
low power PBSs by adjusting pico CRE bias and power reduction factor via network EE optimization
algorithms. Then network EE can be improved. For the theoretical simulation curve, because the
network EE was not optimized and just calculated according to Equation (14) with pico CRE bias and
power reduction factor being set to be fixed values 5 dB and 0.25, respectively, so it had the worst
performance. The TPO algorithm and the TBO algorithm optimized power reduction factor and CRE
bias, respectively. Therefore, the performances of these two algorithms with one parameter optimized
were better than that of the theoretical simulation. Our proposed JBPO algorithm can jointly optimize
pico CRE bias and power reduction factor together. Therefore, it can further improve the network EE
and match the Monte Carlo simulation results very well. Furthermore, the performance of the TPO
algorithm was far less than that of the TBO algorithm, which signifies that the influence of pico CRE
bias was more than that of the power reduction factor on the network EE, especially in low PBS density.
In addition, in Figure 7 the performance gap between the JBPO algorithm and theoretical simulation
increases accordingly with the growth of UE density, which further indicates the importance of joint
pico CRE bias and power reduction factor optimization for the heavy network load scenario.
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Figure 6. The network energy efficiency (EE) versus λp with fixed λu = 0.0018.
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Figure 7. The network EE versus λu with fixed λp = 10λm.

Then, the performances of our proposed JBPO algorithm were compared with that of the TBPO
algorithm in Figures 8 and 9 from different aspects, respectively. The relationship between network EE
and λp with different λu are shown in Figure 8. We can see that the performance of our proposed JBPO
algorithm was just slightly worse than that of the TBPO algorithm, but the computational complexity
of JBPO was much lower than that of the TBPO algorithm. In addition, all curves of network EE
increased first and then fell down slightly with PBS density increase, which illustrates that increasing
PBS density can improve the network EE significantly within a certain network load. Nonetheless,
when the PBS density exceeded a certain limit, further increasing will cause more complex interference
and more power consumption, which will result in the network EE deterioration.
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Figure 8. The network EE versus λp with different λu.
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Figure 9. The network EE versus λu with different λp.

The relationship between network EE and λu with different λp are depicted in Figure 9. Due to
the curves cross with each other under different UE densities, the PBS density should be carefully
adjusted according to the network load fluctuation. In addition, for a given PBS density, we can see
that the network EE become greater with a higher network load. Referring to Figures 8 and 9 together,
although the network EE performance of the TBPO algorithm is just slightly better than that of the
JBPO algorithm, the computational complexity of it is O(nBp × nρ), which is much higher than that of
the JBPO algorithm.

Finally, the network EE performances of the JBPDO algorithm were compared with those of the
PDO algorithm, JBPO algorithm with fixed λp = 10λm, TBPDO algorithm, and Monte Carlo simulation
in Figure 10. In the TBPDO algorithm, pico CRE bias, power reduction factor and PBS density are
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jointly optimized to maximize network EE by an exhaustive traversal algorithm based on Equation (14).
The Monte Carlo simulation results show the maximum network EE within the value range of pico
CRE bias, power reduction factor and PBS density at different network load.

As shown in Figure 10, the proposed JBPDO algorithm can obtain better network EE than that
of the JBPO algorithm since the JBPDO algorithm further optimizes the PBS density on the basis of
the JBPO algorithm. Meanwhile, the accuracy and effectiveness of our proposed JBPDO algorithm
are once again verified by Monte Carlo simulation results. In addition, although the network EE of
the TBPDO algorithm outperforms our proposed JBPDO algorithm, the computational complexity
of TBPDO algorithm is O

(
nBp × nρ × nλp

)
, which is far higher than that of the JBPDO algorithm.

The convergence of JBPDO algorithm is provided in Figure 11. From Figure 11, we can find that
JBPDO algorithm can converge after three iterations. It is proved that the computational complexity
of the JBPDO algorithm is much lower than that of the TBPDO algorithm and more suitable for the
real-time network.
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7. Conclusions

In this paper, pico CRE bias, PSF power reduction factor and PBS density are jointly optimized to
maximize network EE for a two-tier HetNets with FeICIC. First, we derive the closed-form expression
of network EE based on stochastic geometry theory. Then, the near-optimal values of pico CRE
bias and power reduction factor are obtained by an alternating algorithm based on the equivalence
relation between them at a given PBS density deployment. With fixed pico CRE bias and power
reduction factor, the PBS density is optimized by a linear search method. Finally, a heuristic algorithm
is proposed to optimize the pico CRE bias, power reduction factor, and PBS density jointly for network
EE maximization. Extensive simulation results show the accuracy of network EE theoretical deduction
and the effectiveness of our proposed low-complexity heuristic algorithm for network EE improvement.
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Appendix A. Proof of Lemma 1

Considering a typical UE, it is at a distance rk away from its nearest BS in the k tier, that is to say,
there is no BS closer than rk in the k tier. Due to the locations of MBSs and PBSs follow two iid. PPPs,
the cumulative distribution function (CDF) of two-point distance rk is

Frk (r) = 1− Prob (rk > r)
= 1− Prob (no BS closer than rk)

= 1− exp
(
−πr2λk

)
,

(A1)

where λk is the BS density of k tier. We can obtain the PDF of the distance by the differential of
Equation (A1) over r as follows:

frk (r) = 2πrλk exp
(
−πr2λk

)
. (A2)

Hence, given an arbitrary coefficient value of n, the probability of rp > nrm can be given as:

Prob
(
rp > nrm

)
= Prob (no BS closer than nrm|rm)

= Prob
(
rp > nrm, rm

)
=
∫ ∞

0 Prob
(
rp > nrm, rm

)
frm (r)dr

=
∫ ∞

0

[∫ ∞
nr frp (r) dr

]
frm (r)dr

=
∫ ∞

0

[∫ ∞
nr 2πrλp exp

(
−πr2λp

)
dr
]

frm (r) dr
=
∫ ∞

0

[
− exp

(
−πr2n2λp

)]
2πrλm exp

(
−πr2λm

)
dr

= λm
λm+n2λp

.

(A3)

Further, given two arbitrary coefficient values of na and nb, the probability of narm < rp < nbrm

can be expressed as:

Prob
(
narm < rp < nbrm

)
= Prob

(
rp > narm

)
− Prob

(
rp > nbrm

)
= λm

λm+n2
aλp
− λm

λm+n2
bλp

. (A4)
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Combing Equation (A4) with Equation (2), the association probabilities of the typical UE can be
obtained as Equation (5).

Appendix B. Proof of Lemma 2

According to the Bayes rule, we can obtain the conditional probability as

Prob
(
rm|rp > nrm

)
=

Prob
(
rm < r,rp > nrm

)
Prob

(
rp > nrm

) , (A5)

where Prob
(
rp > nrm

)
is given in Equation (A3). After taking partial derivation with respect to

the variable r, the PDF of distance r between a typical UE to its serving BS under the condition of
rp > nrm is

frm |rp>nrm (r) =
d
dr

Prob
(
rm|rp > nrm

)
=

1
Prob

(
rp > nrm

) d
dr

Prob
(
rm < r, rp > nrm

)
=

2πλm

Prob
(
rp > nrm

) d
dr
∫ r

0 Prob
(
rp > nrm|rm = r

)
frm (r) dr

=
2πλm

Prob
(
rp > nrm

) d
dr
∫ r

0 r exp
(
−πr2n2λp

)
exp

(
πr2λm

)
dr

=

λm

λm + n2λp

Prob
(
rp > nrm

) d
dr
{

1− exp
[
−πr2 (λm + n2λp

)]}
=

2πrλm

Prob
(
rp > nrm

) exp
[
−πr2 (λm + n2λp

)]
.

(A6)

Further, we can obtain as:

frm |narm<rp<nbrm (r) =
d
dr

Prob
(
rm|narm < rp < nbrm

)
=

d
dr

Prob
(
rm < r, narm < rp < nbrm

)
Prob

(
narm < rp < nbrm

)
=

1
Prob

(
narm < rp < nbrm

) d
dr
[
Prob

(
rm < r, rp > narm

)
−Prob

(
rm < r, rp > nbrm

)]
=

2πrλm

Prob
(
narm < rp < nbrm

) {exp
[
−πr2 (λm + n2

aλp
)]

− exp
[
−πr2 (λm + n2

bλp
)]}

.

(A7)

According to Equations (5) and (A7), we can get the PDFs of distance r between a typical UE l to
its serving BS in Equation (6).

Appendix C. Proof of Lemma 3

Due to Wl and Nl can be seen as constant and fl(r) can be obtained based on Equation (6), we can
deduce the closed-form expression of the average achievable downlink rate of UE l as:

Rl =
Wl
Nl

E [log2 (1 + γl)]

= Wl
Nl

∫ ∞
0 E

[
log2

(
1 + ρl Pl hr−α

l
ρ′ l Im+Ip+σ2

)]
fl (r) dr,

(A8)

where Pl is full transmission power of serving BS of user type l, rl represents the distance between UE
l and its serving BS. ρl is determined as ρl = ρ when l ∈ {pm} and ρl

′ is determined as ρl
′ = ρ when
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l ∈ {pm, pp}. Otherwise ρl = ρl
′ = 1. Considering the complexity of Equation (A8), we can deduce

E [log2 (1 + γl)] first as Equation (A9).

E
[

log2

(
1 + ρl Pl hr−α

l
ρ′ l Im+Ip+σ2

)]
(a)
=
∫ ∞

0 Prob
[

log2

(
1 + ρl Pl hr−α

l
ρ′ l Im+Ip+σ2

)
> t
]

dt

=
∫ ∞

0 Prob
[

h >
(
2t − 1

) (
ρ′ l Im + Ip + σ2) rα

l ρ−1
l P−1

l

]
dt

(b)
=
∫ ∞

0 exp
[
−
(
2t − 1

)
ρ′ l Imrα

l ρ−1
l P−1

l

]
exp

[
−
(
2t − 1

)
Iprα

l ρ−1
l P−1

l

]
· exp

[
−
(
2t − 1

)
σ2rα

l ρ−1
l P−1

l

]
dt

(c)
=
∫ ∞

0 LIm

(
τrα

l ρ′ lρ
−1
l P−1

l

)
LIp

(
τrα

l ρ−1
l P−1

l

)
· exp

[
−τσ2rα

l ρ−1
l P−1

l

]
dt,

(A9)

where (a) is derived according to E (X) =
∫ ∞

0 P [X > x]dx, (b) is obtained referring to h ∼ exp (1),
(c) is obtained through the Laplace transform of Im and Ip by setting τ = 2t − 1. Referring to [6],
the Laplace transform formulations can be expressed as:

LIm

(
τrα

l ρl
′ρ−1

l P−1
l

)
= exp

{
−πλm

(
ρl
′Pm

ρl Pl

)2/α

r2τ2/α
∫ ∞

[Bm/(ρl
′ρ−1

l Bl τ)]
2/α

1
1 + xα/2 dx

}
(A10)

LIp

(
τrα

l ρ−1
l P−1

l

)
= exp

{
−πλp

(
Pp

ρl Pl

)2/α

r2τ2/α
∫ ∞[

Bp,l

/
(Bl τ)

]2/α

1
1 + xα/2 dx

}
, (A11)

where Bl denotes the association bias of the typical UE l to select its serving BS. When l = pp, Bl = Bp;
otherwise Bl = 1. In order to simplify the analysis, we can define variable β = Bk,l/Bl , k ∈ {m, p},

where Bm,l=Bm/
(

ρl
′ρ−1

l

)
and Bp,l=

{
1, if l = up
Bp, otherwise

.

Substituting Equations (A10) and (A11) into Equation (A9), and further substituting Equation (A9)
into Equation (A8), we can obtain the closed-form expression of the average achievable downlink rate
of a typical UE l as Equation (9).
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