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Abstract: Internet-of-Things (IoT) is a technology that is extensively being used in various fields.
Companies like Samsung, LG, and Apple are launching home appliances that use IoT as a part of
their smart home business. Currently, Intelligent Things which combine artificial intelligence (AI)
and IoT are being developed. Most of these devices are configured to collect and respond to human
behavior (motion, voice, etc.) through built-in sensors. If IoT devices do not ensure high security,
personal information could be leaked. This paper describes the IoT security threats that can cause
information leakage from a hierarchical viewpoint of cyberspace. In addition, because these smart
home-based IoT devices are closely related to human life, considering social damage is a problem.
To overcome this, we propose a framework to measure the risk of IoT devices based on security
scenarios that can occur in a smart home.

Keywords: smart homes; Internet of Things (IoT); risk measurement; cyber-situational awareness

1. Introduction

A smart home consists of a computer, smart phone, and other devices that are equipped with
an Internet-of-things (IoT) connection. In recent years, the use of artificial intelligene (Al)-integrated
intelligent IoT devices has significantly increased [1]. For example, a smart sensor, such as a thermostat,
can be remotely controlled by a user via an Internet connection. The user can monitor the house in
real-time through the IP camera. Even door locks that include connectivity options allowing remote
operation are being developed. This phenomenon increases the possibility of threats to the real space,
unlike cyberattacks (DDoS, APT attacks, etc.), which cause damage to the cyberspace. A smart home is
vulnerable to security threats because it uses the Internet that utilizes Radio Frequency Identification
(RFID), Wireless Sensor Network (WSN), Wi-Fi, 3G, and 4G. This implies that the information collected
by the sensors installed in the IoT devices can leak personal information to the attacker owing to
their vulnerability.

These cyberattacks focus on the collection and monitoring of information. In 2014, e-mail leaks
confirmed that many countries’ intelligence and investigation agencies had requested an Italian
hacking team to create an exploit kit that exploited vulnerabilities in IoT equipment for surveillance
or inspection purposes. In 2017, Vault 7, the primary publication of confidential documents, leaked
information about the activities of intelligence agencies by WikiLeaks, an international non-profit
organization that publishes classified information. This document contained information on a cyber
weapon developed by the CIA in the United States and GCHQ in the United Kingdom. It can monitor
users by exploiting vulnerabilities through Samsung’s smart TV. In addition, the disclosed document
explains techniques to acquire the root privilege of a smartphone by exploiting vulnerabilities of
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browsers such as Chrome, Opera, and Samsung mobile browser. It is evident from these instances that
IoT device sensors can be used as an information collection path by an intruder [2].

The IoT environment is advantageous because it configures the user’s surrounding as a connected
environment to provide convenience. However, because most IoT devices are connected to the
Internet, their security can be challenged by a single vulnerability. A malicious attacker may steal
confidential information stored on IoT devices, monitor the user’s life, oz, if necessary, the user’s
personal information may be unauthorisedly used. Therefore, in the development of IoT devices,
risk identification and measurement and assessment procedures should be introduced to identify the
countermeasures against unauthorized user identification and access control. This paper addresses the
threats that may occur owing to IoT device sensors by:

e Comparing and analyzing the cyberspace layers and IoT environment.
e  Connecting with the cyberspace layer to identify possible threats to IoT devices in a smart home.
e Proposing a framework for risk assessment of IoT devices in a smart home environment.

This study explains security threats such as privacy infringement and personal information leak
in smart homes composed of IoT devices. It approaches the evaluation method of these threats from
the framework of situational awareness (SA) and presents the direction of IoT threat perception from
the viewpoint of decision-makers or managers.

2. Scalability of Cyber Threats

In the past, cyberattacks caused one-dimensional damage, which caused service failure through
vulnerabilities such as hardware and software. However, recent cyberattacks are causing harm to
the psychological and financial states of human beings with the aim of unauthorised acquisition of
information. With the developments in IoT technology, there is an increase in the number of threats
related to an individual’s privacy breach. This section describes the relationship between the IoT
environment and cyber threats.

2.1. IoT Layered Architecture and Cyber Threat

There is no general architecture for IoT environments. However, the typical IoT layered
architecture, described in terms of security, consists of the perception layer, network layer, processing
layer, application layer, and business layer [3].

e  Perception Layer: This layer, also called the sensor layer, is responsible for the identification
of objects and collection of information about objects. RFID, 2-D barcodes, and various types
of sensors for object recognition are attached to the things. The information collected by these
sensors varies in location, atmosphere, environment, motion, and vibration. These sensors can be
used as a tool to unauthorisedly monitor privacy by an attacker.

o  Network Layer: This layer connects the perception layer and application layer. In other words,
this layer is responsible for the transfer of data collected in the perception layer to other connected
devices through a communication channel. The transmission medium may be wired or wireless
(Wi-Fi, Bluetooth, Zigbee, cellular network, etc.). The connectivity of IoT devices is vulnerable to
transfer malware and network attacks such as denial of service.

e  Processing Layer: This layer collects and processes the information transmitted from the network
layer. It is responsible for removing meaningless extra information and extracting useful
information. This layer can affect the performance of the IoT when a large amount of information
is received.

e  Application Layer: This layer uses IoT technology or defines all applications implemented to IoT.
IoT can be implemented in smart homes, smart cities, and smartphones, which controls them.
Because the services provided depend on the information collected by the sensors, they may be
different for each application. Especially when IoT is used in a smart home, various internal and
external threats and vulnerabilities can occur.
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e  Business Layer: The business layer represents the intended behavior of the application. This layer
is responsible for managing and controlling the application, business, and revenue models of IoT
and manages user’s personal information. This layer of vulnerability could allow an attacker to
misuse the application.

IoT environments such as smart homes are remotely controlled by mobile devices such as
smartphones. From the viewpoint of IoT layered architecture, smartphone sensors can cause secondary
damage such as personal information leakage. If an application is installed in this device, the damage
can be extended.

2.2. Connection between Cyberspace and Real World

Cyberspace is a specific space that can overcome the temporal and spatial limitations of the real
world by utilizing the virtual environment formed with electronic devices and electronic spectrum,
and enables communication through it. Cyberspace is characterized by the ability to overcome
geographical limitations and provide rapid delivery of extensive information. However, as the
usability of cyberspaces increases, the components of cyberspace such as the network, embedded
systems, and internet, and real-world components such as humans, society, and policy, are changing
interdependently.

According to the “Joint Publication (JP) 3-12R Cyber Operation” published by the US Chief of
Staff, the concept of abstract cyberspace is described in a hierarchical structure. According to this
publication, cyberspace consists of three layers: physical, logical, and persona. The physical layer
is a hierarchy in which physical devices (routers, switches, sensors, etc.) are located geographically
or physically. The logical layer is a layer that logically connects devices located in the physical layer
through software or protocols. Representative layers included in this layer are the seven layer of Open
Systems Interconnection (OSI). The persona layer is a layer that forms or recognizes a human in the
cyberspace through the electronic service formed by the physical and logical layers. For example,
IP address, E-mail, and ID are forms of persona layer. The threat of cyberspace is projected into the
real world through this persona layer. This hierarchical concept of cyberspace can be utilized as a
framework to identify cyber threats and damage in IoT equipment [4].

In a report published in 2011, the US Department of Homeland Security presented a cyber
ecosystem that explains the concept of cyberspace layers. The cyber ecosystem is a concept
that constitutes a circulating virtual ecosystem by interacting with people, governments, social
organizations, policies, laws, and electronic devices such as hardware and software. It consists of fifteen
layers with complex interactions. The top four layers (persona, people-supervisory, organization,
government layer), in particular, conceptually explained that the outcome of threats in cyberspace
may ultimately affect individuals or society [5]. This concept can be explained in connection with the
components of IoT (See Figure 1).

o  Perception (Sensing)—Physical or Geographic Layer: The main purpose of Perception is to
identify the phenomenon and change in the device environment based on various sensors and
consequently collect data from the real world. These motion, environment, and position sensors
are physically located and can be connected to the physical layer. The position sensors are also
used as a tool to measure geographical locations.

o  Network—Logical Layer: Sensors in IoT devices are integrated through a sensor hub, which uses
transport mechanisms such as Inter-Integrated Circuit (12C) or Serial Peripheral Interface (SPI) to
ensure data flow between sensors and applications. The network component of IoT is responsible
for transferring the data collected through sensors to other connected devices. These components
are similar in concept to the logical layer because they logically connect nodes in cyberspace.
Various technologies such as Wi-Fi, Bluetooth, and Zigbee are used to connect data flows between
different devices.
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e  Processing—Machine Language or OS Layer: Processing component consists of the main data
processing unit of an IoT device. This configuration corresponds to the machine language layer.
In addition, processing performs the decision-making analysis through the data collected from
sensors. IoT devices such as smart home hubs serve to improve the user experience by storing the
analysis results. Because the OS is essential for the execution of this analysis, it can be connected
to the OS layer.

e  Application—Application Layer: The application component is responsible for implementing and
presenting the results of data processing to perform different applications through IoT devices.
The application is a user-oriented layer that performs various tasks for the user and serves as
the application layer of the cyber ecosystem. IoT devices can be implemented in smart homes,
personal hygiene, and healthcare.

e Business—Real World: A business represents the intended behavior of an application and is
closely related to the real world in terms of managing the user’s personal information. However,
it is difficult to provide proper security through a sensor management system and security system,
which have strong software tendency. The sensor data captured by a malicious attacker may
be processed and cause problems such as leakage of personal information and unauthorised
privacy monitoring.
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Figure 1. Owing to developments in technology, cyberspace has become connected to real world and
the result of threat in cyberspace can be extended to real world.

3. Risk Assessment Approach Using Factor Analysis of Information Risk (FAIR)

Risk analysis and measurement consist of setting the scope of assets, identification of threats and
vulnerabilities, and analysis of threat agents (TCom, Threat Community) based on various scenarios.
Risk assessment is divided into basic risk assessment and detailed risk assessment. Although basic
risk assessment does not utilize an engine to calculate the risk level, it can produce results quickly
and easily. However, it has difficulties in verifying the effectiveness of countermeasures. A detailed
risk assessment has the advantage of being highly reliable in risk measurement and it is capable of
aggressive countermeasures; however, its qualitative measurement is unreliable. To overcome the
shortcomings of this risk assessment, this study implemented the Factor Analysis of Information Risk
(FAIR). The FAIR method is a risk measurement method developed by J.A. Jones. Unlike the existing
qualitative risk measurement model, the FAIR method stochastically approaches the measurement of
each factor against assets and threats.

Because risk is an uncertain event in the FAIR method, the analysis primarily focuses on the
likelihood of a set scenario. The process of analyzing risks using FAIR consists of characterizing the
risks, combining the risk factors, and measuring the risks. To accomplish this, we approached each
factor from a stochastic point of view and classified risks into frequency and magnitude. The FAIR
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method is divided into loss event frequency (LEF), which is the frequency of the threat, and loss
magnitude (LM), which represents the degree of damage to the asset (see Figure 2) [6,7].

ﬁ The factors of Loss Event Frequency (LEF) in FAIR are used to measure threats to assets.
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Figure 2. FAIR model is used to measure risk based on likelihood and probability, and consists of LEF
and LM factors that represent threats and damage to assets, respectively.

Loss Event Frequency (LEF): LEF is the frequency with which the threat agent is likely to damage
the acquired assets within a certain period of time. It is essential that the LEF distinguishes between
the possibilities and probabilities over time to identify threats. This factor measures the attacker’s
threat by threat event frequency (TEF) and vulnerability (VUL).

o  Threat Event Frequency (TEF): TEF indicates the frequency with which a threat agent is likely
to act on an asset within a specified period. Similar to the definition of LEF, this factor does not
reflect the success of an attack by a threat agent. The TEF is measured by contact and action
factors, where the action against the attack is based on the contact by the threat agent. Contact
factor means the frequency with which a threat agent is likely to contact an asset within a certain
period, and is classified into random, regular, and intentional. The factors that determine the
probability of this contact factor are the size of the threat, number of threats in contact, size of
the asset, activity of the threat, flexibility of the threat, and relationship between the threat and
asset. Action refers to the probability that an actual attack will be carried out on an asset that it
owns in the event of a threat agent’s contact. The precondition for the action is that the threat
agent who can think of is caused by a threat agent intentionally created such as a malicious
program. Measures related to these actions include asset value, level of effort, and the probability
of detecting threats and experiencing unacceptable consequences.

e  Vulnerability (VUL): VUL is the probability that the acquired assets cannot resist the threat
agent’s behavior. Vulnerability exists owing to the difference between the capability of the threat
agent and that of the asset to resist the capability. This implies that vulnerability is relative to the
attack method or type of threat. These VULs are calculated as a combination of threat capability
(TCap) and control strength (CS). TCap is the ability of the threat agent to negatively affect the asset.
TCap does not equally generate all threats. Therefore, the threat agent does not perform the same
functions. In addition, the value of TCap may be higher for an attack target where a threat agent
is set but it may be incompetent for other objects. CS is the resistance strength of the acquired
assets when compared to the measured threats. These CSs are divided into three types: policies,
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processes, and techniques. When a small number of controls are set, the probability values of each
control can be independently calculated.

Loss Magnitude (LM): Loss Magnitude (LM): LM is the amount of damage that an attacking target
receives when a threat occurs. However, in the case of asset damage, there is no standard framework
for asset loss because most organizations or agencies focus on the threat response. To compensate
for these weaknesses, the FAIR model combines primary loss (PL) and secondary loss (SL) to measure
the damage.

e  Primary Loss (PL): PL consists of primary loss event frequency (PLEF) and primary loss magnitude
(PLM). PLEF is an element of actions that a threat agent performs on an asset and consists of access,
misuse, disclose, modify, and deny access. The intent of the threat agent is largely determined by
the motivation (e.g., financial gains, revenge, etc.) and nature of the asset, and the magnitude of
the loss depends on the location of the threat agent (outside or inside the organization). PLEF
broadcasts threat competence, which is a characteristic that can cause damage. PLM consists of a
combination of criticality, cost, and sensitivity. Criticality refers to the nature of assets that causes
an impact on the productivity of the organization. Cost indicates the cost of responding to an
asset when it is damaged by an attack. Sensitivity refers to the degree of damage that can result
from unintended exposure and reflects qualitative measurements such as reputation, competitive
advantage, and legal /regulatory proceedings.

e Secondary Loss (SL): SL is the loss caused by the external characteristics of an environment when
a threat event occurs. SL is measured by a combination of secondary loss event frequency (SLEF)
and secondary loss magnitude (SLM). SLEF is measured considering the timing, due diligence,
response, and detection. Threat events result in a direct loss owing to the importance of the asset
and inherent value characteristics but SLEF is based on changes in the external environment.
SLM reflects changes in the legal and regulatory landscape, competitive landscape, media, and
external stakeholder. When cyberattacks lead to social disruption, various indicators of each
factor are reflected.

Complexity can occur in risk decision making in situations that directly reflect human life in the
IoT environment. This paper used the framework of the FAIR model, which can measure secondary
damage under the assumption that cyber threats damage the real world apart from the cyberspace.

4. Risk Assessment and Situation Awareness in IoT Environment

As the availability of IoT technologies increases, it is essential to measure its related threats and
risks. Especially, IoT environment, which has high connectivity with people such as smart homes and
smart offices, is associated with privacy exposure, which adversely affects the threat. The complexity
of this IoT environment makes it difficult for decision-makers to make an accurate assessment of the
situation. This section describes the research on risk assessment and SA in the IoT environment.

4.1. Research on Risk Assessment in the IoT Environment

The application of IoT technologies poses privacy concerns considering confidentiality, reliability,
and integrity of the data that IoT objects interact with. To identify these problems, a research has been
conducted to identify the risks. M. Burhan et al. outlined a layered architecture of IoT elements and
attacks related to security in this layer. Through this research, this study proposed a new security
layered architecture of IoT [3]. B. Ali and A.I. Awad conducted a study using OCTAVE Allegro, an
operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology to evaluate
the security risks of a smart home. This research identifies the security vulnerabilities in smart home
IoT devices and suggests ways to reduce those identified risks [8]. C. Liu et al. proposed a dynamic
risk assessment method for IoT using an artificial immune system to dynamically evaluate the risk of
IoT devices and accordingly determine the situation. This method consists of attack detection agent
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and a dynamic risk assessment subsystem. Through this method, this research deduced the immune
principle and mechanism for risk in IoT environment as a set theory of mathematics [9].

S. Sicari et al. proposed a methodology for the implementation of end-to-end systems to
general-purpose methodologies to asses risks to determine the stability and robustness of malicious
attacks on the components of the IoT platform. The proposed approach assessed risk by objectively
considering the static and dynamic features and components of the IoT system in accordance with the
life cycle of data [10]. PK. Chhouhan et al. proposed a situational assessment approach to identify
security risks in IoT devices. This research presented the basic elements of the IoT model and conducted
a situational assessment of IoT applications. As a result, this research have addressed the need for
increased security for local, transport, and data stores as a countermeasure against the risks [11].
V.L. Shivraj et al. proposed a model-based risk assessment framework based on graph theory to solve
the complexity of IoT technologies such as communication protocols, devices, and environments.
This research conducted a risk assessment using attack propagation through the bipartite graph
technique [12].

AW. Atamli and A. Martin conducted an assessment of the threat model based on use cases
related to IoT. This model classifies threat agents and attack vectors for power management, smart car,
and smart heathcare system, and measures the impact of risk on them. These findings can contribute
to identifying security requirements to protect each system and ensuring the privacy of users [13].
T. Wu and G. Zhao proposed a risk assessment model that derives the weights of the probabilistic
causal relationships of the evaluation factors and the influence relationships of the propagation path
in order to solve the personal information security problem of IoT application. This model uses the
decision-making trial and evaluation laboratory according to the Bayesian network structure to easily
identify the relevant risk propagation path and calculate the weight of each path. Through this research,
this research has determined the risk level of assets and each risk propagation path and contributed to
the rationale for decision making on privacy security risk assessment [14].

J.R.C. Nurse et al. noted the need for a model that considers the dynamics and originality of IoT
based on existing risk assessment models. The researchers proposed a risk assessment model with
the view that the risk of cyberspace can be projected into the real world through a combination of
current high levels of connectivity or digital, cyber-physical, and social systems [15]. R. Heartfield et al.
classifies applicable cyber threats for smart home according to taxonomy and measures not only the
attack vector, but also the potential impact of the system on the user. This research classifies the
twenty five smart home attacks using the proposed method and draws the results of the legitimate but
vulnerable smart home configuration that can lead to the second attack path [16]. K. Ghirardello et al.
presented a smart home reference architecture for security analysis. This model identifies the
various functions and components of IoT devices and networks installed in a smart home from
three viewpoints: functional, physical, and communication. This research proposed a method to utilize
the architecture by applying the attack surface to the home automation environment to determine the
major vulnerabilities [17].

M. Vitunskaite et al. evaluated smart cities and cybersecurity measures to address the limitations
of security requirements for environments with IoT technology. This research proposed a security
recommendation framework by comparing management models, security measures, and technical
standards for smart cities in Barcelona, Singapore, and London [18]. I. Butun et al. conducted
vulnerability identification and risk assessment related to a low-power wide-area network (LPWAN)
to implement IoT-based applications. This research analyzed the comprehensive security risks of the
protocol and suggested a countermeasure to reduce these risks. In particular, the researchers identified
important real threats such as end-device physical capture, rogue gateways, and self-replay [19].
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These researches, unlike existing security risk assessment, attempted to solve the complexity of
IoT technology. However, there is a limit to determine a risk assessment method that can judge a
comprehensive threat situation as the decision-maker or manager. To solve this problem, this study
utilizes SA, which is a core concept of the command and control system of the military sector.

4.2. SA in Cyberspace

IoT enabled devices provide services to users based on the data collected through various sensors.
For example, data collected from IoT devices in a smart home is personal information such as a user’s
life pattern, eating habits, and health, among others. However, data leak due to the vulnerabilities in
IoT devices can lead to privacy information leak, resulting in incidental damage. The concept of SA
is essential for considering incidental damage. SA refers to the process of collecting, understanding,
and projecting various environmental factors and data related to time and space when a specific event
occurs, and projecting it to future situations. In general, SA aims at understanding the operating
environment and status of related organizations to support optimized decision-making in complex
and dynamic environments. Typically, a SA model is used in air traffic control, power plant operation,
emergency medical services, military’s command and control systems, among others [20].

SA models are proposed and developed based on Endsley’s model proposed by M. Endsley.
It consists of perception (level 1), comprehension (level 2), and projection (level 3) to determine the situation.
Perception (level 1) is the level that recognizes the status and attributes of the related element in the
environment where the event occurs. This level recognizes the status, attributes, and dynamics of
related elements in a given environment. Comprehension (level 2) is a level that synthesizes the separated
perceptual elements through the analysis and evaluation process based on the data collected in level 1.
Level 2 helps to understand the impact on the user’s goals to have a comprehensive understanding
of the environment. Projection (level 3) is a level that predicts the effect of analyzing the information
obtained in Level 2 on the state of future operating environment. This level can project an element’s
future action in the current environment. This model is designed to prioritize the recognition of the
state of system and user elements. The system element is intended to recognize the current state of the
asset and enhance the effectiveness of decision-making by making future projections. However, the
user factor influences final decision-making by individual ability and experience; thus, a quantitative
measure of risk is required [21].

SA based on Endsley’s model is being developed to suit the characteristics and purpose of
cyberspace. Cyber SA considers the sociotechnical system of systems (STSOS), which focuses
on scalability based on the concept of a cyberspace layer. STSOS refers to complex systems
with connection threads and information fabrics that enable and shape modern societies, cultures,
economies, technologies, and industries. Thus, to achieve cyber SA, the low-level details should be
summarized and reflected in the organization’s mission or business perspective. Comprehensive
cyber SA consists of computing and network components, threat intelligence, and mission awareness.
Operating environment awareness aims to organize and manage defined assets. Adversary awareness
identifies and tracks suspicious actions and integrates knowledge of external and internal threats.
Mission/business awareness aims to understand the dependencies between elements to identify the
threats and the impact of their assets on their mission [22] (see Figure 3).
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Based on this comprehensive concept, cyber SA is being studied and developed as a suitable model
for data analysis. J. Okolica et al. proposed an automated Cyber SA Model (CSAM) that real-time
updates the system environment to reflect the business continuity planning [23]. G.P. Tadda and
J.S. Salerno proposed a SA Reference Model (SARM) applying a data fusion model (DFM) to estimate
and evaluate the environment under observation based on the collected data. This SARM utilizes data
analysis and has the advantage of being able to respond to threats in real time [24]. N. Evancich et al.
proposed Effective Cyber SA (ECSA) focusing on network threats. ECSA is composed of Network
Auwareness, Threat Awareness, and Operational Awareness to comply with the comprehensive concept
of cyber SA. Network Awareness is the step of collecting data by recognizing the ownership, security
characteristics, vulnerabilities, etc. of the network that you have. Threat Awareness is intended to detect
attack vectors that can be a threat to your network assets. Operational Awareness is a measure of the
impact that an attack can have on operational capability [25]. ]. Webb et al. proposed a situation-aware
ISRM (SA-ISRM) model to supplement erroneous decisions and inappropriate security strategies in the
information security risk management (ISRM) process. This model has resulted in an enterprise-wide
collection, analysis, and reporting of risk-related information that can resolve existing risk assessment
flaws in cyberspace [26].

This SA is also applied to the IoT environment. FEG. Toro & A. Tsourdos proposed an
augmented reality (AR) tool for the SA of unmanned aerial vehicle (UAV) in an IoT environment.
This research utilized the SA on the ground control system (GCS) used by pilots on traditional aerial
platforms while converging information on video streams, mission plans, and information from
other sensors [27]. P. Vanveerdeghem et al. proposed a SA model for wearable wireless body sensor
networks. This research implemented a decision support system by applying SA to the comprehensive
representation of sensor data collected from the body [28]. E.G. Zimbelman et al. proposed a SA
system that utilized the global navigation satellite system (GNSS) to define a secure working area for
logging. This study measured the effects of gait speed, transmission interval, geofence radius, and
crossing angle information on the work environment for SA [29].

In the case of IoT devices, because the user’s information is collected through various sensors,
it is possible to deduce the personal information of the user even if the collected data is captured.
This paper analyzes the threats that may arise through various sensors included in IoT devices and
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measures the damage caused by the leakage of personal information that may occur through this.
The next section elaborates the risk measurement method for SA.

5. Risk Measurement of Information Leakage in IoT Environment from the Viewpoint of SA

Most risk analysis models use a qualitative method to measure the risk. However, it is not
considered accurate owing to the disadvantage that these qualitative methods affect the degree of
education, awareness, and experience of decision-makers. This section proposes a risk measurement
method that combines clustering and optimization methods to minimize these qualitative judgments
for risk. In addition, this study constructed a component of cyber SA in support of decision-making.
The proposed system proposes IoT environment awareness (level 1) to identify threats and assets of IoT
devices, risk awareness (level 2) to measure risks using the FAIR model, and decision awareness (level 3)
that optimizes risk for decision support. This method adds the identification of IoT threat and loss of
assets to our proposed threat measurement method (See Figure 4) [30,31].

LEVEL1 JoT Environment Awareness LEVEL2  Risk Awareness

Perception of elements in IoT Environment status Comprehension of Threat Status in IoT Enviromment

v v ~ Threat Event ~ Primary )
Identification of Sensors Type v y _ |
- Motion Sensors e = “~_Frequency (TEF) —~ a4 7 PL?“ ,(l;Ll’ ~
- Environmental Sensors ——— ( Loss Event ( - Magnm“f’ rivacy Exposure
= F

v ge
ey (LEF) (M) Economic Damage due to Data Breaches

_ - Position Sensors —F
¥ Identify Vulnerabilities to IoT Eqmpmcm— oS
P . Threar'ts Damage Bsessment
ﬂ ¥ Generated Attack Scenario I oy s 4

@& vy

—— L ( RISK ) ¥ Government Confidence Declines
- Possibility of inference through sensor data + Policy System Destruction
- Keystroke Inference Attack Clustering Risk Grade
- Task Inference Attack
Perception of Smart Home Environment - Location Inference Attack ]
N - Eavesdropping /
\ /
LEVEL3 Decision Awareness
Projection of future Status & Decision
Moderate o
S Pl _—» Very High _ " o
Perform countermeasurés~._ / L _—" Provide a semantic risk grade

according to risk grade ~

Optimize Risk Grade using Mixture Model

Figure 4. To make decisions about threat of mobile device’s sensors, SA proposed in this paper is
composed of three levels: IoT environment awareness (level 1), risk awareness (level 2), and decision awareness
(level 3).

5.1. IoT Environment Awareness For Identification of Threats and Assets

Most scope of assets present a range of information security management systems to meet the
requirements of clause 5 of ISO 27001. This scope shall include interface management in accordance
with the requirements. When setting the scope of an asset from the perspective of the information
security management system (ISMS), it is important to identify the critical asset that can be exposed to
the threat [32]. Identification of these assets is a starting point in the identification of vulnerabilities
and threats in scenarios used to analyze risk. This level set the sensors used for IoT equipment to the
range of assets.

Sensors are responsible for collecting data from objects. Unfortunately, if the software installed
on the IoT device is infected with malware such as spyware, or if the user is exposed to Unsecured
Wi-Fi, the IoT devices” ID and password are exposed, The user can provide the attacker with a
negative opportunity to access privacy data. The types of sensors installed in IoT devices are classified
into motion sensors, environmental sensors, and position sensors. According to the research by
A K. Sikder et al., information leakage in IoT equipment is likely to be caused by light, motion,
magnetic, acoustic, GPS, and camera sensors. The collected sensor data can expose passwords, life
patterns, and personal location information [33] (see Table 1).
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Table 1. Mobile device sensors can be classified into motion sensors, environmental sensors, and
position sensors. Information leakage is possible by integrating data from these sensors [33].

Sensor Type Sensor Description
Accelerometer - Measure acceleration along the X, Y, and Z axes
- Possible to check the speed change or strength of the mobile device
Motion - Measures gravitational acceleration based on the X, Y, and Z-axes
Sensors Gravity - Recognizes the horizontal

or vertical direction and the upper and lower references

- Measures the rotational speed for the X, Y, and Z-axes

Gyroscope - Checks mobile device tilt or rotation

- Measures light in lx
Light sensor - Used to adjust the screen brightness of the mobile device depending
on the surrounding environment

- Measures the ambient temperature

Temperature sensor Sets or controls the temperature of the mobile device

Environmental Proximity sensor - Measures the distance between the screen of the mobile device and the object to

Sensors Y be measured without physical contact

Audio sensor - Microphone: Detects acoustic signal

- Speaker: Plays audio signal
Camera sensor - Handles lighting intensity and ambiance for capturing photos and
videos around mobile devices
Barometer sensor - Pressure measurement of mobile device
GPS sensor - Uses GPS satellites to measure the current location and time

Position of the mobile device
Sensors - Measures the azimuth using the Earth’s magnetic field, and applies it

Magnetic sensor o
to compass applications

The attacker can deduce the propensity and privacy of the user through the collected data and
leak personal information. These threats include keystroke inference attack, task inference attack,
location inference attack, and eavesdropping.

e Keystroke Inference Attack: Keystroke inference is a common threat that can occur in IoT
equipment. Most commercially available IoT devices comprise input devices such as touch
screens, touch pads, and keyboards. When the user enters an ID, password, or word into the
device, the device tilts and rotates to create a deviation of the data in the sensor (e.g., accelerometer,
gyroscope, audio, light sensor, etc.) for each instance. An attacker can use this deviation of sensor
data to infer a keystroke. Keystroke inference attacks can be made on IoT devices but they can
also affect nearby devices. For example, putting the smartphone on a desk with a keyboard.

e Task Inference Attack: Task inference is a type of attack that infers information about an ongoing
task or application on an IoT device. An attacker exploiting this inference attack can bypass the
security policy implemented on the device and replicate the device state. The installed sensor in
IoT device records the deviation of data values for various tasks being performed on the device.
An attacker can use these values to infer execution processes and applications within the appliance.

o Location Inference Attack: The location inference is a location-privacy attack based on an acoustic
side-channel. This inference attack utilizes acoustic information propagated in the nearest
environment or space. This attack utilizes the acoustic reflection pattern of the voice at the
user’s location and does not depend on the characteristic background noise. If the attacker can
control IoT devices, they can identify personal information such as the user’s home or work
location [34].

o Eavesdropping: IoT devices such as Al speakers use an audio sensor for dialing and receiving
voice commands and other features. When a malicious application is installed on such IoT devices,
it is possible to eavesdrop to record and extract the content and information of the conversation
through such an audio sensor. Typical attacks that implement eavesdropping are Soundcomber
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and voice assistant applications. In this case, a malicious application uses an IoT device sensor to
secretly record the user’s conversation [35]. Users are vulnerable to attack because the recording
application runs in the background of the device. For example, when talking to a financial
company such as a bank or a credit card company, a person may be exposed to threats if they
reveal their personal information such as credit card or social security number. A malware that
uses a voice assistant application can be used for a variety of malicious activities such as voice
command duplication and information transmission. It can be controlled through SMS and Wi-Fi
external control channel [36].

5.2. Risk Awareness to Set the Criteria for the Grades

Modern IT security focuses on measuring the risk to find a balance between opportunity
realization and minimizing potential losses. From this perspective, risk awareness (level2) is the process
of quantifying risk. The general formula used to measure risk is Risk = Threat x Vulnerability x
Impact. However, this formula is a complete mathematical formula, instead of a model that
demonstrates the concept of risk. To establish a complete mathematical formula, there should be a
common and neutral measure of threats, vulnerabilities, and impact. However, they do not exist.
This formula can be used conceptually because a relative portion of risk measurement depends on the
nature of asset and the attacker. Threat x Vulnerability is generally used as the Likelihood value and
can be matched with the LEF factors of the FAIR model. The threat is associated with the TEF factor of
FAIR, including the attacker’s skill level, motivation, opportunity (the attacker possesses the necessary
knowledge and access rights), and the attacker’s capabilities. Vulnerability is a variable that includes
information on ease of discovery, ease of exploitation, awareness (known vulnerability), detection, and
response, and is linked to a VUL factor including FAIR’s TCap and CS. Impact represents the damage
to an asset due to a threat. These variables include the technical impact of data confidentiality, integrity,
availability, and accountability, as well as business impacts such as financial and legal damages. It is
linked to the LM, which represents the loss of assets in the FAIR (See Equation (1)).

Risk = Threat x Vulnerability x Impact 1)
~—— ——

TEF=Contact x Action VUL=TCapxCS  Loss Magnitude(LM)

Likelihood

Existing risk results are generalized from “very high” to “very low”. However, because the
correspondence varies according to the criteria of the grade, an error may occur in qualitative judgment
according to the decision-maker. To overcome these limitations, the risk awareness level proposes a
method to determine the criteria of the grade through clustering instead of classifying the measured
risk value according to the specified grade criterion. The grade is determined by the risk value because
assets, threats, etc. are relative to the structure or environment of the organization. Assuming that
there are number of n sets of risk values (riskq, risky, ..., risky), the risk grade (G = {Gy, Gy, ..., G })
divides into number of k grades that maximize the density between the risk values. In this case, if the
set of risks belonging to the risk grade is G;, and mu; is the mean of G;, the variance Varg;s of risk can
be expressed as Equation (2).

k
Vargise = Y, Y, |riskj — wil? 2
i=1jeG;

To find G; that minimizes Vy;g, risk grade setting and risk grade rebalancing steps are iteratively
calculated until they converge (See Equations (3) and (4)) [37].

Step 1. Risk Grade Setting: The Euclidean distance of y; for each risk grade is calculated from each risk value
and the risk is assigned by finding the risk grade closest to the risk value.

G = {risky : [risk, — ui"[2 < |risk, — " ¥j,1 < j < k} 3)
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Step 2. Risk Grade Rebalancing: y; is reset to the mean value of the risk values assigned to each risk grade.

1 .
yl(tH) =—5 Y risk; 4)

G| risk;eG.")

5.3. Decision Awareness for Optimization

Although clustering the measured risk and setting the grading criterion is not optimal, it may
result in a critical point that should be qualitatively judged. The decision awareness level optimizes the
assumption that the clustered risk grade is combined into k Gaussian distributions to compensate for
these limitations. This optimization method is called mixture model. It is a method to statistically
deduce the characteristics of the subgroups combined into k Gaussian distributions, implying that
k risk grades set at risk awareness level are set to k Gaussian distributions at decision awareness level.
The risk grade is expressed as Gy = N (risk|uy, Zy) at this level.

Using the mixture model, risk;, is set to be included in the risk grade clusters consisting of k
Gaussian distributions and expressed as R. z, is a binary variable that represents a value of 1 if the
risk, belongs to the k th Gaussian distribution, and 0 otherwise. To optimize the risk grade, when
given risk,, a Gaussian distribution that maximizes R should be chosen. If the parameter of the k
th Gaussian distribution for the risk grade is 71, pix, 2k, R can be expressed through Bayes’ theorem
(See Equation (5)). In this case, 7y = p(z,x = 1) means that 7t and p(z,x = 1) is selected for the k th
risk grade.

. =1 isk =1 N (risk ;2
R(an) _ P(an _ 1|7’lskn) _ Kp<znk )p(rzs 1‘1|an ) = — k (I”IS Y‘l‘.uk k) (5)
Yo P(znj = V)p(riskn|zej = 1) i N (riska|p;, X))

In general, a mixture model uses an expectation-maximization (EM) algorithm for parameter
estimation. To use the EM algorithm, Equation (5) is converted to a log likelihood function to calculate
a value that optimizes the risk grade. The maximization method utilizes an alternative update that
partially differentiates each 7, 1, and X (See Equations (6)—(8)) [38,39].

B Zﬁle Rz ) risky,

S Y T ©
2114\1:1 R(zpk) (riskn — py) (risky — Vk)T
Z;Iq\lzl R(an)

ZnNzl 7Q(an)

me = Eaz i) ®)

D)

@)

6. Results

This section measures the security risks that can occur in a smart home using the FAIR
method. Using the FAIR method for risk measurement is not a new approach, but it contributes
in terms of classifying the scope of risk by considering the environment for each scenario in the
method of measurement. The results of this study measure the risk of possible scenarios based
on security threats and assets that can be identified in the IoT based smart home environment.
In addition, as IoT technology becomes more user-friendly, it also considers secondary damage
due to information leakage.

6.1. Identify Asset and Threat in Smart Home

This study assumes that an attacker has the intention of taking data collected from sensors of IoT
devices using malicious applications. This malicious application is divided into two types. The first
is a type that replaces frequently used apps with a real app and second is a type that operates in
the background of a device to steal internal data. When this malicious application is installed in IoT
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devices, it gets access to various sensors. This enables the unauthorised collection of information and
monitoring of privacy. In order to utilize the risk assessment approach, it is necessary to set a range of
information assets and to profile them. In this profiling process, the security requirements of the asset
are identified. This determines where all the assets are stored, transported and processed. A user or
system in a smart home identifies vulnerable points that can compromise security requirements for
confidentiality, integrity, and availability, depending on how the asset is accessed. These identified
information assets make it possible to identify security threats. The security vulnerabilities or the
patches of concern are created as scenarios in connection with the threat attributes. This can identify
specific threats that could have a negative impact on assets. This paper can use this scenario generation
procedure to understand the impact of the smart home system and identify cyber and physical security
risks in terms of information assets. In this study, the range of information assets at risk of possible
outflows in the smart home was referenced by B. Ali and A. Awad [8].

The attacker imitates the attack as a user with legitimate rights. In order for the attacker to achieve
the goal, the credentials of the smart home user are required. To do this, the user ID and password
must be acquired. Access to credentials can be performed using social engineering techniques or by
intercepting generic data collected through IoT sensors. Since the general data utilizes motion sensors
and audio sensors, the collected data itself can be a weak point because it allows direct analysis of
the data (Scenario 1) [40]. By injecting malicious code into the mobile application connected to the IoT
system, an attacker can provide an opportunity to perform harmful operations. The malicious code
insertion threat can cause damage due to leakage of general data through GPS sensors, motion sensors,
audio sensors, and camera sensors mounted on a mobile device. In particular, such a threat could be
utilized as an attack path for acquiring a user’s credentials (Scenario 2) [41,42]. Environmental sensors
installed in the IoT device have the purpose of detecting a physical threat such as an abnormality in the
home and warning the user of the danger. An attacker can steal information gathered from installed
sensors by releasing the malicious code used in Scenario 2 to the devices. This behavior can be used as
an unauthorised surveillance tool to determine where the user is located in the home (Scenario 3) [43].

Through Scenario 1, an attacker can access the inventory information embedded in the IoT device
and search for a specific device with a known vulnerability. Through this process, the attacker can
not only identify the internal structure of the smart home but also can be used as a path to provide
an attack on Scenario 3 (Scenario 4) [44]. In particular, smart TVs that have been sold recently have
built-in camera sensors. Also, privacy information leaked through the IP camera. If an attacker can
identify IoT devices known as vulnerabilities (Scenario 4), an attacker can control camera sensors to
monitor and spy on smart home users (Scenario 5) [45,46]. When an attacker accesses location data for
a mobile device or a GPS-enabled device (Scenario 1, 2), it can conclude whether a smart home resident
is present at home. This can lead to financial losses such as home robbery (Scenario 6) [47] (See Table 2).

IoT devices that are the basis of smart homes recognize human actions by mounting sensors.
Sensors that recognize human actions are classified into motion sensors, environmental sensors, and
position sensors. The data from these sensors occurs when an attacker unauthorisedly gains root
privileges. The associated vulnerability is defined as a common weakness enumeration (CWE) 264.
“CWE 264” is defined as “weaknesses in this category related to the management of permissions, privileges,
and other security features that are used to perform access control” [48]. When an attacker gains permission
or access to IoT devices, various sensor data stored in the device can be collected and analyzed to
make inference about personal information. There are four attack methods such as keystroke inference,
task inference, location inference, and eavesdropping.

Threats to information assets in smart homes are linked to various losses. In particular, leakage of
personal information through data breach can lead to economic losses. According to Strategy Analytics,
the market outlook for smart homes is expected to reach a market value of $111.5 billion by 2019,
compared with $57.5 billion in 2015. In Staitista, smart homes are expected to increase five times
in 2020 compared to 2015 in the United States. However, contrary to this, security policy and legal
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regulations are insufficient. In this situation, when information is leaked by a smart home, the criticism
can lead to national policy, which can lead to social confusion (see Figure 5).

Table 2. Threats and attack methods that can occur according to information assets that create
various scenarios.

Scenario  Asset Possible Threats Attack Methods
- Taking ID and password to a touchpad
1 User credentials using a motion sensor -Keystroke Inference
- Acquisition of audio sensor data for identification -Eavesdropping
and qualification
- Degradation of position information through GPS sensor ~ -Keystroke Inference
. - Password stealing through motion sensor -Location Inference
2 Mobile personal data . .
- Tapping through audio sensors -Task Inference
- Leaking the camera sensor to privacy information -Eavesdropping
3 Home status - Conflrmathn of user through environment sensor Location Inference
and magnetic sensor
- Check the structure of the house through
4 Home structure the camera sensor -Eavesdropping
- Check the internal structure of the house through -Task Inference
the wavelength recognized by the audio and light sensor
5 Surveillance cameras - Leaking privacy information through camera sensor -Eavesdropping
-Task Inference
- Using the GPS sensor to estimate the position
. . of the inside of the house -Location Inference
6 Location tracking - . . .
- Using the magnetic sensor to estimate the position -Task Inference

of the inside of the house

v Check the structure of the house through the IP camera

Home status v' Check the internal structure of the house through the wavelength

v Confirmation of user through / Threat « Task Inference Attack

environment and magnetic sensor

* Eavesdropping
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User Credentials

v Taking ID and password to a touchpad
v Acquisition for identification and qualification

v Leaking privacy information through IP c Threat « Keystroke Inference Attack

« Task Inference Attack

« Eavesdropping

Surveillance Cameras
m}y

« Eavesdropping

v Estimation the position of the inside of the house

= «  Location Inference Attack
e _— « Task Inference Attack

v Degradation of position information

v Password stealing through motion sensor

v Tapping through audio sensors

v Leaking the camera sensor to privacy information
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« Location Inference Attack
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 Eavesdropping

Figure 5. Sensors in IoT devices installed in smart homes can be used as information leakage path.

6.2. Risk Measurement for Decision Making on IoT-based Smart Home

Applying a qualitative risk measurement model could lead to uncertain decisions in the process of
SA. However, due to the nature of IoT equipment, attacks occur in various layers and decision-makers
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must consider the damage that extends from cyberspace to the real world. To address this, sophisticated
risk measures that reflect the capacity and likelihood of threats, and the major and minor losses of
assets are required.

6.2.1. Threat Measurement for Smart Home

Threats are measured by likelihood, capacity, and vulnerability. In this regard, FAIR’s LEF is a

set of factors that can make sophisticated measurements of threats. These LEFs are measured by the
combination of frequency of occurrence of threats (I'EF) and vulnerabilities (VUL) available to the

threat agent.

Threat Event Frequency (TEF) for IoT Devices: TEF is measured by a combination of contact
and action. Contact is the frequency with which the threat agent tries to access the asset to be
attacked and action is the possibility that the threat agent performs an attack against the attacked
object. This study assumes that the contact has occurred because it uses the attack method to
deduce the personal information by collecting data about the sensors included in the device.
In other words, because there is a limit to obtain permission for various IoT devices, this study
reflected the average of the accuracy of other studies when the inference attack was successful (see
Table 3). The threat to Scenario 1 is the keystroke inference and eavesdropping that can occur with
motion sensors (accelerometer, gravity, gyroscope, and audio sensors.) The threat of Scenario 2 is
location inference and eavesdropping, so GPS sensor, motion sensors, It is based on the probability
of inference. Scenario 3 occurs at the location reference, which is exposed to threats through
environmental sensors and magnetic sensors. Scenario 4 is a threat to understanding the structure
of a home, so eavesdropping and task inference attacks are used. This can be represented by a
combination of the accuracy of the information inference of camera sensors, light sensors, and
audio sensors. Since Scenario 5 is an unauthorised surveillance threat, threats can be quantified by
the probability of inference through camera sensors. Scenario 6 is the combination of the inference
probabilities of the position sensors with the threat of confirming whether the resident’s home
location is located by location inference and task inference.

Table 3. This study sets TEF index as attack potential when an inference attack is performed through
data collected by various sensors attached to IoT equipment.

Possibility of Attack

Type of Sensor Attackable Sensors (Index of TEF) Ref.
. Accelerometer, Gravity 0.762 /
Motion Sensors Gyroscope (TEF: 7.62) [49-53]
Light sensor (T]g}f28525) [54,55]
: . 0.805
Environmental Sensors Audio sensor (TEF: 8.05) [36,56-58]
Camera sensor (T};)F797 9) [59-61]
GPS sensor (TFE)I;§68969) [34]
Position Sensors 0.96
Magnetic sensor (TEI-J' 9.6) [62,63]

Vulnerabilities (VUL) of IoT Devices: VUL is measured as a combination of threat capability (TCap)
and control strength (CS), which indicates difficulty in successful attacks. Given the collection of
sensor data and information leakage, it should reflect the vulnerability defined as “CWE 264”
implying “gain privilege” [64]. Therefore, this study utilized the common vulnerability scoring
system (CVSS) because it can generalize scores for vulnerabilities across software and hardware
platforms and enable uniform vulnerability management policies. In addition, the CVSS score can
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be represented by the TCap of the FAIR because the attack vector, confidentiality impact, integrity
impact, availability impact, exploit code maturity, and remediation level are considered in the
process of calculating the lower equation. Because CS is a factor indicating the difficulty of attack,
it is set to the price of the exploit traded in “Zerodium”. The reason for selecting CS for this price
is that the higher the price of the exploit, the more difficult it is to find and use the vulnerability.
In this study, CS was set as an index from 0 to 10 using the prices for exploits that can collect
sensor data among transaction items (See Table 4) [65]. The vulnerabilities for each scenario are
equally reflected by the combination of the CVSS Score defined as “CWE 264" and the exploit
indicators traded at Zerodium. The reason for this is that we have exploited the vulnerability of
privilege taking over IoT devices in terms of the probability distribution.

Table 4. During Zerodium’s vulnerabilities trade, this study generated price index based on remote
code execution (RCE) and local privilege escalation (LPE) vulnerabilities associated with permissions.

Price Vulnerabilities Index of Control Strength (CS)
Email App RCE + LPE 9.5
SMS/MMS RCE + LPE 9.18
Up t0 500000 ;o 1al RCE + LPE 8.22
Viber RCE + LPE 7.58
Chrome RCE + LPE 6.94
Documents RCE + LPE 6.62
Up to$1,500,00  yredia Files RCE + LPE 6.3
Baseband RCE + LPE 5.98
LPE to Kernel 5.34
Up to $1,000,00 Wifi RCE + LPE 47
LPE to Root 4.04
Up to $50,000 RCE via MitM 3.72
Up to $25,000 LPE to System 15
Up to $15,000 Information Disclosure 0.32

6.2.2. Damage Measurement to Assets of Smart Home

Loss magnitude (LM) is a factor that measures the damage by an attack on the asset. This factor

consists of primary loss (PL) and secondary loss (SL). PL is a factor that measures the direct damage
caused by a threat agent and represents the economic damage suffered by an organization that owns
the asset. This direct economic damage is related to productivity, restoration, and economic cost
of information leakage. SL is secondary damage that can be caused by a threat agent. Most of the
measures of secondary damage include additional economic damage due to legal liability or negative
image formation on public opinion.

Primary Loss (PL) to Data Breach in Smart Home: This paper assumes the leakage of sensor data
collected from IoT devices in a smart home. In this case, the threat competence constituting the
PLEF is the number of leaked data, and PLM is a combination of criticality, cost, and sensitivity,
which is a direct economic loss caused by the threat. This PL data is equal to the risk level
measured in the “Breach Level Index”. This study collected the data of “Other”, which represents
the outflow of general information in the data breach, and used it as an indicator of PL. From 2016
to 2018, we used risk data for information leakage from three countries (United States, United
Kingdom, Australia) that suffered the most data leakage (See Figure 6) [66].

Secondary Loss (SL) against Social Disruption: In most cases of information leaks, organizations
responsible for information management are subject to legal liability or public criticism. However,
this legal responsibility and the level of public criticism are linked to whether the policy
system is structured systematically. In other words, for information leakage events, government
functionality, civil liberty, and political participation can be used as factors affecting secondary loss.
Since SLEF considers timing, due diligence, response, and detection, it relates to the government
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functionalities corresponding to information leakage. With the case of SLM, it is associated with
civil liberty and political participation in terms of including changes to the legal and regulatory
landscape, competitive landscape, media, and external stakeholder. SLM was used as a civil liberty
and political participation because it could suppress social confusion such as political participation
or criticism of public opinion and public opinion. This study used government functionality,
civil liberty and political participation among the national democracy indexes published in the
“Economist” in setting SL (See Table 5) [67].
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Figure 6. The Primary Loss (PL) score is based on the “Breach Level Index” data from 2016 to 2018, and
the score is expressed as 0 to 10, but the risk for average data leakage is decreasing.

Table 5. The Secondary Loss (SL) Score is the average of government functionality, civil liberties, and

political participation.

Y Nati Government Political Civil Secondary Loss
ear ations Functionality = Participation Liberty (SL) Score
United States 7.14 8.13 8.24 7.84
2016  United Kingdom 7.14 8.75 9.12 8.34
Australia 8.93 7.78 10.0 8.90
United States 7.14 7.22 8.24 7.53
2017 United Kingdom 7.50 8.33 9.12 8.32
Australia 8.93 7.78 10.0 8.90
United States 7.14 7.78 8.24 7.72
2018  United Kingdom 7.14 8.75 9.12 8.32
Australia 8.93 7.78 10.0 8.90

6.2.3. Risk Optimization for Decision-Making

The TEF generates and sets the Gaussian distribution based on the probability of information
that can be inferred through the sensor. This indicates that the TEF of user credentials, which is an
attackable scenario of the information asset, is generated by combining the probabilities of the threats
of the corresponding threats. In addition, we combined other factors of FAIR to derive the risk of
information leakage scenario through sensors. However, there is a relative aspect and a qualitative
aspect of the classification of the risk of measuring the risk. To overcome this, the study clustered
the risk grades from 0 to 10 into five ranges (very low, low, moderate, high, very high). Because this
combination is complex, the proposed model adds a process to optimize the calculated risk (see

Figure 7).
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Figure 7. Clustering and optimization methods were combined with risk measurement and situational
model to provide semantic visualization of risk grade.

Risk criteria is relatively different according to each scenario occurring in a smart home, implying
that even if the same five risk grades(very low, low, moderate, high, very high) are selected, they can
change depending on the attack target, attack methods, and inference probability. This view means
that the relativity of the risk can be changed considering the secondary damages to individuals, society,
and the state. Because the value of private property such as a smart home differs for each user, it is
necessary to consider the relative criteria of the situation rather than the uniform criteria for the risk
grade (see Figures 8 and 9).

User Credentials Mobile Personal Data Hoine Status
1 TEF: Motion + Audio 10 TEF: GPS + Motion + Audio +Camera 10 TEF. Environment +Magnetic
8 8 8
8 6 s X

Home Structure Surveillance Camera Location Tracking
10 TEF: Camera + Audio + Light 10 TEF: Camera 1 TEF: GPS + Magnetic
8 8 8
Very High
6 " 6 - 6

Verv Low

Figure 8. Relativity should be considered because criteria for risk grade range may change depending
on the scenario.
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(a) United States (b) United Kingdom (c) Australia

Figure 9. The average of the risk grade for Scenario 1 is relative to the policies and circumstances of
each country.

7. Conclusions

With the increasing popularity of IoT devices, human living environments such as smart homes
are being developed. This advancement creates a negative effect wherein users of IoT technology
are vulnerable to attack. Especially, IoT devices installed in a smart home are equipped with various
sensors. Therefore, the possibility of leakage of personal and private information (e.g., home condition,
house structure, user’s taste, etc.) increases. Such information leakage is economically damaging to
individuals and causes social and political damage. Hillary Clinton’s e-mail leak, which occurred
during the US presidential election in 2016, was also at home, a private space, and a threat to
smart homes is at the starting point. Therefore, inference attack research using several sensor data
is underway.

However, these researches focus on detection instead of the measurement of risk. This study
presented an attack scenario on the assumption that sensor data was leaked through the vulnerability
of smart home IoT equipment. This paper suggests the risk measurement method and risk grade
classification through FAIR and clustering method based on the scenario. In addition, a mixture
model is proposed to express semantic results in terms of SA. If existing risk measurement methods
have limitations in terms of utilizing qualitative, heuristic, and empirical aspects, this study enabled
quantitative risk measurement considering the relativity of risk assessment. In the case of a smart
home, IoT equipment is configured and utilized differently for each user. Therefore, relativity and
quantification are required to cope with the risk. The proposed method provides decision-makers with
a semantic perspective on the threats of various IoT devices and derives the quantitative risk of the
damages caused by them. It also quantifies the legal remedy of the leakage of personal information of
IoT equipment in the future.

From the perspective of situational awareness, risk assessment is aimed at inducing decision
makers to make appropriate decisions. However, existing qualitative risk assessments tend to update
on risk indicators once determined because they are more reflective of cognitive and empirical aspects
of security experts than data-based ones. Because the proposed model utilizes data-based measurement
results, it can acquire a convergence risk rating for each security scenario with continuous data updates.
In addition, risk indicators can be set so that various decision makers can adapt to the resources held
by their business environment in that they can be grouped into the range of risk grades they want.
The results of this paper confirm that the risk distribution can change with each scenario, country and
time. However, actual security sites are preparing for threats by deriving a uniformized risk grade.
A typical example is the Information Operations Condition (INFOCON) grade. This study will provide
a basis for a real-time response to the rapidly changing security operating environment of the future.
It can also contribute to periodic risk assessment in response to cyber threats, cyber attacks and cyber
warfare from a perspective of national security.
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