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Abstract: Owing to its high-fault tolerance and scalability, the consensus-based paradigm has attracted
immense popularity for distributed state estimation. If a target is neither observed by a certain node
nor by its neighbors, this node is naive about the target. Some existing algorithms have considered
the presence of naive nodes, but it takes sufficient consensus iterations for these algorithms to
achieve a satisfactory performance. In practical applications, because of constrained energy and
communication resources, only a limited number of iterations are allowed and thus the performance
of these algorithms will be deteriorated. By fusing the measurements as well as the prior estimates of
each node and its neighbors, a local optimal estimate is obtained based on the proposed distributed
local maximum a posterior (MAP) estimator. With some approximations of the cross-covariance
matrices and a consensus protocol incorporated into the estimation framework, a novel distributed
hybrid information weighted consensus filter (DHIWCF) is proposed. Then, theoretical analysis
on the guaranteed stability of the proposed DHIWCF is performed. Finally, the effectiveness and
superiority of the proposed DHIWCF is evaluated. Simulation results indicate that the proposed
DHIWCF can achieve an acceptable estimation performance even with a single consensus iteration.

Keywords: sensor networks; distributed state estimation; naive node; Kalman filter; maximum a
posterior estimator; consensus filter

1. Introduction

Recently, distributed state estimation has been a hot topic in the field of target tracking in sensor
networks [1–19]. As a traditional method, the centralized scheme needs to simultaneously process
the local measurements from all sensors in the fusion center at each time instant [3,15]. This scheme
guarantees the optimality of estimates, but a lot of communication and a powerful fusion center are
required to maintain the operation, which may give rise to problems when the network size is increased
or the communication resources are restricted.

Unlike the centralized scheme, the distributed mechanism tries to recover the centralized
performance via local communications between neighboring nodes. Specifically, each node in the
network only exchanges information with its immediate neighbors to achieve a comparable performance
to its centralized counterpart, which reduces communication cost and makes the network robust
against possible failures of some nodes [8]. The consensus filter, which computes the average of
interested values in a distributed manner, has attracted immense popularity for distributed state
estimation [4–7,9–14,16–22]. Recently, in [23,24], the multiscale consensus scheme, in which the local
estimated states achieve asymptotically prescribed ratios in terms of multiple scales, has been discussed
and analyzed. The well-known Kalman consensus filter (KCF) [4–6,9,14] combines the local Kalman
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filter with the average consensus protocol together to update the posterior state. In the update stage,
each node exploits the measurement innovations as well as the prior estimates from its inclusive
neighbors (including the node itself and its immediate neighbors) to correct its prior estimate. However,
the prior estimates from its immediate neighbors are assigned with same weights. This may ensure
consensus on the estimates from different nodes after a period of time, but the estimation accuracy is
not guaranteed. It is very likely that a target is neither observed by a certain node nor observed by
any of its immediate neighbors. That is, there is no measurement in the inclusive neighborhood of
the node, and it is naive about the target’s state. Similar to [16,22], such a node is referred as a naive
node. Since a naive node contains less information about the target, it usually results in an inaccurate
estimate. If a naive node is given an identical weight to the informed nodes, the final estimate will
be severely contaminated, which may even cause the final estimates to diverge [9,13]. In addition,
the cross covariances among different nodes are ignored in the derivation of KCF for computational
and bandwidth requirements, and thus the covariance of each node is updated without regard to
its neighbor’s prior covariance during the consensus step. Given no naive nodes in the network,
KCF is able to provide satisfactory results. However, due to limited sensing abilities or constrained
communication resources, a network often consists of some naive nodes. Especially in sparse sensor
networks, this phenomenon is even more serious. In such a case, KCF would result in poor estimates [3].
To solve this problem, before updating the posterior estimate, the generalized Kalman consensus filter
(GKCF) performs consensus on the prior information vectors and information matrices within the
inclusive neighborhood of each node [4,16,19]. As is analyzed in [4], this procedure greatly improves
the estimation performance in presence of naive nodes. GKCF updates current state based on consensus
on prior estimates, but the current measurements are not considered for naive nodes. Each naive node
only has access to measurements of the previous time instant existing in prior estimates. Therefore,
there is a delay for naive nodes to access current measurements. On the contrary, consensus on
measurements algorithm (CM) performs consensus on measurements [5,25–27], which can achieve the
centralized performance with infinite consensus iterations. However, the stability is not guaranteed
unless the number of consensus iterations is large enough [26]. Consensus on information algorithm
(CI) performs consensus on both prior estimates and measurements [26–28], which can be viewed as
a generalization of the covariance intersection fusion rule to multiple iterations [29]. CI guarantees
stability for any number of consensus iterations, but its estimation confidence can be degraded as a
conservative rule is adopted by assuming that the correlation between estimates from different nodes
are completely unknown [26,28,30].

With more consensus iterations carried out, estimates from different nodes achieve a reasonable
consensus. Therefore, each node has almost completely redundant or same prior information, and hence
the prior estimation errors between nodes are highly correlated. In this situation, the algorithms such
as KCF, GCKF, or CM, which do not take the cross-covariance into account, are sub-optimal [16,17].
Note that the redundant information only exists in the prior estimates, which come from the converged
results in the previous time instant. Using this property, the information weighted consensus filter
(ICF) [18,20,21] divides the prior information of each node by Ns where Ns is the total number of
nodes in the network. If each node can interact with its neighbors for infinite times, ICF will achieve
the optimal estimation performance as the centralized Kalman consensus filter (CKF). In addition,
ICF performs better than KCF, GKCF, CI, and CM under the same consensus iterations, which has been
validated in [16,22,26]. As is pointed out in [26,30,31], the correction step by multiplying Ns may cause
an overestimation of the measurement innovation for some nodes, which is often the case in sparse
sensor networks. As a consequence, the estimates of some nodes may be too optimistic such that the
estimation consistency will be lost, which should be avoided in recursive estimation. To address this
problem, HCMCI algorithm combines the positive features of both CM and CI is proposed. It should
be noted that HCMCI represents a family of different distributed algorithms dependent on the selection
of scalar weights. Both CI and ICF are special cases of HCMCI. To preserve consistency of local filters
as well as improve the estimation performance, the so-called normalization factor is introduced. If the
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network topology is fixed, the normalization factor can be computed offline to save bandwidth. In [32],
a novel distributed set-theoretic information flooding (DSIF) protocol is proposed. The DSIF protocol
benefits from avoiding the reuse of information and offering the highest converging efficiency for
network consensus, but it suffers from growing requirements of node-storage, more communication
iterations, and higher communication load.

However, it takes sufficient consensus iterations for the algorithms discussed above to achieve
an expected estimation performance. In practical applications, only a limited number of consensus
iterations is allowed, and thus the performance of the afore-mentioned algorithms is corrupted.
In addition, the estimation performance of the afore-mentioned algorithms depends closely on the
selection of consensus weights. Inappropriate consensus weights may cause the algorithms to diverge
or require more iterations to achieve consensus on the local estimates [9]. It is a common way to set the
weights as a constant value as discussed in [6], which is an intuitive choice to maintain the stability of
the error dynamics. However, the constant value needs the knowledge of maximum degree across the
entire sensor network. Even the maximum degree is available, it remains a problem how to determine
a proper constant weight to achieve the best performance while preserving the property of consistency.
In addition, the initial consensus terms determined in ICF require the knowledge of the total number
of nodes in the network. The global parameters, such as the maximum degree or the total number of
nodes, may vary over time when the communication topology is changed, some new nodes are joined,
or some existing nodes fail to communicate with others. Without the accurate knowledge of these
global parameters, each node would either overestimate or underestimate the state of interest.

To deal with the problems analyzed above, a novel distributed hybrid information weighted
consensus filter (DHIWCF) is proposed in this paper. Firstly, different from the previous
work [4–6,16,18,22], each node assigns consensus weights to its neighbors based on their local degrees,
which is fully distributed with no requirement for any knowledge of the global parameters. Secondly,
the prior estimate information and measurement information at current time instant within the inclusive
neighborhood are, respectively, combined together to form the local generalized prior estimate equation
and the local generalized measurement equation. Then, a distributed local MAP estimator is derived
with some reasonable approximations of the error covariance matrices, which achieves higher accuracy
than the approaches introduce in [4–6,11,16,18,19,25–28]. Finally, the average consensus protocol with
the aforementioned consensus weights is incorporated into the estimation framework, and the proposed
DHIWCF is obtained. In addition, the theoretical analysis on consistency of the local estimates, stability
and convergence of the estimator is performed. The comparative experiments on three different target
tracking scenarios validate the effectiveness and feasibility of the proposed DHIWCF. Even with a
single consensus iteration, the DHIWCF is still able to achieve acceptable estimation performance.

The remainder of this paper is organized as follows. Section 2 formulates the problem of distributed
state estimation in sensor networks. The distributed local MAP estimator is derived in Section 3.
Section 4 presents distributed hybrid information weighted consensus filter. The theoretical analysis
on the consistency of estimates, stability and convergence of the estimator is provided in Section 5.
The experimental results and analysis are considered in Section 6. The concluded remarks are given in
Section 7.

Notation: Rn denotes the n-dimensional Euclidean space. ‖ · ‖ is the Euclidean norm in Rn.
For arbitrary matrix A, A−1 and AT are respectively its inverse and transpose. A > 0 means A is positive
definite, and tr{A} is the shorthand for the trace of A. diag(B1, B2, . . . , Bn) denotes a block diagonal
matrix with its main diagonal block being B1, B2, . . . , Bn. In represents the n× n identity matrix. For a
set C, |C|means the cardinality of C. E{·} is the expectation operator.
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2. Problem Formulation

2.1. System Model

Consider a discrete time linear system with dynamics

xk+1 = Fkxk + wk (1)

where xk ∈ Rnx represents the state vector at time instant k ∈ Z+, where Z+ is the set of positive integers.
Fk is the state transition matrix. wk is the Gaussian process noise with zero-mean, covariance Qk.

The state of interest is observed by a sensor network consisting of Ns nodes in the surveillance
area. The measurement model of node i is

zi, k = Hi, kxk + vi,k (2)

where zi, k ∈ Rnz is the measurement of node i at time instant k. i = 1, 2, . . . , Ns denote the sensor labels.
Hi, k is the measurement matrix of node i. vi,k is the Gaussian measurement noise with zero mean,
covariance Ri,k.

Assumption 1. The noise sequences {wk}
∞

k= 0 and
{
vi,k

}∞
k= 0

are mutually uncorrelated.

Assumption 2 [16,18,22,26–28,30]. If node i does not directly sense the target of interest at time instant k,
then R−1

i,k = 0.

Remark 1. Assumption 2 indicates that a node with no direct sensing ability is of infinite uncertainties about
its local measurement, which guarantees consistency of the local measurements.

2.2. Network Topology

The communication topology of the networked sensors can be represented by an undirected
graph G = (S, E). Here, S = {1, 2, . . . , NS} is the set of sensor nodes, and E ⊆ S×S is the available
communication links in the network. A communication link means that any two neighboring nodes
can exchange state or measurement information with each other. A connected network means that any
node in the network may directly exchange information with at least one other node. The immediate
neighbors of node i is denote byNi =

{
j
∣∣∣(i, j) ∈ E

}
. di = |Ni| is degree of node i, which is the number of

neighboring nodes linked to node i. The inclusive neighborhood which includes node i is represented
by Ji = {i} ∪Ni. A more comprehensible way to describe the network topology is using adjacency
matrix A, where element ai, j = 1 means that node i can exchange information with node j, and ai, j = 0
means that there is no direct communication link between node i and node j. The immediate neighbors
of node i can be easily represented byNi =

{
j
∣∣∣ai, j = 1

}
, and The degree of node i is di =

∑Ns
j=1 ai, j.

Definition 1. If the target of interest is neither observed by node i nor observed by its neighbors j ∈ Ni, then
node i is referred as a naive node. It should be noted that if node i is naive about the target of interest, R−1

j,k = 0
for j ∈ Ji in view of Assumption 2.

For instance, there are 8 sensor nodes in the monitored area, and the communication topology is
shown in Figure 1. Assume that only node 1 can directly observe the interested target, then nodes
{2, 3, 4} can acquire state information from node 1 by local communication. However, there are no
measurements within the inclusive neighborhood of nodes {5, 6, 7, 8}, thus they are naive about the
target’s state.
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Figure 1. An illustrated sensor network with naive nodes.

From the perspective of adjacency matrix, the communication topology shown in Figure 1 can be
simply represented by adjacency matrix A, where element ai, j = 1 means the available communication
links in the illustrated network. It is easy to obtain the degree of each node from A. The neighbors of
each nodes are also evident in A.

A =



0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0
1 1 1 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


(3)

2.3. Average Consensus

As an effective method to compute the mean value, the average consensus operates in a distributed
fashion, which sheds light on the problem of distributed state estimation. Suppose the initial value
of each node is α0

i . The goal is to compute the mean
∑Ns

i=1 α
0
i /Ns by local communications between

neighboring nodes. At time instant k, node i sends its previous state αl−1
i to its immediate neighbors

j ∈ Ni, and in a similar way receives the previous state αl−1
j from nodes j ∈ Ni. Then it updates its

current state by the following fusion rule.

αl
i = αl−1

i +
∑
j∈Ni

πi, j
(
αl−1

j − α
l−1
i

)
(4)

Here, πi, j is the consensus weight, which should satisfy certain conditions to ensure convergence
to the mean of initial values [25,28,33]. A sufficient and necessary condition guaranteeing finite-time
weighted average consensus has been provided in [34]. In the derivation of the proposed DHIWCF,
the average consensus protocol is involved in the state update step, hence we only discuss the design
of consensus weights ensuring average consensus on local estimates of all the nodes in the network.

If it is possible for the above protocol in (4) to iterate for infinite times, the estimated state of all
nodes in the network will asymptotically converge to the average value, that is, lim

l→∞
αl

i =
∑Ns

i=1 α
0
i /Ns.

In the original KCF, the consensus rate is set to be a constant value ε ∈ (0, 1/dmax), where dmax is the
maximum node degree in the network [6].

Remark 2. A larger ε will accelerate the convergence of the protocol, but a ε equal to or more than 1/dmax will
render the protocol unstable [9,16]. The constant ε treats states from different nodes with the same weights,
which may slow down the convergence rate of the whole system. The choice of ε depends on dmax, which is not
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always available, especially in sparse sensor networks with time-varying communication topologies. In addition,
there is no theoretical analysis on how to choose such a constant consensus weight.

To avoid the requirements for global parameters and speed up convergence rate, the Metropolis
weights determine consensus rate between neighboring nodes based on their local node degree.
As is discussed in [30], Metropolis weights enable the protocol in (4) to achieve convergence faster.
The definition of Metropolis weights is

πi j =


(
1 + max

{
di, d j

})−1
, if

{
i, j

}
∈ E

1−
∑
{i, j}∈E πi j, if i = j

0, otherwise

(5)

Remark 3. The above definition in (5) indicates that a node with a larger degree will be assigned a smaller
weight. All the consensus weights are computed only with the knowledge of local node degree, which is applicable
to almost any kind of sensor networks. The interested reader is referred to [30] and the references therein for
details. In this paper, the Metropolis weights are chosen for the proposed algorithm.

The goal of the proposed DHIWCF is to achieve consensus on the local estimates of each node over
the entire network by consensus iterations between neighboring nodes, and at the same time approach
the estimation performance of CKF. If the network is fully connected, only a single iteration is enough
to accomplish the estimation task. But in practical applications, a general network is often partially
connected. To ensure the estimation accuracy and consensus on local estimates, it requires several
iterations for the concerned information to spread throughout the entire network. However, due to
constrained computation and communication resources, only a limited number of consensus iterations
is available. It is urgent to design a more efficient distributed estimation scheme, which is able to
achieve satisfactory estimation accuracy and consensus simultaneously with less consensus iterations.

3. Distributed Local MAP Estimation

This section starts with the centralized MAP estimator. Then we formulate the local generalized
prior estimate equation based on prior estimates from the inclusive neighbors and the local generalized
measurement equation based on the current measurements from the inclusive neighbors. By maximizing
the local posterior probability, the local MAP estimator is derived. To implement the estimation steps
in a distributed manner, approximation of the error cross covariance is required. Two special cases,
where the prior errors from neighboring nodes are uncorrelated or completely identical, are considered
here. The practical importance of such an approximation can be seen from the numerical examples
in Section 6, which indicate that the proposed DHIWCF is effective even if the assumed cases are
not fulfilled.

3.1. Global MAP Estimator

Assume zk =
[
zT

1, k, zT
2, k, . . . , zT

Ns, k

]T
represents the collective measurements of the entire sensor

network at time instant k. The stacked measurement matrix of all the nodes is denoted as Hk =[
HT

1, k, HT
2, k, . . . , HT

Ns, k

]T
. The stacked measurement noise is vk =

[
vT

1, k, vT
2, k, . . . , vT

Ns, k

]T
with block

diagonal covariance matrix Rk = blkdiag
(
R1,k, R2,k, . . . , RNs,k

)
. Then the global measurement model

can be formulated as
zk = Hkxk + vk (6)
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Suppose the centralized prior estimate is x̂c
k|k−1. The corresponding prior estimation error is

ec
k|k−1 = x̂c

k|k−1 − xk with covariance matrix Pc
k|k−1 = E

{
ec

k|k−1

(
ec

k|k−1

)T
}
. Let x̂MAP

k|k be the maximum a

posterior (MAP) estimate, we have

x̂MAP
k|k = argmax

xk

p(xk|Zk ) (7)

where p(zk|Zk−1 ) =
∫

p(zk|xk )p(xk|Zk−1 )dxk is a normalization constant. Since the process noise and
measurement noise are both Gaussian, then the conditional PDF p(zk|xk ) and p(xk|Zk−1 ) are also
Gaussian. The explicit form of the prior PDF p(xk|Zk−1 ) and the likelihood PDF p(zk|xk ) is formed as

p(xk|Zk ) =
p(zk|xk )p(xk|Zk−1 )

p(zk|Zk−1 )
(8)

where p(zk|Zk−1 ) =
∫

p(zk|xk )p(xk|Zk−1 )dxk is a normalization constant. Since the process noise and
measurement noise are both Gaussian, then the conditional PDF p(zk|xk ) and p(xk|Zk−1 ) are also
Gaussian. The explicit form of the prior PDF p(xk|Zk−1 ) and the likelihood PDF p(zk|xk ) is formed as

p(xk|Zk−1 ) ∝ exp
(
−

1
2

(
x̂c

k|k−1 − xk
)T(

Pc
k|k−1

)−1(
x̂c

k|k−1 − xk
)])

(9)

p(zk|xk ) ∝ exp
(
−

1
2
(zk −Hkxk)

TR−1
k (zk −Hkxk)

)
(10)

where ‖x‖2A = xTAx. Based on Gaussian product in the numerator, the criterion in (7) can be
reformulated by minimizing the following cost function.

x̂MAP
k|k = argmin

xk

[
(zk −Hkxk)

TR−1
k (zk −Hkxk) +

(
x̂c

k|k−1 − xk
)T(

Pc
k|k−1

)−1(
x̂c

k|k−1 − xk
)]

(11)

Here, the cost function in (11) is strictly convex on xk and hence the optimal x̂MAP
k|k is available.

x̂MAP
k|k =

((
Pc

k|k−1

)−1
+ HT

k R−1
k Hk

)−1((
Pc

k|k−1

)−1
x̂c

k|k−1 + HT
k R−1

k zk

)
(12)

The corresponding posterior error covariance is

PMAP
k|k =

((
Pc

k|k−1

)−1
+ HT

k R−1
k Hk

)−1
(13)

The equivalent information form of the estimate in (12) and (13) can be rewritten as

ŷMAP
k|k =

(
Pc

k|k−1

)−1
x̂c

k|k−1 + HT
k R−1

k zk (14)

YMAP
k|k =

(
Pc

k|k−1

)−1
+ HT

k R−1
k Hk (15)

3.2. Local MAP Estimation

Assume that each node, for instance, node i, is able to receive its neighbor’s prior local estimate
x̂ j,k|k−1 and the corresponding covariance P j,k|k−1, as well as its neighbor’s local measurement z j,k and
the corresponding noise covariance R j,k by local communication. The local generalized prior estimate,
denoted by x̂′i,k|k−1, is defined as

x̂′i,k|k−1 =
[
x̂T

i,k|k−1, x̂T
j1,k|k−1, . . . , x̂T

jdi
,k|k−1

]T
(16)
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where jh ∈ Ni(h = 1, 2, . . . , di) denotes the index of node i’s neighbors. Let ηi,k|k−1 = x̂i,k|k−1 − xk be the
prior error of node i. The local collective prior error of node i with respect to its inclusive neighbors can

be formulated as η′i,k|k−1 =
[
ηT

i,k|k−1,ηT
j1,k|k−1, . . . ,ηT

jdi
,k|k−1

]T
. The local generalized prior estimate can be

expressed by
x̂′

i,k|k−1
= HIxk + η′i,k|k−1 (17)

whereHI = [Ip, Ip, . . . , Ip]
T is the matrix stacked by di + 1 identity matrices. xk is the true state at time

instant k. The local collective prior error covariance of node i can be written as

P′i,k|k−1 = E
{
η′i,k|k−1

(
η′i,k|k−1

)T
}
=



Pi,k|k−1 Pi j1,k|k−1 · · · Pi jdi
,k|k−1

P j1i,k|k−1
. . .

...
...

. . .
...

P jdi
i,k|k−1 · · · · · · P jdi

,k|k−1


(18)

Here, the block matrix P′i,k|k−1 ∈ R(1+di)nx×(1+di)nx .
Similarly, the local generalized measurement of node i with regard to its inclusive neighbors can

be formulated as
z′i, k = H′i, kxk + v′i,k (19)

Here, z′i, k =
[
zT

i,k, zT
j1,k, . . . , zT

jdi
,k

]T
is the local generalized measurement. H′i,k =[

HT
i, k, HT

j1, k, . . . , HT
jdi

, k

]T
is the local generalized measurement matrix. v′i,k =

[
vT

i, k, vT
j1, k, . . . , vT

jdi
, k

]T

denotes the local generalized measurement noise with covariance matrix R′i,k =

blkdiag
(
Ri,k, R j1,k, . . . , R jdi

,k

)
.

Combining (17) and (19) together, one has x̂′i,k|k−1
z′i, k

 = [
HI

H′i, k

]
xk +

[
η′i,k|k−1

v′i,k

]
(20)

where the error covariance

E


[
η′i,k|k−1

v′i,k

][
η′i,k|k−1

v′i,k

]T = blkdiag
(
P′i,k|k−1, R′i,k

)
(21)

Here the operator blkdiag( · ) denotes the block diagonal matrix.
According to the derivation of the global maximum a posterior estimator described in Section 3.1,

the updated local information matrix can be computed by

YLMAP
i,k|k =

[
HI

H′i, k

]T[
P′i,k|k−1 0

0 R′i,k

]−1[
HI

H′i, k

]
= HT

I

(
P′i,k|k−1

)−1
HI +

(
H′i,k

)T(
R′i,k

)−1
H′i,k

=
1+di∑
r=1

1+di∑
s=1

[(
P′i,k|k−1

)−1
]
r,s
+

∑
j∈Ji

(
H j, k

)T(
R j,k

)−1
H j, k

(22)
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Similarly, the updated local information vector is

ŷLMAP
i,k|k =

[
HI

H′i, k

]T[
P′i,k|k−1 0

0 R′i,k

]−1 x̂′i,k|k−1
z′i, k


= HT

I

(
P′i,k|k−1

)−1
x̂′i,k|k−1 +

(
H′i,k

)T(
R′i,k

)−1
z′i,k

=
1+di∑
r=1

1+di∑
s=1

[(
P′i,k|k−1

)−1
]
r,s

[
x̂′i,k|k−1

]
s
+

∑
j∈Ji

(
H j, k

)T
R−1

j,k z j, k

(23)

Here,
[(

P′i,k|k−1

)−1
]
r,s

denotes the (r, s)-th block matrix of
(
P′i,k|k−1

)−1
. Similarly,

[
x̂′i,k|k−1

]
s

denotes the

s-th block vector of x̂′i,k|k−1.

3.3. Approximation of
(
P′i,k|k−1

)−1

It is shown in (22) and (23) that the key to acquire the local posterior estimate is to compute the

inverse of the local collective prior error covariance, that is,
(
P′i,k|k−1

)−1
. However, as is shown in

(18), the computation of
(
P′i,k|k−1

)−1
requires the knowledge of cross-covariance between neighbors

of node i. As is shown in [6], to compute the cross-covariance matrix Pi jh,k|k−1, the information of the

neighbors of node jh is also required. Therefore, it is not practical to directly compute
(
P′i,k|k−1

)−1
due

to the fact that large amounts of communication among neighboring nodes are required, which may
cause tremendous burden on computation and communication for the networked system. Although
some work has been done in [35,36] to incorporate cross-covariance information into the estimation
framework, no technique for computing the required terms are offered and predefined values are used
instead [4].

Therefore, an approximation of P′i,k|k−1 in a distributed manner is necessary. In the following
derivation, two special cases are discussed. The first case is that the prior estimates from different
nodes are completely uncorrelated with each other. This is true at the beginning of the estimation
procedure when the prior information are initialized with random quantities. The second case is for
converged priors, which is critical for the reason that with sufficient consensus iterations, the prior
estimates from all nodes will converge to the identical value.

3.3.1. Case 1: Uncorrelated Priors

In this case, the prior errors from different nodes are assumed to be uncorrelated with each

other, i.e., E
{
ηi,k|k−1ηT

jh,k|k−1

}
= 0. Hence, P′i,k|k−1 in (18) turns into a block diagonal matrix

P′i,k|k−1 = blkdiag
(
Pi,k|k−1, P j1,k|k−1, . . . , P jdi

,k|k−1

)
. The local posterior estimate in (22) and (23) can

be approximated as

ŷLMAP
i,k|k =

∑
j∈Ji

Y j,k|k−1x̂ j,k|k−1 +
∑
j∈Ji

(
H j, k

)T
R−1

j,k z j, k (24)

YLMAP
i,k|k =

∑
j∈Ji

Y j,k|k−1 +
∑
j∈Ji

(
H j, k

)T
R−1

j,k H j, k (25)

Note that after enough consensus iterations, the prior estimates of each node in the network
asymptotically converges to the centralized result, i.e., Yi,k|k−1 = Yc,k|k−1 and ŷi,k|k−1 = ŷc,k|k−1. In such
a case, the local prior information matrix in (25) turns into

∑
j∈Ji

Y j,k|k−1 = (1 + di)Yc,k|k−1. However,
after convergence, the total amount of prior information in the network is Yc,k|k−1. That is, the local
prior information matrix in the inclusive neighborhood is overestimated by a factor (1 + di). Therefore,
the approximation of P′i,k|k−1 should be modified by multiplying a factor (1 + di), which is P′i,k|k−1 =
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(1 + di)blkdiag
(
Pi,k|k−1, P j1,k|k−1, . . . , P jdi

,k|k−1

)
to avoid underestimation of the prior covariance. Hence,

the results in (24) and (25) should be modified as

Yi,k|k =
1

1 + di

∑
j∈Ji

Y j,k|k−1 +
∑
j∈Ji

(
H j, k

)T
R−1

j,k H j, k (26)

ŷi,k|k =
1

1 + di

∑
j∈Ji

J j,k|k−1x̂ j,k|k−1 +
∑
j∈Ji

(
H j, k

)T
R−1

j,k z j, k (27)

3.3.2. Case 2: Converged Priors

When the prior estimate of each node converges to the centralized result, one has

1+di∑
r=1

1+di∑
s=1

[(
P′i,k|k−1

)−1
]
r,s

= Yc,k|k−1 =
1

1 + di

∑
j∈Ji

Yc,k|k−1 (28)

Note that for converged priors, Y j,k|k−1 = Yc,k|k−1, j ∈ Ji. Substituting this fact into (28), there is

1+di∑
r=1

1+di∑
s=1

[(
P′i,k|k−1

)−1
]
r,s

=
1

1 + di

∑
j∈Ji

Y j,k|k−1 (29)

Therefore, the estimated results in (22) and (23) can be transformed into the weighted summation
of the prior information and current measurement innovations, which are the same forms as the results
shown in (26) and (27).

Remark 4. It should be noted that the assumed cases are not always satisfied in realistic applications, but it
is still of great significance for distributed filtering algorithms. The effectiveness and feasibility of such an
approximation is evaluated by numerical examples in Section 6.

4. Hybrid Information Weighted Consensus Filter

In Section 3, the prior estimate of each node is assumed to be known. Here, the prediction step
is given.

x̂i,k|k−1 = Fk−1x̂i,k−1|k−1 (30)

Yi,k|k−1 =
(
Fk−1Y−1

i, k−1|k−1FT
k−1 + Qk−1

)−1
(31)

For simplicity, the prediction step in (31) can be rewritten as

Yi,k|k−1 = Ψk−1

(
Yi, k−1|k−1

)
(32)

with
Ψk−1

(
Yi, k−1|k−1

)
=

(
Fk−1Y−1

i, k−1|k−1FT
k−1 + Qk−1

)−1
(33)

The corresponding prior information vector is

ŷi,k|k−1 = Yi,k|k−1x̂i,k|k−1 (34)

With the above prediction steps and a weighted consensus protocol incorporated into the
distributed local MAP estimator, a novel state estimation algorithm is obtained. Since the prior
estimates and the measurement innovation are fused with different schemes, the proposed algorithm



Sensors 2019, 19, 2134 11 of 29

is referred as distributed hybrid information weighted consensus filter (DHIWCF). The recursive form
of DHIWCF is detailed in Algorithm 1.

Algorithm 1. DHIWCF implemented by node i at time instant k.

1. Obtain the local measurement zi, k with covariance matrix Ri,k.
2. Compute the measurement contribution vector and contribution matrix. ui = HT

i,kR−1
i,k zi,k

Ui = HT
i,kR−1

i,k Hi,k
(35)

3. Broadcast state message
{
yi,k|k−1, Yi,k|k−1, ui, Ui

}
to its neighboring nodes j ∈ Ni.

4. Receive state message
{
y j,k|k−1, Y j,k|k−1, u j, U j

}
from its neighboring nodes j ∈ Ni.

5. Compute the initial values. 
ŷ0

i,k|k =
1

1+di

∑
j∈Ji

ŷ j,k|k−1 +
∑

j∈Ji

(
H j, k

)T
R−1

j,k z j, k

Y0
i,k|k =

1
1+di

∑
j∈Ji

Y j,k|k−1 +
∑

j∈Ji

(
H j, k

)T
R−1

j,k H j, k

(36)

6. Perform consensus.
for l = 1 : L do

(1) Send ŷl−1
i, k|k−1 and Yl−1

i, k|k−1 to its neighbors j ∈ Ni;

(2) Receive ŷl−1
j,k|k−1 and Yl−1

j,k|k−1 from its neighbors j ∈ Ni;

(3) Update its consensus state.
ŷl

i, k|k = ŷl−1
i, k|k +

∑
j∈Ni

πi, j

(
ŷl−1

j, k|k − ŷl−1
i, k|k

)
Yl

i, k|k = Yl−1
i, k|k +

∑
j∈Ni

πi, j

(
Yl−1

j, k|k − Yl−1
i, k|k

) (37)

end for
7. Compute the posterior estimate.

x̂i,k|k =
(
YL

i, k|k

)−1
ŷL

i, k|k, Yi,k|k = YL
i,k|k, ŷi, k|k = ŷL

i, k|k
8. Prediction at time instant k + 1

x̂i,k+1|k = Fkx̂i,k|k, Yi,k+1|k = Ψk
(
Yi, k|k

)
, ŷi,k+1|k = Yi,k+1|kx̂i,k+1|k

5. Performance Analysis

5.1. Consistency of Estimates

One of the most fundamental but important properties of a recursive filtering algorithm is that
the estimated error statistics should be consistent with the true estimation errors. The approximated
error covariance of an inconsistent filtering algorithm is too small or optimistic, which does not really
indicate the uncertainty of the estimate and may result in divergence since subsequent measurements
in this case are prone to be neglected [28].

Definition 2 [28,30,37,38]. Consider a random vector x. Let x̂ and P be, respectively, the estimate of x and the
estimate of the corresponding error covariance. Then the pair (x̂, P) is said to be consistent if

E
{
(x̂ − x)(x̂ − x)T

}
≤ P (38)

It is shown in (38) that consistency requires that the true error covariance should be upper bounded
(in the positive definite sense) by the approximated error covariance P. In the distributed estimation
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paradigm, due to the unaware reuse of the redundant data in the consensus iteration and the possible
correlation between measurements from different nodes, the filter may suffer from inconsistency and
divergence. In such a case, preservation of consistency is even much more important.

For convenience, consider the information pair (ŷ, Y), where ŷ = P−1x̂ and Y = P−1x̂.
The consistency defined by (38) can be rewritten as

Y ≤
(
E
{(

Y−1ŷ− x
)(

Y−1ŷ− x
)T

})−1
(39)

Assumption 3. The initialized estimate of each node, represented by
(
x̂i,0|0, Pi,0|0

)
, i ∈ S, is consistent.

Equivalently, inequality Pi,0|0 ≥ E
{(

x̂i,0|0 − x0
)(

x̂i,0|0 − x0
)T

}
holds for i ∈ S.

Remark 5. In general, Assumption 3 can be easily satisfied. The initial information on the state vector can
be acquired in an off-line fashion before the fusion process. In the worst case where no prior information is
available, each node can simply set the initialized information matrix as P−1

i,0|0 = 0, which implies infinite estimate
uncertainty in each node at the beginning so that Assumption 3 is fulfilled.

Assumption 4. The system matrix Fk is invertible.

Lemma 1 [28]. Under Assumption 4, if two positive semidefinite matrices Y1 and Y2 satisfy Y1 ≤ Y2, then
0 ≤ Ψk(Y1) ≤ Ψk(Y2). In other words, the function Ψk( · ) is monotonically nondecreasing for any k ≥ 0.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Then, for each time instant k and each node i ∈ S, the information
pair

(
ŷi,k|k, Yi,k|k

)
of the DHIWCF is consistent in that

Yi,k|k ≤

(
E
{(

x̂i,k|k − xk
)(

x̂i,k|k − xk
)T

})−1
(40)

with x̂i,k|k = Y−1
i,k|kŷi, k|k.

Proof. An inductive method is utilized here to prove this theorem. It is supposed that, at time instant
k− 1

Yi,k−1|k−1 ≤

(
E
{(

x̂i,k−1|k−1 − xk−1

)(
x̂i,k−1|k−1 − xk−1

)T
})−1

(41)

for any i ∈ S. For brevity, the predicted information matrix in (31) can be rewritten as

Yi,k|k−1 = Ψ
(
Yi, k−1|k−1

)
(42)

On the basis of Lemma 1, it is immediate to see

Yi,k|k−1 = Ψk−1

(
Yi, k−1|k−1

)
≤ Ψk−1

((
E
{(

x̂i,k−1|k−1 − xk−1

)(
x̂i,k−1|k−1 − xk−1

)T
})−1

)
=

(
E
{(

x̂i,k|k−1 − xk
)(

x̂i,k|k−1 − xk
)T

})−1 (43)

According to (26) and (27), the local estimation error is

x̂0
i,k|k − xk =

(
Y0

i,k|k

)−1
ŷ0

i,k|k −
(
Y0

i,k|k

)−1
Y0

i,k|kxk

=
(
Y0

i,k|k

)−1
 1

1+di

∑
j∈Ji

Y j,k|k−1

(
x̂ j,k|k−1 − xk

)
+

∑
j∈Ji

(
H j, k

)T
R−1

j,k

(
z j, k −H j, kxk

)
=

(
Y0

i,k|k

)−1
 1

1+di

∑
j∈Ji

Y j,k|k−1

(
x̂ j,k|k−1 − xk

)
+

∑
j∈Ji

(
H j, k

)T
R−1

j,k v j, k


(44)
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Then,

(
E
{(

x̂0
i,k|k − xk

)(
x̂0

i,k|k − xk
)T

})−1
=

(Y0
i,k|k

)−1
E{

∆k,i
}
+

∑
j∈Ji

(
H j, k

)T
R−1

j,k H j, k

(Y0
i,k|k

)−1

−1

(45)

where

∆k,i =

∑
j∈Ji

1
1 + di

Y j,k|k−1

(
x̂ j,k|k−1 − xk

)
∑

j∈Ji

1
1 + di

Y j,k|k−1

(
x̂ j,k|k−1 − xk

)
T

(46)

According to the consistency property of covariance intersection [29,38], it holds that

E
{
∆k,i

}
≤

∑
j∈Ji

1
1 + di

Y j,k|k−1E
{(

x̂ j,k|k−1 − xk
)(

x̂ j,k|k−1 − xk
)T

}
Y j,k|k−1 ≤

1
1 + di

∑
j∈Ji

Y j,k|k−1 (47)

Then, exploiting (47) and (43) in (45), the following result is obtained.

(
E
{(

x̂0
i,k|k − xk

)(
x̂0

i,k|k − xk
)T

})−1
≥

(Y0
i,k|k

)−1
 1

1+di

∑
j∈Ji

Y j,k|k−1 +
∑

j∈Ji

(
H j, k

)T
R−1

j,k H j, k

(Y0
i,k|k

)−1
−1

≥ Y0
i,k|k (48)

Since the information pair
(
x̂l+1

i,k|k, Yl+1
i,k|k

)
is computed based on the previous information pair(

x̂l
i,k|k, Yl

i,k|k

)
by (3), and the covariance intersection involved in (3) preserves the consistency

of estimates [29,37–39], it can be concluded that
(
E
{(

x̂l
i,k|k − xk

)(
x̂l

i,k|k − xk
)T

})−1
≥ Yl

i,k|k indicates(
E
{(

x̂l+1
i,k|k − xk

)(
x̂l+1

i,k|k − xk
)T

})−1
≥ Yl+1

i,k|k for any l = 1, . . . , L. In other words, if the estimate obtained with l

consensus iterations is consistent, the estimate obtained with l + 1 consensus iterations is also consistent.
Therefore, it is straightforward to conclude that (40) holds with x̂i,k|k = x̂L

i,k|k and Yi,k|k = YL
i,k|k. The proof

is concluded since the initial estimate x̂i,0|0,∀i ∈ S is consistent. �

5.2. Boundedness of Error Covariances

According to the consistency of the proposed DHIWCF in Theorem 1, it is sufficient to prove
that Yi,k|k is lower bounded by a certain positive matrix (or equivalently, to prove Pi,k|k = Y−1

i,k|k is
upper bounded by some constant matrix) for the proof of the boundedness of the error covariance

E
{(

x̂i,k|k − xk
)(

x̂i,k|k − xk
)T

}
. To derive the bounds for the information matrix Yi,k|k, The following

assumptions are required.

Assumption 5. The system is collectively observable. That is, the pair (Fk, Hk) is observable where Hk =

col
(
Hi, k, i ∈ S

)
.

Let Π be the consensus matrix, whose elements are the consensus weights πi, j for any i, j ∈ S.
Further, let πL

i, j be the (i, j)-th element of ΠL, which is the L-th power of Π.

Assumption 6. The consensus matrix Π is row stochastic and primitive.

Assumption 7. There exist real numbers f , f , h, h , 0 and positive real numbers p > p > 0, q > q > 0,
such that the following bounds are fulfilled for each k ≥ 0, i ∈ S. f 2In ≤ FkFT

k ≤ f
2
In, h2Im ≤ Hi,k

(
Hi,k

)T
≤ h

2
Im

qIn ≤ Qk ≤ qIn, rIm ≤ Ri,k ≤ rIm
(49)
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Lemma 2 [28]. Under Assumptions 4 and 5, and the proposed DHIWCF algorithm, if there exists a positive

semidefinite matrix
^
Y such that Yi,k|k ≤

^
Y , ∀k ≥ 0, i ∈ S, then there always exists a strictly positive constant

0 < α < 1 such that
Yi,k+1|k ≥ α(Fk)

−TYi, k|kF−1
k (50)

By virtue of Lemma 2, Theorem 2 which depicts the boundedness of error covariances is
presented below.

Theorem 2. Let Assumptions 4–7 hold, there exist positive definite matricesΩ andΩ such that

0 < Ω ≤ Yi, k|k ≤ Ω, ∀k ≥ 0, i ∈ S (51)

where Yi, k|k is the information matrix given by the proposed DHIWCF.

Proof. For simplicity, the proof is concluded for the case L = 1. The generalization for L > 1 can be
directly derived in a similar way. According to the proposed DHIWCF, the information matrix for
node i at time instant k can be written as

Yi,k|k =
∑
j∈S

∑
r∈J j

πi, j
(
1 + d j

)−1
Yr,k|k−1 +

∑
j∈S

∑
r∈J j

πi, j
(
Hr, k

)T
R−1

r,k Hr, k (52)

In view of Assumption 6, 7 and fact that Yr,k|k−1 ≤ Q−1
k−1 by (31), one can get

Yi,k|k ≤ Q−1
k−1 +

∑
j∈S

∑
r∈J j

πi, j
(
Hr, k

)T
R−1

r,k Hr, k

≤

(
1
q +

(1+dmax)h
2

r

)
Inx , Ω

(53)

Hence, the upper bound is achieved. Next a lower bound will be guaranteed under Assumption 5.
According to Lemma 2 and Assumption 7 and (31), (53), it follows from (52) that

Yi,k|k ≥ α
∑
j∈S

∑
r∈J j

πi, j
(
1 + d j

)−1
(Fk−1)

−TYr, k−1|k−1F−1
k−1 +

∑
j∈S

∑
r∈J j

πi, j
(
Hr, k

)T
R−1

r,k Hr, k (54)

where α is a positive scalar with 0 < α < 1. By recursively exploiting (52) and (54) for a certain number
(denoted by k) of times, there is

Yi,k|k ≥ αk ∑
j∈S

∑
r∈S

πk
i, jΞ

k
j, r

Fk−1Fk−2 . . . Fk−k︸              ︷︷              ︸
length=k


−T

Yi, k−1|k−1

(
Fk−1Fk−2 . . . Fk−k

)−1

+
k∑

τ=1
ατ−1

Fk−1Fk−2 . . . Fk−τ+1︸                 ︷︷                 ︸
length= τ−1


−T ∑

j∈S

∑
r∈S

πτi, jΞ
τ−1
j, r

(
Hr, k−τ+1

)T
R−1

r,k−τ+1Hr, k−τ+1

(Fk−1Fk−2 . . . Fk−τ+1)
−1

(55)

where πτi, j is the (i, j)-th element of Πτ. Ξ is a matrix with elements

Ξi, j =

{
1/(1 + di), if j ∈ Ji
0, otherwise

(56)
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Note that the matrix Ξ is constructed based on the network topology and is naturally stochastic.
According to [40,41], as long as the undirected network is connected, similar to the definition of Π, Ξ is
primitive. Therefore, there exist strictly positive integers m and n such that all the elements of Πs and
Ξt are positive for s ≥ m, t ≥ n. Let us define

Ω1 =
k∑

τ=1
ατ−1

Fk−1Fk−2 . . . Fk−τ+1︸                 ︷︷                 ︸
length= τ−1


−T ∑

j∈S

∑
r∈S

πτi, jΞ
τ−1
j, r

(
Hr, k−τ+1

)T
R−1

r,k−τ+1Hr, k−τ+1

(Fk−1Fk−2 . . . Fk−τ+1)
−1 (57)

It should be noted that, under Assumption 5, Ω1 is definite positive for k ≥ max(m, n + 1).
Therefore, for k ≥ k, Yi,k|k ≥ Ω1 > 0. Since k is finite, for 0 ≤ k ≤ k − 1, there exists a constant positive
definite matrixΩ2 such that Yi,k|k ≥ Ω2 > 0. Hence, there exists a positive definite matrixΩ such that
0 < Ω ≤ Yi, k|k. The proof is now complete. �

Remark 6. The result shown in Theorem 2 is only dependent on collective observability. This is distinct from
some algorithms that require some sort of local observability or detectability condition [5,6,8,11,25], which poses
a great challenge to the sensing abilities of sensors and restricts the scope of application.

5.3. Convergence of Estimation Errors

In line with the boundedness of Yi,k|k proven in Theorem 2, the convergence of local estimation
errors obtained by the proposed DHIWCF is analyzed in this section. To facilitate the analysis, the
following preliminary lemmas are required.

Lemma 3 [26,28,31]. Given an integer N ≥ 2, N positive definite matrices M1, . . . , MN and N vectors
v1, . . . , vN, the following inequality holds N∑

i=1

Mivi


> N∑

i=1

Mi


−1 N∑

i=1

Mivi

 ≤ N∑
i=1

v>i Mivi (58)

Lemma 4 [26,28]. Under Assumptions 4 and 5, and the proposed DHIWCF algorithm, if there exists a positive
semidefinite matrix Ỹ such that Yi,k|k ≥ Ỹ, ∀k ≥ 0, i ∈ S, then there always exists a strictly positive scalar
0 < β < 1 such that

Yi,k+1|k ≤ β(Fk)
−TYi, k|kF−1

k (59)

For the sake of simplicity, let us denote the prediction and estimation error at node i by
x̃i,k|k−1 = x̂i,k|k−1 − xk and x̃i,k|k = x̂i,k|k − xk, respectively. The collective forms are, respectively,
x̃k|k−1 = col

(̃
x1,k|k−1, . . . , x̃Ns,k|k−1

)
and x̃k|k = col

(̃
x1,k|k, . . . , x̃Ns,k|k

)
.

Theorem 3. Under Assumptions 4–6, the proposed DHIWCF algorithm yields an asymptotic estimate in each
node of the network in that

lim
k→+∞

E
{
x̂i,k|k − xk

}
= 0, ∀i ∈ S (60)

Proof. Under Assumptions 4–6, Theorem 2 holds. Therefore, Yi,k|k is uniformly lower and upper
bounded. Let us define the following candidate Lyapunov function

Vi,k(x) = xTYi,k|k−1x, i ∈ S (61)
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By virtue of Lemma 2, it can be concluded that there exists a positive real number 0 < β̃ < 1
such that

Yi,k+1|k ≤ β̃(Fk)
−TYi, k|kF−1

k (62)

Then, one has

Vi, k+1

(
E
{̃
xi,k+1|k

})
=

(
E
{̃
xi,k+1|k

})T
Yi,k+1|kE

{̃
xi,k+1|k

}
≤ β̃

(
E
{̃
xi,k+1|k

})T
(Fk)

−TYi, k|kF−1
k E

{̃
xi,k+1|k

} (63)

Since E
{̃
xi,k+1|k

}
= E

{
Fkx̂i,k|k − (Fkxk + wk)

}
= FkE

{̃
xi,k|k

}
, one can obtain

Vi, k+1

(
E
{̃
xi,k+1|k

})
≤ β̃

(
E
{̃
xi,k|k

})T
Yi, k|kE

{̃
xi,k|k

}
(64)

Notice that
Yi,k|k = YL

i,k|k =
∑
j∈S

πL
i, jY

0
j, k|k (65)

ŷi,k|k = ŷL
i,k|k =

∑
j∈S

πL
i, jŷ

0
j, k|k (66)

Here, pre-multiplying (65) by Y−1
i,k|k and post-multiplying it by xk yields

xk = Y−1
i,k|k

∑
j∈S

πL
i, jY

0
j, k|kxk (67)

In a similar way, pre-multiplying (66) by Y−1
i,k|k yields

x̂i,k|k = Y−1
i,k|k

∑
j∈S

πL
i, jŷ

0
j, k|k (68)

Therefore,

E
{̃
xi,k|k

}
= E

{
x̂i,k|k − xk

}
= Y−1

i,k|k

∑
j∈S

πL
i, jE

{
ŷ0

j, k|k − Y0
j, k|kxk

}
(69)

According to (36), there is

ŷ0
j, k|k − Y0

j, k|kxk =
(
1 + d j

)−1 ∑
r∈J j

Yr,k|k−1x̃r,k|k−1 +
∑
r∈J j

(
Hr, k

)T
R−1

r,k vr, k (70)

Since E
{
vr, k

}
= 0, one can get

E
{̃
xi,k|k

}
= Y−1

i,k|k

∑
j∈S

∑
r∈J j

πL
i, j

(
1 + d j

)−1
Yr,k|k−1E

{̃
xr,k|k−1

}
(71)

Substituting (71) into (64) yields

Vi, k+1

(
E
{̃
xi,k+1|k

})
≤ β̃

 ∑
j∈S

∑
r∈J j

πL
i, j

(
1 + d j

)−1
Yr,k|k−1E

{̃
xr,k|k−1

}T

Y−1
i, k|k

 ∑
j∈S

∑
r∈J j

πL
i, j

(
1 + d j

)−1
Yr,k|k−1E

{̃
xr,k|k−1

} (72)
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Applying the fact that Yi, k|k ≥
∑

j∈S
∑

r∈J j
πL

i, j

(
1 + d j

)−1
Yr,k|k−1 and Lemma 3 to the right hand side

of (72), one can obtain that

Vi, k+1

(
E
{̃
xi,k+1|k

})
≤ β̃

∑
j∈S

∑
r∈J j

πL
i, j

(
1 + d j

)−1(
E
{̃
xr,k|k−1

})T
Yr,k|k−1E

{̃
xr,k|k−1

}
= β̃

∑
j∈S

∑
r∈J j

πL
i, j

(
1 + d j

)−1
Vr, k

(
E
{̃
xr,k|k−1

}) (73)

Writing (73) for i = 1, 2, . . . , Ns in a collective form, it turns out that

Vk+1

(
E
{̃
xk+1|k

})
≤ β̃ ΠLΞ Vk

(
E
{̃
xk|k−1

})
(74)

where
Vk

(
E
{̃
xk|k−1

})
= col

(
V1, k

(
E
{̃
xi,k|k−1

})
, . . . , VNs, k

(
E
{̃
xNs,k|k−1

}))
(75)

and Ξ is a matrix with elements satisfying

Ξi, j =

{
1/(1 + di), if j ∈ Ji

0, otherwise
(76)

Since the consensus matrix Π and the constructed matrix Ξ are both row stochastic, thus their
spectral radiuses are both 1. As a consequence, for 0 < β̃ < 1, the elements of vector Vk+1

(
E
{̃
xk+1|k

})
vanishes as k tends to infinity in that lim

k→+∞
E
{̃
xk+1|k

}
= 0. Due to the equation E

{̃
xk+1|k

}
= FkE

{̃
xi,k|k

}
and Assumption 4, it is straightforward to conclude that lim

k→+∞
E
{
x̂i,k|k − xk

}
= 0 for any i ∈ S. �

Remark 7. The Lyapunov function defined in (61) plays a crucial role in the convergence proof of the proposed
algorithm, which can be easily extended to stability analysis of Kalman-like consensus filters in other scenarios.
The reason for the non-singularity requirements of Fk in Theorem 3 is that the proof of the Lyapunov method
depends on Lemma 4, the establishment of which needs the invertibility of Fk.

6. Experimental Results and Analysis

6.1. Simulation Setting

A target tracking scenario is adopted here to validate the effectiveness and superiority of the
proposed DHIWCF. The centralized Kalman filter (CKF) is chosen as a benchmark to compare the
proposed DHIWCF with following algorithms: The Kalman consensus filter (KCF), the generalized
Kalman consensus filter (GKCF), the information weighted consensus filter (ICF), the consensus on
information algorithm (CI), the consensus on measurements algorithm (CM), the hybrid consensus on
measurement + consensus on information algorithm (HCMCI).

In the surveillance area, a target is moving with the discrete time linear model shown in (1).

xk =
[
xk, yk,

.
xk,

.
yk

]T
is the state vector at time instant k. (xk, yk) and

( .
xk,

.
yk

)
are, respectively, the position

and velocity components of the state. The state transition matrix Fk and the process noise covariance
matrix Qk are set as follows.

Fk =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, Qk =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 (77)

The initial position of the target is randomly located at the 500× 500 space. The initial speed is set
to 2 units per time step, with a random direction uniformly chosen from 0 to 2π. In each simulation
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run, the initial prior error covariance is P0 = diag(100, 100, 10, 10), and all nodes in the network share
the same P0. The initial prior estimate of each node is generated by adding zero-mean Gaussian noise
with covariance P0 to the true initial state. The total number of time steps is K = 100 unless stated
otherwise. The sampling time interval is T = 1 s.

The target of interest is observed by a number of networked sensors with measurement model
shown in (2). The measurement matrix Hi, k and the measurement noise covariance Ri,k are given below.

Hi, k =

[
1 0 0 0
0 1 0 0

]
, Ri,k =

[
100 0
0 100

]
(78)

6.2. Performance Metrics

For a fair comparison, a total number Mc= 200 of independent Monte Carlo runs are carried out.
The consensus iterations L is set from 1 to 10. The consensus rate parameter is selected as ε = 0.65/dmax.
For the proposed DHIWCF algorithm, the Metropolis weight matrix is chosen, which is computed
only with knowledge of local node degree. Following metrics are chosen to evaluate the estimation
performance from different aspects.

(1) The position root mean squared error (PRMSE), which indicates the tracking accuracy, is
defined as

PRMSE =

√√√
1

Mc

Mc∑
m=1

1
Ns

Ns∑
i=1

[(
x̂m

i,k − xm
k

)2
+

(
ŷm

i,k − ym
k

)2
]

(79)

where
(
x̂m

i,k, ŷm
i,k

)
and

(
xm

k , ym
k

)
are, respectively, the estimated position and the true position in the m-th

Monte Carlo run.
(2) The averaged position root mean squared error (APRMSE), which implies the overall tracking

accuracy of an algorithm over all simulation runs, all time instants and all sensors, is defined as

APRMSE =

√√√
1

Mc

Mc∑
m=1

1
K

K∑
k=1

1
Ns

Ns∑
i=1

[(
x̂m

i,k − xm
k

)2
+

(
ŷm

i,k − ym
k

)2
]

(80)

(3) The averaged consensus estimate error (ACEE), which indicates the degree of consensus
among estimates from all nodes in the network, is defined as

ACEE =
1

Mc

Mc∑
m=1

1
Ns(Ns − 1)

Ns∑
i=1

Ns∑
j=1

√[(
x̂m

j,k − x̂m
i,k

)2
+

(
ŷm

j,k − ŷm
i,k

)2
]

(81)

(4) The normalized estimation error squared (NEES), which is used to check for filter consistency,
is defined as

εk =
(
xk − x̂k|k

)T
P−1

k|k

(
xk − x̂k|k

)
(82)

where xk and x̂k|k are, respectively, the true state and estimated state. Pk|k is the posterior covariance at
time instant k. Suppose that the filter is consistent, the NEES is subject to Chi-squared distribution
with nx degrees of freedom. A way to check filter consistency is by testing the average NEES over a
number of Mc Monte Carlo runs, i.e.,

εk =
1

Mc

Mc∑
i=1

εi
k (83)

Under similar assumptions Mcεk will be Chi-squared distributed with Mcnx degrees of freedom.
Suppose the acceptance interval is [r1, r2], the Chi-square test is accepted if εk ∈ [r1, r2]. The filter is
optimistic if the computed εk is much higher than r2, while it is conservative with the computed εk
below r1.
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(5) Computational cost. The computational cost is defined as the averaged running time over all
Monte Carlo runs.

6.3. Reuslts and Analysis

In this subsection, three simulation scenarios are chosen to evaluate and compare the estimation
performance of the proposed DHIWCF algorithm with respect to the afore-mentioned metrics.

6.3.1. Evaluation of the Effectiveness of the Proposed DHIWCF Algorithm

This scenario is designed to validate the effectiveness of the proposed DHIWCF algorithm. The
target of interest is tracked by 8 networked sensors with a communication topology shown in Figure 1.
Only node 1 can observe the target, then the node set {5, 6, 7, 8} is naive about the target state. Figure 2
shows the estimated tracks obtained by local nodes with the proposed DHIWCF and the CKF. For
simplicity, only the estimated tracks of node 1 and node 8 are plotted. To illustrate the evolution of
each track, checkpoints are plotted in the same color every 20 steps. The covariance ellipses with 95%
confidence at each checkpoint are plotted in dashed lines. As is shown, the true position (cross in black)
is always enveloped by the corresponding ellipse in red (node 1) or blue (node 8), which validates
the consistency of the local estimates. Compared with the CKF, the local estimates by the proposed
DHIWCF is much more conservative. This is due to the fact that the network in Figure 1 has a weak
connectivity and most nodes have poor joint observability.
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Figure 2. State estimation results: distributed hybrid information weighted consensus filter (DHIWCF)
versus centralized Kalman consensus filter (CKF).

In Figure 3, the PRMSE of the compared algorithms with a single consensus iteration is given.
Both KCF and CM diverge in the considered scenario, while others can effectively track the target.
Later on in this section KCF and CM are not considered for their poor performance. The proposed
DHIWCF is more accurate for its lower PRMSE close to the CKF. Due to limited consensus iterations,
GKCF, ICF, and HCMCI obtain PRMSE higher than DHIWCF, but is much lower than CI.
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Figure 3. Position root mean squared error (PRMSE) averaged over all 8 nodes and 200 Monte
Carlo runs.

Figure 4 compares the APRMSE of different algorithms. It shows that GKCF and ICF obtain
APRMSE much higher than that of ICF, HCMCI and DHIWCF. Specifically, DHIWCF performs the best
with limited consensus iterations L ≤ 2. As consensus iteration increases, DHIWCF asymptotically
converges to the CKF. In addition, the performance of DHIWCF is a little much better than that of ICF.
In Figure 5, the average NEES of different algorithms with a single consensus iteration is compared.
It is obvious that the NEES curve of ICF lies much higher than the 95% concentration regions, which
indicates that ICF has poor consistency in such a scenario. The NEES curve of CI always lies below
the concentration regions, and hence its estimates is much conservative. The NEES curves of GKCF,
HCMCI, DHIWCF, and CKF lie either below or within the concentration regions all the time steps,
which shows an enhanced consistency.
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Figure 4. The averaged position root mean squared error (APRMSE) averaged over all nodes, all time
steps and all Monte Carlo runs.
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Figure 5. The average normalized estimation error squared (NEES) for the compared algorithms.

The ACEE comparison of different algorithms with a single consensus iteration is shown in
Figure 6. The proposed DHIWCF performs much better with regard to consensus in that it has
relatively lower ACEE than other algorithms. Figure 7 shows the computational time with different
number of consensus iterations. Although HCMCI performs a little better than DHIWCF in the aspect
of APRMSE as shown in Figure 4, its ACEE and computational time are much higher than that of
DHIWCF. Moreover, DHIWCF is a little more time-consuming than the most efficient CI as shown in
Figure 7.
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Figure 6. The averaged consensus estimate error (ACEE) for distributed algorithms.
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6.3.2. Performance Comparison under Chain Topology

In this subsection, an even worse scenario is considered, where the networked sensors are
connected with a chain topology as shown in Figure 8. As is illustrated, the target is observed only by
node 1, and the remaining are communication nodes with no sensing abilities. Node set {3, 4, 5, 6, 7, 8}
and their immediate neighbors do not have measurement of the target, so they are naive about the
target’s state information. It takes at least 7 consensus iterations for node 8 to be affected by node
1. As is shown in Figure 4, the APRMSE of GKCF and CI is much higher than that of ICF, HCMCI,
and DHIWCF. Here, the estimation results of GKCF and CI are not considered.
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Figure 8. A sensor network with chain topology.

In Figure 9, the PRMSE averaged over all nodes and all Monte Carlo runs for different consensus
iterations is given. With a single consensus iteration, DHIWCF performs much better than ICF and
HCMCI. When consensus iterations increase to L = 3, DHIWCF is still smaller than the improved
HCMCI. The result of averaged ACEE with a single consensus iteration is provided in Figure 10,
which indicates that except for ICF, the remaining algorithms preserve good consistency.
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Figure 9. The averaged PRMSE for distributed algorithms with different consensus iterations.
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The APRMSE for the algorithms under discussion is plotted in Figure 11. Similar to the result
in Figure 4, DHIWCF has smaller APRMSE with L ≤ 3, and its performance approaches the KCF as
consensus iterations progress. Although HCMCI obtains APRMSE a little smaller than DHIWCF,
its average ACEE is relatively higher as shown in Figure 12, especially in the case L = 1. Therefore,
the proposed DHIWCF makes a good tradeoff between estimation accuracy and consensus on
local estimates.
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6.3.3. Performance Comparison in Large-Scale Sparse Sensor Networks

This experiment is designed to test the performance of DHIWCF in large-scale sparse sensor
networks. Assume that the interested target is tracked by 100 sensors, which are randomly located
within the 500× 500 space. The communication range of each sensor is set to be Rc = 10

√
Ns. As is

shown in Figure 13, there are 10 sensor nodes and 90 communication nodes in the surveillance area.
The sensor nodes are able to observe the target, while the communication nodes act as relays of
information among distant nodes and has no observation ability [24]. As is shown in Figure 13, most of
nodes in the network are naive about the target’s state, which brings great challenges to target tracking.
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Figure 13. A large-scale sparse sensor network with 100 nodes.

In Figure 14, the estimated tracks by different algorithms with a single consensus iteration in
a certain Monte Carlo run are plotted. It is intuitive to see that DHIWCF and KCF perform much
better than ICF and HCMCI. Especially when the target suffers from relatively obvious process noise
(for instance, the target suddenly changes its moving direction), DHIWCF recovers its estimate to the
CKF more quickly. The results in Figure 15 further suggest that with limited consensus iterations,
DHIWCF is able to obtain more accurate estimates than ICF and HCMCI in that it has relatively lower
PRMSE compared with its counterparts. With respect to estimation consistency, it is shown in Figure 16
that the NEES curve of ICF lies higher than the concentration region, while the NEES curves of the
remaining algorithms are always within or below the concentration region. Therefore, both HCMCI
and DHIWCF show sound consistency on local estimates.
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To compare the overall performance of the distributed algorithms under discussion, Table 1
gives the APRMSE for different algorithms versus consensus iterations. Compared with ICF and
HCMCI, the proposed DHIWCF has lower APRMSE. Especially in case of consensus iterations
L ≤ 3, the advantage is more obvious. This implies that DHIWCF is relatively more accurate. The
computational time relative to that of CKF is investigated in Table 2, where RCT means the relative
computation time. The proposed DHIWCF runs faster than HCMCI for fewer information exchanges.
Although it takes less time for ICF to operate, the lower estimation accuracy and poor consistency
make it not a good choice to estimate the state of interest.
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Table 1. Comparison of ARMSE for different algorithms.

APRMSE(m) CKF ICF DHIWCF HCMCI

1 3.68 22.87 10.44 26.24
2 3.68 14.80 9.23 11.93
3 3.68 12.28 8.37 8.64
4 3.68 11.05 7.63 7.93
5 3.68 10.30 7.46 7.78

10 3.68 8.56 6.87 7.25

Table 2. The relative computational time for different algorithms.

RCT CKF ICF DHIWCF HCMCI

L = 1 1 5.26 7.92 9.49
L = 2 1 6.58 10.84 15.55
L = 3 1 7.30 13.71 21.57
L = 4 1 8.34 16.68 27.04
L = 5 1 9.39 19.55 32.25
L =
10 1 14.18 34.43 60.05

7. Conclusions

This paper considers the problem of distributed state estimation in presence of naive nodes
with constrained communication resources. A novel distributed hybrid information weighted
consensus filter, in which each node exploits not only the measurement information but also the prior
estimate information from its immediate neighbors to update its local posterior estimate, is proposed.
The proposed DHIWCF is able to settle the problem under consideration without any knowledge
of global parameters, and preserve consistency of local estimates as well as achieve relatively high
estimation accuracy and satisfactory consensus. Theoretical analysis with regard to consistency
of local estimates, stability, and convergence of the estimator is also provided. The experimental
results indicate that with limited consensus iterations, the proposed DHIWCF is much more accurate
and reaches better consensus than the existing algorithms. In addition, DHIWCF preserves good
consistency of local estimates in the experiments. Even a single consensus iteration is allowed,
the proposed DHIWCF still performs much better. If more consensus iterations are available, the
proposed DHIWCF would approach the performance of the centralized scheme. In the future research,
a further investigation for distributed state estimation in mobile sensor networks, consensus protocol
with event-triggered communication, more efficient design of consensus weights, and distributed
nonlinear filtering problems and stability analysis will be taken into account.
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