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Abstract: In this paper, a portable electronic nose, that was independently developed, was employed
to detect and classify a fish meal of different qualities. SPME-GC-MS (solid phase microextraction
gas chromatography mass spectrometry) analysis of fish meal was presented. Due to the large
amount of data of the original features detected by the electronic nose, a reasonable selection of the
original features was necessary before processing, so as to reduce the dimension. The integral value,
wavelet energy value, maximum gradient value, average differential value, relation steady-state
response average value and variance value were selected as six different characteristic parameters,
to study fish meal samples with different storage time grades. Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA), and five recognition modes, which included the
multilayer perceptron neural network classification method, random forest classification method,
k nearest neighbor algorithm, support vector machine algorithm, and Bayesian classification method,
were employed for the classification. The result showed that the RF classification method had the
highest accuracy rate for the classification algorithm. The highest accuracy rate for distinguishing fish
meal samples with different qualities was achieved using the integral value, stable value, and average
differential value. The lowest accuracy rate for distinguishing fish meal samples with different
qualities was achieved using the maximum gradient value. This finding shows that the electronic
nose can identify fish meal samples with different storage times.

Keywords: electronic nose; fish meal; characteristic parameters; PCA; LDA; classifier

1. Introduction

Fish meal is a high protein feed made from one or more kinds of fish, which is deoiled, dehydrated,
and crushed. With an increase in the aquaculture scale in China in recent years, the demand for
aquatic feed is rapidly increasing, and the demand for fish meal shows sustained growth. Fish meal
is a highly valued source of feed proteins because it is easily digested and has excellent essential
amino acids, other essential nutrients, and DHA. Fish meal is an excellent source of vitamins (such as
riboflavin, nicotinic acid, vitamin A, and vitamin D) and minerals (such as calcium, phosphorus, iron,
zinc, selenium, and iodine) [1] and is the main animal-derived feed raw material in the feed industry.
Therefore, the quality of fish meal directly affects the quality of feed products [2]. During the storage
process of fish meal, the quality and nutritional components of fish meal vary by different degrees
due to weather changes, temperature, humidity, mold, and other microorganisms, which affect the
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digestion and immunity of animals [3,4]. Therefore, the detection of fish meal quality is an important
technical link and means to ensure the quality of feed products.

In case of odor detection, the traditional instruments, such as gas chromatography (GC),
gas chromatography/chemiluminescence (GC/SCD), and gas chromatography/mass spectrometry
(GC/MS) are mostly employed [5,6]. Conventional physical and chemical analysis methods, such as
chemical detection, sensory evaluation, and spectral analysis [7] are also employed. Unfortunately,
they are destructive and time consuming for sample measurement. Furthermore, these instruments
are very expensive and bulky.

Bionic olfaction technology is a new detection technology that has been developed in recent years.
Currently, this technology is prevalent. Some scholars have applied this technology to the quality
inspection of agricultural products, including the quality inspection of food crops [8–12], fruit [13–17],
meat [18], and other plant crops [19–21], and the discrimination is satisfactory. Ghasemi-Varnamkhasti
M [22] et al. applied bionic olfaction technology to detect beer aging; Natale C D [23,24] et al.
applied this technology to detect the freshness of fish. Gobbi E [25–28] et al. applied bionic olfaction
technology to colony detection, with high accuracy; Lim J H [29,30] et al. applied this technology to
medical research. Therefore, the electronic nose has potential in detecting fish meal quality. Although
many classification and prediction techniques, such as principal component analysis (PCA), support
vector machines (SVM), are employed to process nonlinear measurement data from E-nose systems,
the application in fish meal is still necessary.

No information is available in the application of an E-nose in assessing fish meal quality. In the
quality assessment by an E-nose, feature extraction and selection are of great importance. Because of
large quantities of data, it would be more useful to segregate the irrelevant or redundant attributes
from relevant and important ones, although the exact governing rules may not be known. Feature
selection provides a means for choosing the features that were best for classification, based on various
criteria. Many feature extraction methods have been reported, while none is relevant with E-nose
feature vectors extraction, which could sufficiently represent the information of the fish meal quality.
Most of the features selected in the literature are the integral value, but the integral value can only
reflect the overall information of the sample, and cannot reflect the dynamic information, that is,
the mainstream information of the sample. The objectives of this research are to determine whether it
is possible to distinguish fish meal with different storage times by an E-nose, and whether the feature
vectors chosen are effective in the discrimination of fish meal samples, with different storage times.
So the original features should be reasonably selected, while retaining as much information as possible.

In this work, we have designed and constructed a portable and low-cost E-nose, based on ten gas
sensors to assess the freshness fish meal stored at different storage times. The integral value, average
differential value, and relation steady-state response average value of sensor response curve were often
used to characterize sample information [31]. In addition, the energy value, maximum gradient value,
and variance value were employed as characteristic parameters to distinguish fish meal samples with
different storage times. Based on these characteristic values, this study investigated fish meal samples
of different qualities, determined appropriate characteristic values, and achieved better distinguishing
results for fish meals of different qualities by some classification algorithms, such as PCA, LDA.

2. Materials and Methods

2.1. Test Material

Fresh fish meals, which were obtained from a feed company in hubei province, were placed in
a thermostatic artificial climate box (RGX-250B, Shanghai Kuntian Instrument Co., Ltd., Shanghai,
China) at 35 ◦C to make the fish meals gradually deteriorate, with an extended storage time. The fish
meals were collected as test samples during storage with different storage times. A total of 6 fish meal
samples of storage grades were selected for data collection of the detection device. The 6 fish meal
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samples were classified according to the acid value, which was made as a freshness evaluation index.
The acid value of each grade sample was shown in the Table 1.

Table 1. The acid value of each grade sample.

Samples 1 2 3 4 5 6

Acid Value 2.99 3.78 4.63 5.4 6.58 9.25

2.2. Bionic Olfaction Detection System

The system employed in the experiment was a portable fish meal quality detection system,
based on bionic olfaction. As shown in Figure 1, the system primarily consisted of four parts; (I) a
gas acquisition and transmission module; (II) a control processing storage module with strawberry
pie as the core; (III) an ARPI600 data acquisition module; and (IV) a sensor array module. The sensor
array module was the core component of the device and primarily consisted of 10 MOS (metal oxide
semiconductor) gas sensors. The models of each sensor, and the gases that can be measured, are shown
in Table 2. The ten gas sensors were selected in order to cover the volatile organic compounds in
fish meal.

Gas sensors had broad spectrum response characteristics and can respond to a variety of gas
components. This characteristic enabled the constructed array to test a variety of samples. The loop
measurement voltage of the gas sensor array was (5 ± 0.2) V, and the heating voltage was (5 ± 0.2) V.
In addition, the electronic nose was equipped with temperature and humidity sensors to measure the
environmental temperature and humidity information to compensate the influence of the measuring
environment on the gas sensor. The temperature and humidity sensors were integrated components
(Guangzhou Aosong Electronics Co., Ltd., Guangzhou, China). The model is DHT11, and the measuring
voltage is (5 ± 0.01) V. The temperature measuring range was 0~50 ◦C, the relative humidity measuring
range was 20%~90%.

The key component of the device was the self-designed sensor sampling chamber, which consisted
of an upper shell, a center body, and a lower shell. The shape of the upper shell with an air outlet was
a regular prism; the first mounting cavity had the shape of a regular prism, and mounting holes were
formed in the center of each side surface. The number of sensors was the same as the number of the side
surfaces of the upper shell; each sensor was mounted in each mounting hole. The shape of the central
body was a regular prism; the size of the central body matched the size of the first mounting cavity;
a plurality of gas channels were uniformly arranged along the surface of the central body, and the
number of the gas channels was equal to the number of the side surfaces of the central body. An air
inlet was arranged in the center of the lower shell. This ensured the synchronization and uniformity
of the detection of sample gas by each sensor. At the same time, it also ensured the full contact
between the sample gas and the sensor, and reduced the response and recovery time. The volume
of the gas sampling chamber is only 0.059 L, which effectively reduced the volume. The material
used in the gas sampling chamber is polytetrafluoroethylene (PTFE) that has the characteristics of
thermo-stability, slushing, not easily bonding, and good sealing. It is suitable for manufacturing the
gas sampling chamber.

First, the detection device was pre-heated with electricity for half an hour to eliminate the any
instability in the instrument. In this experiment, the gas flow rate was set at 2.2 L·min−1. Then,
the valve 1 was opened and the valve 2 was closed, the device was cleaned with purified air that was
filtered by activated carbon for 77 s. Last, the fish meal sample (80 g) was placed in a 250 mL high
borosilicate headspace vials; the valve 2 was opened and the valve 1 was closed, the top air generated
by the sample was pumped into the gas sampling chamber of the detection device by a micro air
pump and chemically reacts with the gas sensor located in the sampling chamber, which caused the
resistance of the sensor to change. The detection time of the device was 39 s and the data sampling
interval was 1 s. After each sampling, the device needed to be cleaned and restored to test the next
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sample. All device controls were processed using qt creator programming. All the parameters selected
above were optimized.Sensors 2019, 19, x FOR PEER REVIEW  4 of 15 
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Figure 1. Block diagram of detection device system.

Table 2. Gas sensor array and its properties.

Sensor Numbers Sensor Types Sensitive Substances Detection Ranges

S1 TGS822 Alcohol, solvent vapors 50–5000 ppm
S2 TGS2602 General air contaminants 1–30 ppm
S3 TGS813 Carbon monoxide, ethanol, methane, hydrogen, isobutane 50–10,000 ppm
S4 TGS2620 Solvent vapours 50–5000 ppm
S5 MQ136 H2S 1–200 ppm
S6 TGS2600 Carbon monoxide, hydrogen 1–30 ppm
S7 MQ139 R11, R22, R113, R134A, halogen 10–1000 ppm
S8 TGS2610 Ethanol, hydrogen, methane, isobutane/propane 500–10,000 ppm
S9 MQ137 Ammonia and amine compounds 5–500 ppm

S10 TGS2611 Ethanol, hydrogen, isobutane, methane 500–10,000 ppm

2.3. SPME-GC-MS Analysis

Accurately weigh the sample 3 ± 0.1 g in a 20 mL headspace vials, add a certain amount of
saturated NaCl solution (10 mL), put it in a constant temperature magnetic stirrer and balance it [32].
After 10 min equilibration at 50 ◦C, SPME fiber (50/30 µm DVB/CAR/PDMS by Supelco) was exposed
for 30 min in the vial headspace. Then, the fiber was immediately desorbed for 5 min in a gas
chromatograph injection port operating in split mode with split ratio of 5:1 at 250 ◦C.

The identification of volatile compounds was performed by gas chromatograph (Thermo Fisher
Scientific) coupled to ISQ mass spectrometry using a Trace GC-MS Thermo Fisher Scientific, equipped
with a TG-5MS chromatographic column (30 m × 0.25 mm with 0.25 µm film thickness). Initial column
temperature was held at 40 ◦C for 5 min, and then increased to 120 ◦C at 4 ◦C/min, with hold time of
1 min, and finally to 250 ◦C at 13 ◦C/min, with hold time of 5 min. Helium was used as the carrier gas
at 1 mL/min constant flow. The temperature of ion source and transfer line was 230 ◦C, and 280 ◦C,
respectively. The mass detector was operated in full scanning mode in the range between m/z 50–500,
with IE energy of 70 eV. Chromatograms and spectra were recorded and processed using Xcalibur
software (Thermo Fisher Scientific).
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Compounds were identified by comparison of their mass spectra and retention times with those
of injected authentic standards (C7–C40) [33].

RI (Retention index) was calculated as follows under single linear programming
warming conditions:

RI = 100n + 100×
TRx − TRn

TRn+1 − TRn
(1)

In the formula: TRx is the retention time of the components to be measured; n and n + 1 represent
the number of carbon atoms of n-alkanes, respectively; TRn < TRx < TRn+1.

2.4. Experiment Design and Data Processing

The fish meal samples were measured using E-nose, based on the optimum experiment conditions.
A total of 6 fish meal samples of storage grades were measured, and every sample was tested 30
times in parallel. Based We calculated the relative standard deviation (RSD, n = 30) of the relation
steady-state response average value for each sensor.

Savitzky-Golay was adopted to perform five-point filtering and smoothing processing [34], in order
to eliminate the noise signals. Six features were extracted, including integral value (INV), wavelet
energy value (WEV), maximum gradient value (MGV), average differential value (ADV), relation
steady-state response average value (RSAV), and variance value (VARV), as characteristic parameters
of the electronic nose signals of fish meal samples. A total of 10 × 6 characteristic parameters were
extracted to form a 60-dimensional characteristic matrix. Because the dimensions of the six eigenvalues
differed, the data of each eigenvalue must be normalized. In this paper, normalization was utilized
to normalize the data, as shown in the formula (1). PCA and LDA analysis methods were employed
to analyze the classification results of each feature. A multi-layer perceptron neural network [35–37],
random forest [38], K-nearest neighbor (K = 3) [39], support vector machine [40] and Naïve Bayes [41]
classification methods were simultaneously employed to classify fish meal of different qualities with
6 characteristic values as inputs, and the classification accuracy rate for each characteristic value
was obtained.

x′i =
xi − xmin

xmax − xmin
(2)

where x′i is the normalized characteristic value; xi is the eigenvalue of the original data; xmax is the
maximum value of the original feature; and xmin is the minimum value of original features.

3. Results and Discussion

3.1. Application of Electronic Nose to the Odor of Fish Meal of Different Qualities

3.1.1. Repeatability of E-Nose Experiment

As shown in Table 3, the RSD values of all sensors response to the sample Samples numbered 1
were less than 5%, indicating that the experiment has good repeatability, that is, the sensors did not
exhibit a “memory” to prior exposure sample, cleaning in fresh air always brought the sensors back to
approximately same resistance as initial. Therefore, it was found that the use of E-nose in detecting
fish meal odor resulted in good repeatability, sensitivity, effectiveness, and stability.

Table 3. The Repeatability of response values of E-nose 10 sensors.

Sensor S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

RSD/% 2.72 1.05 3.15 4.65 2.43 3.53 1.91 2.24 1.26 2.27

3.1.2. Response of Electronic Nose to Fish Meal of Different Qualities

Figure 2 was the fingerprint of fish meal of different qualities obtained by considering the relation
steady-state response average value, as an example. As shown in the figure, the fingerprint of fish
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meal of different qualities differed to some extent, which provided the basis for the classification of fish
meal quality in the future. Therefore, in subsequent research, the impact of each sensor’s characteristic
values on the classification of fish meal samples of different qualities must be analyzed to compare the
contribution of different characteristic values.
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Based on gas chromatography-mass spectrometry, more than 30 compounds, including aldehydes,
alcohols, ketones, nitrogen containing, oxygen containing or sulphur-containing compounds, esters,
and alkanes were identified in fish meal. These volatile organic compounds (VOCs) contain both
reducing and oxidizing agents that increase/decrease the electrons from crystal surface of MOS (Metal
oxide semiconductor), leading to the decrease/increase in resistance of gas sensor. Therefore, a little
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decrease in sensor responses may cause from suppression of oxidizing gas emission. In addition,
the TGS 2620 and TGS 2602 show high sensitivity in sensor responses with different fish meal samples.
In fact, TGS 2620 and TGS 2602 exhibit high sensitivity to alcohols. In case of the fish meal, alcohols
were found to be one of the most dominant volatiles in the fish meal. It suggests that alcohol odors
may play an important role in detection of fish meal freshness based on single gas sensor. With the
increase in storage levels, the response of MQ137 gradually increased, indicating that the concentration
of ammonia and amine compounds increased gradually with the increase of storage time. In sample 6,
the response of MQ137 increased rapidly, indicating severe corrupt samples had higher concentrations
of ammonia and amines which were found in GC-MS assays. To support our above proposed
sensing mechanism, the volatile compounds of fish meal were analyzed by using GC/MS. All volatile
compounds of fish meal are listed in Table 4. One can be observed from Table 4 that no H2S was found
from GC-MS experiment but MQ136 showed a response to fish meal (see Figure 2). This comes from
cross sensitivities of MQ136 to many VOCs such as ethanol, ammonia, and toluene.

Table 4. The identified volatile flavor compounds of fish meal headspace using SPME-GC-MS.

No. Retention
Time

Molecular
Formula

Volatile Compounds
RI

IdentificationCalculated
Value

Literature
Value

1 2.45 C3H9N N,N-dimethyl-methylamine - 502 MS, RI
2 3.4 C5H10O Pentanal - 699 MS, RI
3 4.61 C3H6O2 Propanoic acid 700 700 MS, RI
4 5.35 C5H10O (Z)-2-penten-1-ol 767 767 MS, RI
5 6.31 C6H12O Hexanal 800 800 MS, RI
6 7.65 C4H8O2 Butanoic acid 832 805 MS, RI
7 8.44 C6H10O (E) -2-hexenal 851 854 MS, RI
8 9.28 C5H10O2 3-Methyl-butanoic acid 871 863 MS, RI
9 9.71 C5H10O2 2-Methyl-butanoic acid 882 861 MS, RI

10 10.47 C7H14O Heptanal 900 901 MS, RI
11 11.19 C8H9NO2 Methoxy-phenyl-oxime 918 - MS
12 12.89 C7H6O Benzaldehyde 958 962 MS, RI
13 13.47 C6H12O2 4-Methyl-pentanoic acid 972 949 MS, RI
14 13.83 C8H16O 1-Octen-3-ol 980 980 MS, RI
15 14.14 C8H9NO2 Methyl-carbamic acid phenyl ester 987 - MS
16 14.54 C6H12O2 Hexanoic acid 997 990 MS, RI
17 14.65 C7H10N2 2-ethyl-5-methyl-pyrazine 1000 1005 MS, RI
18 14.75 C8H16O octanal 1002 1003 MS, RI
19 15.73 C8H16O3 3-Hydroxy-2,2-dimethyl-butanoic acid ethyl ester 1027 - MS
20 16.11 C7H8O Benzyl alcohol 1036 1036 MS, RI
21 16.34 C8H8O Benzeneacetaldehyde 1042 1045 MS, RI
22 16.84 C6H10O2 5-Ethyldihydro-2(3H)-furanone 1054 1057 MS, RI
23 18.79 C9H18O Nonanal 1103 1104 MS, RI
24 21.46 C5H9NO 2-Piperidinone 1175 1174 MS, RI
25 21.67 C10H8 Naphthalene 1181 1182 MS, RI
26 22.1 C10H20O 2-Decanone 1192 1193 MS, RI
27 22.56 C10H20O Decanal 1205 1206 MS, RI
28 25.67 C11H22O 2-Undecanone 1293 1294 MS, RI
29 26.46 C11H18N2 2,5-Dimethyl-3-(3-methyl-butyl) pyrazine 1320 1315 MS, RI
30 28.58 C14H30 Tetradecane 1400 1400 MS, RI
31 30.47 C15H24O Butylated hydroxytoluene 1519 1513 MS, RI
32 34.78 C16H32O2 n- Hexadecanoic acid 1960 1968 MS, RI

3.2. Feature Extraction and Selection

The selection of characteristic parameters of gas-sensitive signals has a considerable influence
on the accuracy of the detection model. In this paper, six eigenvectors were selected to represent
fish meal samples with different qualities via response curves. These eigenvalues were the integral
value, wavelet energy value, maximum gradient value, average differential value, relation steady-state
response average value, and variance value.
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3.2.1. Integral Value

Integral value (INV): The integral value was the area between the sensor response signal curve
and its baseline; it reflected the total response result of the sensor to the volatile components of the
tested samples. The calculation formula was expressed as follows:

INV =
∑T

i=1
Xi∆t (3)

In the formula, Xi is the response value of the sensor to the ith second of a sample; ∆t is the time
interval between two adjacent sampling points, 1 s is selected; and T is the acquisition time of a sample
by the sensor.

3.2.2. Wavelet Energy Value

Wavelet energy value (WEV): The db3 wavelet function was used to perform 4-layer wavelet
decomposition with the original data of the sensors. Each sensor obtained 7 approximate coefficients
as its characteristics, and the sum of squares of each coefficient was considered as the energy value of
each sensor.

WEV =
∑m

y=1
α2

4y (4)

where α4y is the yth decomposition coefficient in the set of approximation coefficients after
four-scale decomposition of the signal, and m is the total number of coefficients in the set of
approximation coefficients.

3.2.3. Maximum Gradient Value

Maximum gradient value (MGV): The response curve of the gas sensor had a maximum response
value. Thus, the slope of the line segment between the maximum value and the initial value could be
used to express the signal change speed in the initial stage.

MGV =
ximax − x0

t
(5)

where ximax is the maximum response value that corresponds to a sample; x0 is the initial response
value of a sample; and t is the response time that corresponds to the maximum response value.

3.2.4. Average Differential Value

Average differential value (ADV): The average differential value was a method that could
comprehensively reflect the total information of the sensor’s dynamic response process and directly
reflected the mainstream information of the gas sensor’s response to gas.

ADV =
1

T − 1

∑T−1

i=1

xi+1 − xi

∆t
(6)

In the formula, xi is the response value of the sensor to the ith second of a sample; ∆t is the
time interval between two adjacent sampling points, 1 s; and T is the acquisition time of a sample by
the sensor.

3.2.5. Relation Steady-State Response Average Value

Relation steady-state response average value (RSAV): The response curve of the gas sensor had
a relatively stable interval; thus, the average value of this interval could be used to characterize the
stable characteristic. The calculation formula was expressed as follows:

RSAV =

∑T
i=t0

xi

T − t0
(7)
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In the formula, xi is the response value of the sensor to the ith second of a sample; t0 is the
corresponding time when the stability is to be reached; and T is the acquisition time of a sample by
the sensor.

3.2.6. Variance Value

Variance value (VARV): Variance reflected the degree of data dispersion, and the response signal
variance was used to represent the characteristic value of its signal strength.

VARV =

∑N
i=1 (xi − x)2

n
(8)

where x is the mean value of the sensor response signal to a sample, xi is the response value of the
sensor to the ith second of a sample, and n is the time points of the sensor

3.3. Principal Component Analysis (PCA)

PCA could deduct dimensions and observe a primary evaluation of the between-class similarity
PCA is a projection method that allows an easy visualization of all the information contained in a
data-set. In addition, PCA helps to find out in what respect a sample is different from others and
which variables contribute most to this difference. The integral value, wavelet energy value, maximum
gradient value, average differential value, relation steady-state response average value and variance
value were applied as characteristic parameters to perform a principal component analysis on fish
meal at six different storage time levels. Figure 3 showed a principal component analysis diagram of
fish meal of six different qualities with different characteristic parameters. The diagram showed that
the sum of the first principal component analysis value and the second principal component analysis
value was greater than 85% when all characteristic values were employed as parameters. This finding
showed that the electronic nose adequately reflected the volatile gases of fish meal at different storage
times, and the distribution results were similar but the classification results were not satisfactory.
For each feature vector classification result, all fish meal samples were divided into two categories—the
sixth and the other—that is, rotten samples were clearly distinguished from fresh samples but the
distinction was almost not distinct for the first five categories of samples, which indicated that the odor
volatilized from rotten samples and fresh samples distinctly differed while all fresh samples overlapped
due to similar volatile odors. Considering all PCA analysis charts, when the relation steady-state
response average value was employed as the characteristic parameter of fish meal of different quality
grades, the PCA analysis chart had a better discrimination effect, and the discrimination effect using the
maximum gradient value and the variance value was the worst. In some cases, the distance between
groups was smaller (fresh samples) and the distance within groups was larger (corrupt samples).

3.4. Linear Discriminant Analysis (LDA)

Linear discriminant analysis is a statistical method that can determine which group the sample
belongs. This method maximizes the variance between categories and minimizes the variance within
categories. Figure 4 shows the linear discriminant analysis results for different feature vectors on
fish meal samples of different qualities. As shown in the figure, the results of linear discriminant
analysis were distinctly better than those of principal component analysis. PCA only fits a handful
of samples at a time. If the number of fish meal samples to be investigated increases, the fish meal
samples with different storage times will become crowded and not easily distinguished in the PCA
chart. The distribution structures of all linear discriminant analyses were particularly similar, due to
similar data structures. Although fresh samples were not easily distinguished because the first two
discriminant functions were applied in the linear discriminant analysis chart, through the discriminant
analysis results of the five discriminant functions. The accuracy rate of the linear discriminant
analysis, using integral values as feature vectors, was 90%, and the accuracy rate of linear discriminant
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analysis, using the wavelet energy values as feature vectors was 85.6%, and the accuracy rate of linear
discriminant analysis, using the maximum gradient values as feature vectors was 56.7%. The correct
rate of linear discriminant analysis using the average differential value as feature vector was 89.4%,
the correct rate of linear discriminant analysis using the relation steady-state response average value
as feature vector was 93.9%, and the correct rate of linear discriminant analysis using the variance
value as feature vector was 92.8%. Therefore, the accuracy rate using the relation steady-state response
average value to evaluate fish meal samples with different qualities was the highest, and the accuracy
rate using the maximum gradient value to analyze fish meal samples with different qualities was
the lowest.Sensors 2019, 19, x FOR PEER REVIEW  10 of 15 
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3.5. Accuracy Comparison of Single Feature Classification under Different Classification Methods

To determine which features contribute most to the classification of fish meal quality, 21 fish meal
samples of different storage time grades of each group were randomly selected as training sets (total of
126 samples) to train fish meal samples with different qualities, and the remaining 9 samples (total of
54 samples) of each group were employed as prediction sets. The integral value (INV), wavelet energy
value (WEV), maximum gradient value (MGV), average differential value (ADV), relative steady-state
response average value (RSAV), and variance value (VARV) were employed as characteristic parameters
to model. With 10 sensor response data as the input, and fish meal samples at different storage time
levels as the output, the classification accuracy of various eigenvalue was tested using a multi-layer
perceptron neural network classification method, random forest classification method, K-nearest
neighbor algorithm (K = 3), support vector machine algorithm, Naïve Bayes classification method,
and five recognition modes. The test results were listed in Table 5.
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Table 5. Accuracy comparison of single feature classification for different classification methods.

Algorithm MLPNN RF KNN SVM Naive Bayes

Training Validation Training Validation Training Validation Training Validation Training Validation

INV 91 91.4 100 90.7 90.5 74.1 84.09 70.83 90.5 77.8
WEV 96.7 84.5 100 90.7 87.3 64.8 78.03 68.75 87.3 83.3
MGV 72.1 72.4 100 83.3 83.3 61.1 62.12 54.17 81 70.4
ADV 91 91.4 100 85.2 92.9 70.4 78.03 56.25 89.7 88.9
RSAV 93.4 91.4 100 87 92.1 81.5 78.79 62.5 88.1 87
VARV 82 82.8 100 88.9 90.5 88.9 56.06 35.42 84.1 77.8

As shown in Table 5, the highest accuracy rate was obtained using the random forest classification
algorithm. The lowest classification accuracy rate was obtained using the support vector machine
algorithm. This finding may be attributed to the fact that the RF classification method [42] is an
integrated learning algorithm that consists of multiple decision trees (DTs). The algorithm is suitable for
processing high-dimensional data and runs relatively fast. Its execution process is described as follows:
First, the N-group training set is extracted from the original data; second, the N-group training set is
used to construct N decision trees. During the growth process of each tree, m (m < M) characteristic
variables are randomly selected from all M characteristic variables to divide the internal nodes. Last,
the prediction results of N decision trees are collected and the category of new samples is determined
by voting.

For the MLPNN (multilayer perceptron neural network) classifier, the highest accuracy of
discriminating different quality fish meal samples was obtained using the relation steady-state response
average value as a feature vector, and the lowest accuracy of discriminating different quality fish meal
samples was obtained using the maximum gradient value as a feature vector. For the RF classifier,
the highest accuracy was obtained using the integral value and the wavelet energy value, as features to
discriminate the different quality fish meal samples, and the lowest accuracy was obtained using the
maximum gradient value as an eigenvector to discriminate different quality fish meal samples. For the
KNN classifier, the highest accuracy of discriminating fish meal samples, with different qualities,
was obtained using the relation steady-state response average value as a feature vector, and the lowest
accuracy of discriminating fish meal samples with different qualities was obtained using the maximum
gradient value, as a feature vector. For the SVM classifier, the highest accuracy was obtained using
the integral value as a feature vector to discriminate different quality fish meal samples, and the
lowest accuracy was obtained using the variance value as a feature vector to discriminate different
quality fish meal samples. For the Naive Bayes classifier, the highest accuracy of discriminating fish
meal samples with different quality was obtained using the average differential value and relation
steady-state response average value as eigenvectors, and the lowest accuracy of discriminating fish
meal samples with different qualities was obtained using the maximum gradient value as eigenvectors.
Therefore, for the accuracy of single feature classification, the highest accuracy was obtained using
the integral value, relation steady-state response average value and average differential value as
eigenvectors to discriminate different quality fish meal samples, and the lowest accuracy was obtained
using the maximum gradient value as eigenvector to discriminate different quality fish meal samples.
These findings were almost identical to the results of the previously mentioned PCA and LDA analysis.
The similarity may be attributed to the observation that the test response signal of the electronic nose
to the sample is relatively stable. The feature points extracted by the maximum gradient method of the
response curve of a sample will be observed at different times of the response curve, which is worse
than the analysis of the relation steady-state response average value, while the relation steady-state
response average value and integral value method can extract the stable signal of the electronic nose
signal, so the prediction results are better.

4. Conclusions

In this paper, the response curves of the fish meal samples, with different storage times,
were obtained using a self-made electronic nose. Most VOCS emitted from fish meal malodor
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are reducing gases, and the fingerprints of the fish meal with different qualities differed, which enabled
the electronic nose to distinguish between different quality fish meal.

The discriminant result of the linear discriminant analysis was better than those of the principal
component analysis. In this paper, the principal component analysis and linear discriminant analysis
of fish meal quality were performed by selecting six features: Integral value, wavelet energy value,
maximum gradient value, average differential value, relation steady-state response average value,
and variance value. By PCA and LDA analysis, the sum of the first principal component analysis value
and the second principal component analysis value exceeded 85% when all features were considered to
be parameters. The effect of using the relation steady-state response average value as the characteristic
parameter was better, and the accuracy of linear discriminant analysis was 93.9%. The effect of using
the maximum gradient value as the characteristic parameter was worst, and the correct rate of linear
discriminant analysis was only 56.7%.

To further determine the best and worst eigenvalues in fish meal quality detection, the classification
methods of a multi-layer perceptron neural network, random forest classification, K-nearest neighbor
algorithm, support vector machine algorithm, Bayesian classification method and five recognition
modes were used to classify the fish meal quality, and the highest accuracy was obtained using the
random forest classification algorithm. The highest accuracy was obtained using the integral value,
relation steady-state response average value, and average differential value as eigenvectors, and the
lowest accuracy was obtained using the maximum gradient value as eigenvectors.

The results indicated that the electronic nose could classify the fish meal with different qualities.
When selecting an optimal feature, the classification effect was better. Further research shows that
the electronic nose has strong sensitivity and selectivity in detecting fish meal samples of different
storage times.
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