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Abstract: This paper presents examples of the application of the TDR (Time-Domain Reflectometry)
sensor in terramechanical research. Examples include the determination of soil moisture content
during off-road vehicle mobility tests, the determination of snow density before and after the wheeling
of a snow grooming machine and an airplane, as well as the monitoring of turf moisture on a grassy
airfield for the analysis and prediction of safe and efficient flight operations (takeoff and landing).
A handheld TDR meter was used in these experiments. Soil moisture data were correlated with the
vehicle mobility index and a simple model for this correlation was derived. Using grassy airfield
research, soil moisture data were related to meteorological impacts (precipitation, sunlight, etc.).
Generally, it was concluded that the TDR meter, in its handheld version, was a useful tool in the
performed research, but a field sensor that operates autonomically would be an optimal solution for
the subject applications.

Keywords: TDR sensor; soil moisture; terramechanics; wheel-soil interaction; vehicle mobility; snow
density; grassy airfields.

1. Introduction

Terramechanics is a science that deals with interactions between running gears of vehicles
or machines and the soil or other soft, deformable surfaces, such as snow, grass, etc. The basic
problem in terramechanics is analyzing and modeling the effects of soil conditions on wheel or track
performance [1–3], especially the effect of soil moisture content. Soil, being a porous, three-phase,
and highly hygroscopic material, changes its moisture content in response to atmospheric impacts,
such as precipitation, solar radiation, wind, and ambient air temperature, as well as in response to the
presence of vegetation. The dynamics of soil moisture can be very intensive and may significantly
change within hours so it affects the mechanical properties of the soil material [4–6].

In terramechanics, some synonym terms are used to describe the performance of a vehicle on soft,
deformable terrain. Soil trafficability is a set of soil mechanical properties that affect the generation of
tractive forces, net traction, T (N), rolling resistance, RR (N), and drawbar pull, DBP (N) [7]. Mobility
is a more general term, used widely in the automotive or transportation community to characterize the
ability of being “on the move”, sometimes used interchangeably with vehicle dynamics [8,9]. However,
in the terramechanics, the term mobility describes a situation when a vehicle passes over unpaved,
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natural terrain with a supply of traction, typically quantified by means of the drawbar pull, which can
be expressed using the equation below:

DBP = T −RR. (1)

But terramechanics also deals with other aspects of off-road locomotion, for example the effects
of wheeling on soil compaction or safety and ride comfort. For most natural materials, like soils or
snow, moisture content is an important physical property. Modeling the effects of soil moisture on soil
trafficability, wheel performance, and vehicle mobility is a challenge and needs validation with data
measured in real-field conditions.

One interesting terramechanical problem is wheel performance on natural grassy surfaces. Traction
on wet grassland is considerably weakened and the resulting mobility, or vehicle dynamics, is lower
when compared to a hard, dry surface. Not only does the braking force performance become lower
due to the slippery grass, but also the bearing capacity of the soil underneath alters. Consequently,
wheel sinkage and rolling resistance increase, and this situation is especially dangerous for airplanes
operating on grassy runways [10–12].

This paper presents researches in which soil (or snow) moisture has been determined with the use
of a handheld soil moisture meter together with vehicle mobility data or atmospheric conditions data
for wheel-soil interaction modeling.

2. Materials and Methods

2.1. Off-Road Vehicle Mobility Tests

In this study, we aimed to perform full season mobility tests with the use of a real vehicle together
with simultaneous soil moisture measurements.

Mobility tests were performed from April 2006 to March 2007 (full calendar year). The tests were
performed once a week, typically on a Wednesday or Thursday, in the morning hours (9:00–11:00).
The format of the tests was that a test vehicle drove a test track of 500 m in length and the following
components were measured or observed:

• time to reach v = 30 km/h, tV30;
• time to pass the test distance (approx. 500 m), t500;
• absolute mobility in the sense of “go-no go”, GNG (value = 1 for “go”, value = 0 for “no go”);
• a need to use the 4 × 4 drive, AWD—All Wheel Drive (value = 1 for those tests where there was

no need to switch to 4 × 4 mode, and value = 0, when the 4 × 4 drive was required to pass the
test distance).

The test track was partially slopped (ca. 70 m at 4% slope) and partially horizontal (ca. 430 m),
with three curves. The surface was a mix of loess and sandy soils with some gravel, compacted by
minor traffic, since it was used as a provisional road. An approximate composition was: loess soil
70%, sand 20%, and gravel 10%. Original soil was loess, sand and gravel had been added in order to
improve traction and increase vehicle mobility.

The tests vehicle used was the Suzuki Vitara sport utility vehicle (SUV) with a manually controlled
(switch on/off) 4 × 4 drive. In the 2 × 4 mode, the rear axle of the vehicle was steering. Only one
person (driver) was always on board during the tests. The tires used were Wrangler 205/75R15, M+S
(mud+snow), off-road treaded. The test vehicle is shown in Figure 1.

The following formula was developed in order to quantify the mobility of the vehicle by means of
a term, VMI, called the “vehicle mobility index”, from the measured or indicated components:

VMI =
1
5
(

tv30

tw
v30

+
t500

tw
500

+ 2GNG + AWD) (2)
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where: tw
v30 and tw

500 are the reference times obtained on a rigid (asphalt), dry surface.
Note the VMI values were within the range from 0 to 1. The formula given in Equation (2)

respected the following effects upon mobility:

• tv30, longitudinal dynamics of the vehicle motion, in terms of the time of vehicle acceleration,
from stop to reaching a velocity of 30 km/h, related to the dry asphalt conditions;

• t500, longitudinal dynamics of the vehicle motion, in terms of the time to drive the distance of
500 m, related to the dry asphalt conditions;

• GNG, the absolute mobility, quantified by means of the number of “go” cases observing during
the tests; and

• AWD, the number of cases when the 4 × 4 mode was not required to pass the test.

One of the main goals of this part of the study was to determine the total effect of meteorological
factors, such as precipitation, wind, sun radiation, and temperature, but without identifying or
measuring them. The only variable was the calendar date of the day of mobility tests. From the aspect
of wheel-soil interactions, it would be practical that all of the above mentioned individual factors
would be taken together in a form of a single parameter or physical quantity. It was assumed that soil
moisture content could be such a quantity in this case.

Soil moisture content was measured with the use of a handheld TDR (time-domain reflectometry)
meter, originally developed by the Easy TEST/Institute of Agrophysics, Polish Academy of Sciences in
Lublin, Poland. Four experimental sites, filled with four different soils, were tested: loess, sand, forest
soil, and turf with grass vegetation. The sites were approx. 1.0 m × 1.0 m and the measurements were
made during the entire 2006 season, with the exception of days with freezing conditions. Since the soil
used for the mobility test track was mostly loess, the results of loess moisture content were taken for
the analysis. Results of the three remaining soil were recorded for a reference in future research.Sensors 2019, 19, x FOR PEER REVIEW 3 of 16 
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2.2. Monitoring of Turf Moisture Content of a Grassy Airfield

The dynamics of soil moisture on a grassy runway significantly influenced both the ground
performance of the aircraft and the organization of flight operations. Due to the lack of information
about the conditions on the grassy runway, it was not known when to stop flights and when they could
be resumed. This les to dangerous situations (too “courageous” traffic management at the airport) or
to long-term cancellation of flights.



Sensors 2019, 19, 2116 4 of 16

Conditions on a grassy runway may change in less than 1 h. There are known situations when the
conditions at the destination grassy airfield have changed during the flight so that the landing became
dangerous. It also happens that the grassy runway at a transit airport, as a result of hydration after
convectional rain, may not be suitable for aircraft take off to continue the trip. Taking into account the
described situations, an analysis of the performed humidity measurements were carried out in terms
of dynamics.

Usually in the spring months in Poland there is the highest dynamics of soil moisture, which are
associated with intense convective precipitation, as well as high air temperature and solar radiation.
In addition, the still small, growing vegetation contributes to both intensive irrigation, as a result of
precipitation (less water intake through vegetation), and also rapid evaporation of water due to the
action of wind. Therefore, for the further analysis, the period from 15 to 30 May 2014 was selected and
adopted as the time of occurrence of high dynamics of soil moisture on a grassy runway.

Soil moisture content was measured on a grassy runway of the Radawiec airfield, located near
Lublin, southeast Poland using a handheld TDR meter, as shown in Figure 2. This place was different
from the experimental site of vehicle mobility tests. In the selected period, soil moisture measurements
were carried out on a research plot covered with grass turf. The time interval between measurements
was 3 h, but no measurements were taken when the weather situation was stable. Simultaneously,
weather observations were carried out: air temperature, and wind and cloud coverage were measured.
For the analysis, a few characteristic time sections were selected, in which intense factors affecting the
dynamics of soil moisture (convective precipitation, high air temperature, strong wind) were observed.
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Figure 2. The handheld time-domain reflectometry (TDR) meter used for measurements of soil moisture
content of grassy runway.

2.3. Determining the Snow Density by Means of Snow Moisture Measurements

One unconventional use of the TDR meter is the possibility to determine snow density.
Measurements were done by the authors in order to determine the initial snow conditions during
measurements of snow stress by a grooming machine and its effects upon snow compaction at a ski
resort [13], as well to compare wheeling versus skidding on the snow surface for a light airplane [14].

The experiment with a grooming machine was performed in March 2009 in a mountainous area at
an altitude of approximately 1700 m above sea level. The region is extensively used by alpine skiers,
inside Tatra National Park. On the day of the tests, the sky was 8/8 clouded and snow was falling and
the air temperature was −6 ◦C. The temperature of the snow where the tests took place was −1.9 ◦C,
its depth was 170 cm, and there was a layer of 7–10 cm of fresh fallen snow. A Bombardier snow
grooming machine was used in this experiment. The vehicle was driven at a low speed of about



Sensors 2019, 19, 2116 5 of 16

3–5 km/h. The experiment consisted of six passes forward and backward to obtain data for describing
the effect of multiple passes upon snow stresses and the results are reported in [15]. Measurements
with the use of the TDR meter were done in snow before the pass of the machine, at four depths: 10, 20,
30, and 40 cm.

In the second experiment, a four-passenger, short landing and takeoff (STOL) airplane was used.
The airplane was equipped with a combined ski and wheel landing gear system, using the aircraft
skis of 1.75 m × 0.50 m (length × width) that were mounted to wheel axles (see Figures 3 and 4).
A pneumatic system enabled the remote raising or lowering of the skis. Moreover, a small 0.75 m
× 0.2 m ski was installed along with the tail wheel. The TDR snow measurements were performed
together with snow stress measurements, which were done with the use of a pressure cell installed in
the snow at 10 cm depth. The TDR probe was inserted into fresh snow as well as into the snow in the
rut formed by the wheel and by the ski.
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Figure 3. The two machines used in the snow measurements: the Bombardier snow grooming machine
(upper photo) and the PZL 104 Wilga 35A airplane (lower photo).

In both experiments, snow density was determined based on measured values of electrical
permittivity of snow and density was obtained from Looyenga’s formula with an assumption of ice
permittivity equal to 3.15 [14,15]:

εsnow = (Wεαw + Iεαice + Aεαair)
1
α (3)
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where, W—water content, I—ice fraction, A—air in snow, εw—water permittivity, εice—ice permittivity,
εair—air permittivity, and α = 0.3.

Snow density was calculated knowing that:

W + I + A = 1, (4)

and assuming that W = 0.
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machine (upper photo) and with a light airplane (lower photo).

3. Results

3.1. Effects of Soil Moisture Upon Off-Road Vehicle Mobility

Selected results of the vehicle mobility tests are presented in Figure 5. Here, we have values of
VMI for four successive months of the 2006 year. Red bars on the graphs indicate the need for using the
4 × 4 drive mode. The vehicle was always started in 2 × 4 mode and, if the vehicle became immobile,
it was then switched to 4 × 4.
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Figure 5. Results of the vehicle mobility tests performed during four months in the 2006 year.
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It is visible that the VMI for early spring months (March and April) reached higher values than in
May or even June. Atmospheric precipitations that occurred in May and June with a great intensity
(thunderstorms, convective rains) affected vehicle mobility more strongly than the effects of snow
cover of thawing soil during early spring. Furthermore, the number of cases with the need to switch to
the 4 × 4 mode was higher in late spring/early summer. An interesting observation is that the dynamics
of the VMI value were considerably higher in June than in March.

Figure 6 presents the average values of VMI for the months of the entire season 2006–2007.
Averaging was done arithmetically by adding the results for a given month then dividing by the
number of tests. The values fell between 0.2 and 0.74. Similar to early expectations, the lowest
mobility was observed in winter/spring and the highest in summer/autumn. Low traction in winter
and spring was typical as a result of mainly low temperatures and less solar radiation, which led to
lower evaporation and lower soil water flux due to freezing. Although cumulative rainfalls in Poland
are the greatest in May–July, the effects of ambient temperature, wind, and solar radiation were more
pronounced upon soil MC (Moisture Content) and mobility. Typically, a huge rainfall during a June
thunderstorm weakened the traction to “no-go” conditions, but the soil rebuilt its mechanical strength
very quickly and the mobility was acceptable or good.
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Figure 6. Average values of the vehicle mobility index (VMI) for the 2006–2007 season.

It is also interesting how the dynamics of vehicle mobility changed in each month. These
dynamics were significantly greater during spring/summer months as a result of the weather factors
discussed above. Huge rainfalls in summer, together with high ambient temperatures, wind, and sun
radiation, resulted in dynamical changes in mobility. More stable weather in autumn, with very few
precipitation events, lower temperatures, and less sun radiation, caused the lower soil MC and the
resulting traction reduction, changing over time and the values of mobility were medium for those
seasons. In early spring, when freezing/thawing cycles were dominant, vehicle mobility was poor.
Based on the measurements, the worst mobility in winter was observed in the last week of February
(27–28 February).

Here, we noticed some drawbacks in the test procedure. We aimed to repeat the measurements
every week, but the days for the tests were chosen at random. Due to the high dynamics of soil MC in
spring/summer months, it was possible that the measurements were not representative. We performed
some measurements in summer after heavy rainfalls, with results of the VMI near to zero, while the
traction on the remaining days of a given week were quite good or almost very good. However,
the winter 2006/2007 in Poland was dry and warm. There were very few days with freezing temperatures
and very little snow fell that winter. The only snow fell on 25 January 2007, where there was 25 cm of
fresh powder snow, which disappeared in the following days very quickly. We had not repeated the
measurements the following winters, but by simple comparison, the winter of 2009–2010 was probably
the strongest and snowiest in the last 30 years in Poland.

Summarizing the results, some trends can be observed:
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• Spring—a tendency for mobility values to increase in the early spring months, then strong
dynamics in mobility value, especially in June;

• Summer—high dynamics of mobility in early summer, then almost stable at approximately the
75% level;

• Autumn—a tendency for mobility values to decrease with no dynamic changes, with an average
mobility of 30–40%; and

• Winter—a tendency for mobility values to decrease at the beginning, then remain almost stable,
with rather low values. At the end of this season, in March, there was an increase in mobility
value together with some dynamics.

One interesting result was the observed need for switching to 4 × 4 mode, which is depicted with
red bars on the graphs. Summarizing the results for all months we have the following:

• Spring—8 instances of 4 × 4 switching in a total of 20 tests;
• Summer—2 instances of 4 × 4 switching in 16 tests;
• Autumn—8 instances of 4 × 4 switching in 15 tests;
• Winter—10 instances of 4 × 4 switching in 19 tests.

As it can be noticed, the most frequent need for the 4 × 4 was in winter, spring, and autumn. This
conclusion was in agreement with the mobility results above.

3.2. Relationship Between Vehicle Mobility and Soil Moisture

In order to model the effect of soil moisture upon vehicle mobility, a correlation between loess soil
moisture and the VMI was created. The results of soil MC measurements are included in Figure 7, and
based on the data for the loess soil, we calculated the correlation, which is shown in Figure 8. It is
visible that the function of the correlation is decreasing, but its course is not uniform in the whole
range of the soil MC. Consequently, the lower the soil MC, the higher the VMI. For a soil MC within
17% and 22%, vehicle mobility was almost unchanged, constant at the level of approximately 0.5. For
an MC outside of 22%, the curve fitting shows that the VMI drops to lower values, but this should be
taken with due caution, since the R2 is low (0.506). Although the soil plastic or liquid limits were not
determined at the time of measurements, the behavior of the VMI, in terms of the soil MC, could be
explained as the effect of the fraction of sand in the soil composition. The radical drop in VMI at MC =

17% may have been caused by the loss of cohesion, which is typical for sands with increasing moisture.
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Figure 7. Results of the measurements of the soil MC for the four different soil surfaces during the
warm months of the year 2007.
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3.3. Dynamics of Soil Moisture Content of A Grassy Runway

The results of the measurement of soil MC of a grassy runway are presented in graphical form in
Figures 9–13, and include average soil moisture content values along with trend lines as well as the
error bars.

Figure 9 shows the averaged values of soil moisture measured every hour. The measurement
was started after a very intense rainfall (about 30 L/m2). As one can see, the dynamics of soil moisture
change is high, where, within 5 h, the humidity decreased from 36.62% to 32.84%. Such an intense
change over time occurred despite the fact that the atmospheric conditions were not favorable: air
temperature was about 18 ◦C, full cloudiness, and weak wind. However, it should be noted that the
initial value of soil moisture was very high (36.62%, the highest absolute average value of humidity
registered during the study), which initially caused the very intense movement of water in the soil.
The course of averaged values is described by a logarithmic curve, which is characterized by a very
good fit with the experimental results (R2 = 0.96).
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Figure 9. Dynamics of soil MC in a grassy runway on 17 May 2014.

The next figure (Figure 10) shows the course of average values of soil moisture on the second
day after rainfall. The measurements were taken every 3 h. Meteorological conditions were similar to
those on the previous day, and only the temperature was slightly higher at 19 ◦C. Additionally, there
were break intervals during the day. It can be noticed that the dynamics of soil moisture change was
slightly smaller than before. The logarithmic curve, which describes the course of measured values,
is characterized by a much lower adjustment coefficient, R2 = 0.76, which indicates fluctuations in
humidity during the day, probably caused by sunshine, and, thus, more intensive evaporation of water
from soil and plants.
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Figure 10. Dynamics of soil MC in a grassy runway on 19 May 2014.

Figure 11 shows the selected results of measurements carried out on May 19–21. The measurements
were carried out at various time intervals. In the discussed period, the weather was full cloud, and,
during the day, the temperature was around 19 ◦C, while at night it dropped to about 14 ◦C. On the
first day, May 19, at around 20:00 (UTC +2), there was a convective rain with an intensity of 20 L/m2,
while on the second day, May 20, rain of a similar intensity fell in the evening. Additionally, on May
21, the grass was mown in the morning. The results are described by two curves, one logarithmic,
which is very weak (R2 = 0.36), and the 5th-order polynomial. In the case of the polynomial, both the
R2 coefficient and the shape of the curve, in relation to the points on the graph, are much better.
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The course of changes in soil moisture on May 22–24 is shown in Figure 12. Atmospheric
conditions on these days were variable: during the first day, it was initially warm, almost hot (23–30 ◦C),
and sunny, then on the next day it cooled to about 18 ◦C with an overcast sky. On May 24, in the
evening (18:00 UTC +2), there was a small convective rainfall. The significant dynamics of soil moisture
in the analyzed period was caused by atmospheric factors. At the end of the analyzed period, the
moisture content of the soil dropped to approximately 20%. Similarly, as before (Figure 11), a much
better fit was obtained in the case of a polynomial curve, but this time a 4-order polynomial was used.

Figure 13 presents a situation where the average values of soil moisture increased as a result of
irrigation of the soil by precipitation. After a period of stable weather from 25 to 27 May, a convective
rainfall occurred in the morning hours of 28 May, but it was not very intense. At midnight, a very
intense rainfall occurred (about 40 L/m2). This caused a significant increase in soil moisture, where it
reached 31.2%. The analytical description of the MC course was carried out using a polynomial curve
and the fit is very good, where R2 = 0.99.
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At the Radawiec grassy airfield, the majority of flight operations are training flights of light
aircraft and gliders. On the basis of practical observations, it was found that the optimal soil moisture,
at which safe aerial operations are performed without significant impact on ground performance, was
about 18–23%. The maximum acceptable humidity reached 30%, while, in these conditions, there was
a deterioration of the aircraft’s performance on the ground, which was manifested by a longer ground
roll on takeoff. The absolute maximum value of soil moisture recorded in the 2014 season was 42%,
when air operations were suspended. The presented research showed that it was necessary to monitor
the soil moisture of a grassy runway with a frequency of at least one measurement per hour. This
was due to the observed dynamics of changes in humidity, especially in the case of heavy rainfall,
high external temperature, and sunshine. It can be stated that, especially in the case of the analysis
of changes in humidity over more than one day, the description of the course and the polynomial
function of a 4- or 5-order was much more advantageous than the logarithmic curve.

One good summary of this kind of research would be to build a model that would take into
account all these factors. So far, known models of soil moisture dynamics primarily take into account
the movement of water in the soil and the uptake of water by plant roots (Anderson et al., 1983, [5]).
However, there are no models that take into account weather factors such as wind, sunshine, and
ambient air temperature together with soil MC in a dynamic way. One difficulty in doing so is the
lack of methods and results of real-time research. A partial remedy for this situation is the proposal of
a field sensor that provides data on the soil moisture of the grass aerodrome and the height of the grass.

3.4. Design Idea of a Field Sensor for Soil MC Remote Measurements

High dynamics of soil MC in a grassy airfield surface required frequent measurements in order to
monitor all effects correctly. This, however, required a person, who operates the TDR, to be available
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almost all of the time during the measurement campaign. One good remedy for this is a remote
measurement system, and such systems are available commercially. However, in addition to the soil
MC, grass height is of importance for wheel performance and vehicle dynamics. Therefore, an idea
of the authors was to design and develop a field-integrated sensor for soil MC and grass height that
operates autonomously. The concept assumes that the sensor should be maintenance-free and that the
gathered data could be collected from anywhere in the world, so there is no need for an operator to
actually be present in the place of measurements. Another feature would be that the installation of
the sensor on the airfield does not disturb ground traffic of airplanes, and that the mechanical design
would be load resistant to the effect of wheeling or walking. The sensor should be easy to install or
remove and could be left outdoor at ambient air temperatures not below −10 ◦C.

Generally, the field sensor design would consist of two sub-systems:

- a TDR sensor for soil moisture content measurements, and
- a grass high sensor.

The TDR sensor intended for use in the design is a commercially available unit with some
modifications that ensure faultless operation under field conditions. These modifications would
include:

- adding a water- and dust-resistant case of a higher mechanical strength in order to ensure safe
operation in the field;

- installation of a high capacity, highly efficient power supply that would allow for long time
operation; and

- adding communication ports for linking with external devices and a miniature universal serial
bus (USB) port.

The grass height (length) measurement module would use an optical sensor for detecting the
presence of grass blades at a given height above the ground. The measurement method would be
digital discrimination based on light permeability though the grass blades. Figure 14 depicts the design
with details. For more information please refer to references [16,17].Sensors 2019, 19, x FOR PEER REVIEW 14 of 16 
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The practical problem with a grassy airfield occurs in short runways, where an airplane could
eventually not achieve liftoff, especially at high soil MC conditions. It is difficult to monitor and report
runway conditions on seldom used, remote airfields. Incidents and accidents during takeoff or landing



Sensors 2019, 19, 2116 14 of 16

are reported in piloting or aviation magazines quite frequently [18–23]. Therefore, future research will
focus on the research and development of the described field sensor and applications in the GARFIELD
online information system, that is being developed by the authors [24,25].

3.5. Snow Density

Results from the grooming machine experiment, i.e., values for four different depths of snow, are
included in Table 1. Together with TDR measurements, snow stress measurements were done with
four single-axis pressure sensors. For more details, please refer to the research by Pytka, 2010 [13].
In the lower part of this Table, snow density data obtained in the airplane experiment are collected. The
effect of the tractive element—wheel or ski—is evident: wheel loads caused almost 2.5-times higher
snow compaction than ski loads.

Table 1. TDR readings and snow density data.

Grooming Machine Experiment

Depth 0–10 cm 10–20 cm 20–30 cm 30–40 cm
TDR, ε 1.07 1.17 1.25 1.46

Snow density [kg/m3] 129 311 447 778

Airplane Experiment

Snow Undisturbed snow Compacted snow-ski Compacted snow-wheel
TDR, ε 1.256 (0.027) 1.340 (0.015) 3.318 (0.363)

Snow density [kg/m3] 447 612 1309

4. Conclusions

In the paper research on soil moisture content for wheel and vehicle performance on natural,
deformable terrain were performed.

Soil moisture content was measured by means of a handheld TDR meter in a mix of loess, sand,
and gravel on a provisional road (test track), together with vehicle performance for the entire season
2006–2007, and a relationship between the soil MC and the vehicle mobility index (VMI) was derived
from experimental data. It was assumed that the lower the soil MC, the higher the VMI, although the
function describing this dependence was neither linear nor monotonic.

Soil MC was also determined in the surface of a grassy runway, together with observations
of weather elements: precipitation, sun radiation, wind, and ambient air temperature. A family of
correlations was created, together with a simple mathematical description. It was noticed that the soil
moisture content on a grassy airfield changed very rapidly, especially due to convective rains (wetting),
and high temperatures and sunshine (drying). A measurement frequency of about 1 per hour would
be required for monitoring the grassy surface. Another important factor affecting changes in soil MC
was grass height.

In the third part of this study, the TDR meter was used for indirect determination of snow density
during two experiments, one with a grooming machine and another with a light airplane with ski gear
on a snow covered runway.

The experiments presented in this study proved the high value and usefulness of the TDR
measurement technology in terramechanical research. The method was sensitive enough for the factors
that affected the off-road vehicle mobility. However, the need for the handheld TDR operation by
a technician was disadvantageous because it was difficult to perform measurements in several places
at a time. Therefore, one conceptual conclusion of the study was an idea for an integrated field sensor
for soil moisture as well as grass blade length monitoring on a grassy airfield runway. The instrument
would utilize the so called “internet of things” philosophy and would consist of a TDR sensor, an
optical sensor, a microcomputer system, and a GSM communication module. The design should
ensure the autonomous operation of the sensor with options for wired or wireless transmission of
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the measured data. One prospective practical use of such a sensor would be the GARFIELD online
information system on the runway surface condition for grassy airfields.
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