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Abstract: Drivers’ behaviors and decision making on the road directly affect the safety of themselves,
other drivers, and pedestrians. However, as distinct entities, people cannot predict the motions of
surrounding vehicles and they have difficulty in performing safe reactionary driving maneuvers
in a short time period. To overcome the limitations of making an immediate prediction, in this
work, we propose a two-stage data-driven approach: classifying driving patterns of on-road
surrounding vehicles using the Gaussian mixture models (GMM); and predicting vehicles’ short-term
lateral motions (i.e., left/right turn and left/right lane change) based on real-world vehicle mobility
data, provided by the U.S. Department of Transportation, with different ensemble decision trees.
We considered several important kinetic features and higher order kinematic variables. The research
results of our proposed approach demonstrate the effectiveness of pattern classification and on-road
lateral motion prediction. This methodology framework has the potential to be incorporated into
current data-driven collision warning systems, to enable more practical on-road preprocessing in
intelligent vehicles, and to be applied in autopilot-driving scenarios.

Keywords: data-driven intelligent vehicles; data mining; driver behavior classification; lateral motion
prediction; vehicle mobility data

1. Introduction

According to the latest survey about causes of motor vehicle crashes in the United States [1],
nearly 94 percent of crashes in 2015 were attributed to driver-related errors, including recognition,
decision, performance, and non-performance errors. Approximately 33 percent of crashes caused by
driver-related errors were due to the false prediction of actions by others, misjudgment of vehicle
distance and speed, and other decision errors, while recognition errors caused by driver inattention and
inadequate surveillance were responsible for 41 percent of these accidents alone. The false prediction of
lateral motions by other vehicles is exceptionally dangerous for both the ego vehicle and the preceding
ones. This maneuver is one of the riskiest movements during driving due to its changes in both the
longitudinal and lateral velocity in the presence of the surrounding moving vehicles [2,3]. Nevertheless,
successful prediction can allow the driver more certainty to prepare for reactions. In addition to the
basic safety concerns, the development of the advanced driver assistance systems (ADAS) in future
intelligent driving systems also requires this predicting scheme to resolve the uncertain behaviors of
human drivers in order that they can co-exist within the foreseeable future.

With the rapid development of data-driven intelligent transportation system [4], there is an
increasing number of studies using data from multiple sources (e.g., inductive loop detectors, laser radar,

Sensors 2019, 19, 2111; d0i:10.3390/s19092111 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6098-0467
http://www.mdpi.com/1424-8220/19/9/2111?type=check_update&version=1
http://dx.doi.org/10.3390/s19092111
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2111 20f 18

GPSs, and other in-vehicle data acquisition devices) to provide timely and accurate transportation and
driving information for on-road drivers. However, the development of the auto-driving vehicles based
on these advanced sensing technologies is a process and there will be a stage when auto-driving and the
human driver co-exist. The behaviors of human drivers are unpredictable compared to pre-programmed
driving assistance systems. It is necessary to develop a mechanism for the program-based auto-driving
system to predict possible actions of human drivers and to be prepared to respond to the possible
lateral motions of the preceding vehicles. With the proposed prediction method, the driving assistance
system on the ego vehicle can utilize the mobility data of the preceding vehicles, which is acquired
from the sensors installed, to classify the driving manners of the human driving the preceding vehicle
and further use machine learning methods to estimate their behaviors. With this knowledge, the safety
of the ego vehicle can be improved by reducing the uncertainty caused by other surrounding vehicles.

Therefore, we propose a two-stage, data-driven approach to predict the lateral motions of the
preceding vehicles. The Gaussian Mixture Model (GMM) is used to classify the driving behavior into
erratic and consistent. This result is then utilized to bias the lateral motion predictions made by two
types of ensemble decision trees for more safety. To implement the proposed methodology, we utilize
real-world vehicle mobility data acquired from Ann Arbor, Michigan, provided by the U.S. Department
of Transportation (USDOT) [5]. The proposed prediction methodology of surrounding vehicles has the
potential to be integrated into autonomous or assistance-based driving systems. Its functionality can
assist drivers to make decisions and to increase safety.

This paper is organized as follows: In Section 2, several relevant works are reviewed, and the
goal of this paper is proposed with the research gap. In Section 3, the real-world data used for the
algorithms’ training is introduced, and data preprocessing techniques are described. In Section 4, the
methodology is proposed, and some initial prediction results are presented. In Section 5, the test results
of the trained prediction model based on a larger set of data are listed and discussed. Finally, Section 6
concludes the paper.

2. Literature Review

2.1. Intelligent Driving System and Vehicle Motion Prediction

Currently, there are three types of models for vehicle motion prediction: physics-based motion,
maneuver-based motion, and interaction-aware motion predictions [6]. The physics-based motion
models consider vehicles as dynamic entities following the laws of physics. The maneuver-based
motion models take the maneuvering behaviors of the driver into consideration when evaluating
vehicles actions. These maneuvers are considered as independent. The interaction-aware motion model
represents vehicles as maneuver entities interacting with each other, i.e., the influence brought by the
motion of other vehicles is contemplated. The prediction in this paper is focused mainly on vehicle
kinetic statuses. These statuses are the result of the behaviors of drivers, especially maneuver actions.
Therefore, our proposed model is related to both physical-based and maneuver-based motion prediction.
There are multiple existing researchers using similar types of models. Hsu et al. (2012) utilized a sensor
fusion system composed of a three-antenna GPS, four suspension displacement sensors, and an inertial
measurement unit to acquire real-time six-degree-of-freedom vehicle dynamics. The dynamic data are
used to estimate the system dynamic model based on the recursive least squares estimation method.
The future dynamics of the vehicle are predicted using this model based on the real-time data fed by the
sensors [7]. Sekizawa et al., in 2007 developed a stochastic switched autoregressive exogenous (S5-ARX)
model to predict the collision avoidance behavior of drivers using simulated driving data in a virtual
reality system [8]. Chen et al., in 2018, designed a visibility-based collision warning system to use
the neural network to reach four models to predict vehicle rear-end collision under a low visibility
environment [9]. Specifically, Shan et al., in 2013, proposed a long-term vehicle position tracking and
prediction model that incorporates vehicle behaviors and physical features of the driving environment
(i.e., road segments, and intersections and areas). The multiple model approach used the particle filter
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for estimating position in the external environment [10]. Taniguchi et al., in 2015, proposed a double
articulation analyzer with temporal prediction (DAA-TP) to model driving behaviors and predict their
actions over time [11]. With historical traffic data, Jiang and Fei, in 2016, employed neural network
models to predict average traffic speeds of road segments and a forward-backward algorithm on Hidden
Markov models to predict speeds of an individual vehicle [12]. Many proposed approaches have also
addressed distinct scenarios, such as crossings or highway exits.

Nonetheless, most of these predictions have taken driver behavior as inputs, and many predictions
are made based on either mathematical modeling or an isolated lab created scenario instead of using
real-world context. While mathematical models can provide the most complete data, they have
the limitation of modeling. Regardless of the sophistication of the model created, the real-world
or real-human behavior is more complex. Because of the inevitable assumptions made there will
be some information lost during the model construction. Lab experiments overcome this as they
collect data of real human drivers. However, they are limited due to simulation tools and an isolated
environment. The designated vehicles and lack of diversity of the drivers can also easily bias the data
acquired. Therefore, data collected in a real-world context from a diverse vehicle and driver set are
more representative for driving behavior studies.

2.2. Prediction of Vehicle’s Maneuver-Based Motion

A maneuver is a procedure or method of working that involves expert physical movement, and it
is assumed that a vehicle’s future motion will match the intended maneuver of a driver [6]. Therefore,
studies regarding vehicle’s motion prediction and driver intention estimation have both been included
in this section. Specifically, the estimated maneuvers may include left/right turn, left/right lane change,
lane keeping, braking, keep speed, safe errant or complaint violating [8,10-13]. Features that have
been utilized to make the predictions include physical metrics of the vehicle (e.g., longitudinal motions
metrics, and lateral motions metrics), environmental data (e.g., road structure), and driver behavior.

We are particularly interested in the real-time on-road vehicle lateral motion prediction. Although
significant efforts have been made by building mathematical models and conducting laboratory
experiments [14-16], the actual environment on the road is much more complicated, which creates
remarkable differences. Therefore, lab simulations can provide limited references for on-road motions.
Fortunately, statistical prediction models with more available large-scale traffic data have gained
increased attention to address the method gap.

Among the proposed statistical methods, a few data-driven approaches have been applied in
classifying driving patterns (e.g. car-following behaviors [13]) and predicting maneuver intention of
vehicles in complex scenarios. For example, Morris, et al., in 2011, constructed a real-time on-road
prediction system to detect the lane-change intention of a driver. The system employed a Bayesian
extension of support vector machines (SVM), called a relevance vector machine to classify intention
based on features from radars, cameras, and sensors. Yao et al., in 2013, developed a parametric lane
change trajectory prediction approach based on real human lane change data. This method generated a
similar parametric trajectory according to the k-Nearest real lane change instances [15]. Kumar et al., in
2013, proposed an online learning-based approach to predict lane change intention, which incorporated
support vector machine (SVM) and Bayesian filtering [16]. The prediction was based on the information
about the position of the ego vehicle to the road collected by lane trackers. One single vehicle with
two drivers was used for the lane changing data collection and 139 lane changes were collected. The
results showed that the proposed approach is able to predict the intention of a driver to change lanes
on average 1.3 s in advance, with a maximum prediction horizon of 3.29 s.

Liebner et al., in 2013, developed a prediction approach for lateral motion (i.e., going straight
and turning right) at urban intersections with and without the presence of preceding vehicles [17].
The study focused on the parameter of the longitudinal velocity and the appearance of preceding
vehicles. Butakov and Ioannou, in 2015, introduced a model of the kinematic characteristics of the ego
vehicle before and during lane change behavior [3]. Yoon and Kum, in 2016, proposed a multilayer
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perceptron approach to predict the probability of lane changes by surrounding vehicles (i.e., the
leftmost lane, the center lane, and the right lane) and trajectories based on the history of the vehicles’
position and their current positions [14]. Nilsson et al., in 2017, designed a lane change maneuver
algorithm to estimate the existence of a longitudinal trajectory that allows the lateral motion of a lane
change maneuver [2]. Woo et al., in 2017, constructed a lane change prediction method for surrounding
vehicles. The method employed SVM to classify driver intention classes based on a feature vector
and used the potential field method to predict trajectory. Experimental results demonstrated that the
approach could detect a lane change 1.74 s before the target vehicle crossed the centerline with 98.1%
accuracy [18].

Opverall, in Sections 2.1 and 2.2 the aforementioned studies on maneuver-based motion predictions
are mostly based on laboratory experiments and very few used real-world data. Most on-road real-time
prediction approaches have high requirements for data quality and need specific kinds of data to
make predictions, increasing the difficulty of being utilized in driving assistant systems. The lack of
information in experimental or synthetic raw data serves as an obstacle in both the general intelligent
driving system design and more specific vehicle maneuver-based motion prediction. Therefore, we
propose a new data-driven approach using machine learning algorithms to predict the lateral motion of
the surrounding cars based on real-world vehicle data in real time. The real-world data were collected
for model training with a considerable number of vehicles over a long-term period. New features were
also created during a preprocessing stage to include the behavior characteristics of drivers. Therefore,
the data were more informative and the model trained was more accustomed to scenarios in the real
world. The functionality can be easily deployed in the vehicles equipped with any level of driving
assistant systems. Only basic detection devices are required as the prediction model was trained with
observations of vehicle kinematic status.

3. Dataset Description and Preprocessing

The dataset utilized in this paper is generated based on the safety pilot model deployment
(SPMD) program [5]. As a part of the connected vehicle safety pilot program held by the USDOT,
the SMPD serves as a comprehensive data repository that contains real-time vehicle mobility data,
vehicle-to-vehicle (V2V) communication data, and road environment data. All the data were collected
from on-road vehicles in real time with the frequency of 10 Hz to record motions, environment,
and consecutive events of vehicle movements. Data were acquired from the Ann Arbor, Michigan
transportation network. The periods of data collection included two separate months: October 2012
and April 2013. It was assumed that there was no large or fundamental variation in the behavior
and manners of the drivers, as well as the environment, for vehicles driving within the 6-year period
between the time when the dataset was collected and the time this study was conducted. On the
other hand, the proposed method in this paper is adaptive to other scenarios. That being said, it is
convenient for the proposed method to be utilized in any other suitable data that can provide the
required information.

3.1. Description of the Safety Pilot Model Deployment Dataset

The SPMD dataset was composed of four parts: driving dataset, basic safety message (BSM)
dataset, roadside equipment (RSE) dataset, and contextual data dataset. The driving dataset contained
the vehicles” mobility data collected by two different sets of data acquisition devices developed by the
University of Michigan Transportation Research Institute (UMTRI) and the Virginia Tech Transportation
Institute (VTTI), respectively. These mobility data were time-stamped and included the acquisition
device ID, which was unique for each vehicle. The trips of the monitored vehicles were also identified
by the status of ignition, meaning that one trip started when the ignition was on and ended when it
was off. The system recorded the vehicle’s motion data, such as GPS location (longitude and latitude),
speed, acceleration, and body angle change; hardware status data, such as brake status and turn signals
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statuses; road environment data, such as distances to the lane lines, distances and speed to surrounding
objectives, and whether the vehicle had crossed the lane lines or not.

In this paper, we selected the dataset collected by the VTTI devices due to the consistency of the
vehicles and their detailed spatial-temporal records. The dataset was composed of two major parts: the
vehicle primary mobility data and the radar data. The primary mobility data contained motion and
on-vehicle devices status records of the concerned vehicles, including 64 devices/vehicles and 14,315
trips in 61 days. The detailed data features can be found in [5], which also served as original features
for model training. The radar data contained objective or target information about vehicles or objects
surrounding the vehicle.

3.2. Time Series Data Processing

To process instances of lateral motion, the time series data have to be converted to features and
labels to be acceptable to the regular data mining methods. The conversion is not meant to bring any
value change to the original data. The operations involved are basically reshaping and new feature
creation based on the original data. In order to do this, we found all the time tags where a lane change
started to occur. We then calculated the lateral motion duration and considered a minimum time
between lateral motion events in order to filter out potential mislabeling of the same lateral motion
event as multiple events. For each event’s features, five-second windows (50 times tamps) were used
before the turn. Negative labels were then created by chunking the rest of the data into five-second
windows. Since we aimed to predict the lateral motions of the vehicle ahead and assist the driver
in making a correct judgment, there should be some reaction buffer time left for the driver or the
autonomous driving system. Two buffer times, m = 5 (0.5 s) and m = 1 (0.1 s) were deployed in the
test results section to demonstrate the algorithm capability. The data containing clear lateral motion
signal were eliminated, so were the data lay in the defined reaction time for the driver. The typical
data chunk of positive events can be shown as in Equation (1).

1) (d)
ar
X , e, X
D(t) _ t—(n-1) t—(n-1) )
(1) (d)
xt—m’ B xt—m

where, D) ¢ Rm-n+1)xd j5 the data chunk for the lateral motion event starting at time ¢; x](,l) is the
i-th element value at the timestamp j, i € {1,...,d}; d is the number of elements; m is the number of
timestamps ahead of the lateral motion, namely the reaction time; n = m + window_size determines
the beginning time of the current data chunk.

Given the nature of the driving, this dataset is heavily skewed toward non-turning events. Based
on our definition of the lateral motion events, the ratio for left turns in the whole dataset is only 1.54%
and that for the right turns is 1.49%. Even though the appearances of both events are rare, the rates are
close, which makes common sense. In the following methodology section, multiple technics will be
discussed about eliminating the negative influence of this dataset unbalance between a large number
of no turns and a dramatically small quantity of turning events as compared with no turns.

3.3. Features Creation Based on Summary Statistics

Summary statistics are widely utilized in existing research [4,6] for analyzing time series data
within the field of machine learning. They have an advantage in effectively reflecting the numerical
characteristics of data. We adopted four summary statistics including mean, standard deviation,
minimum, and maximum, as new elements of our features. Intuitively, the sudden variation of
vehicles’ motion indicates the drivers’ intention to change the current driving status. When drivers feel
comfortable about the present situation, they tend to keep speed and the vehicle remains stable. The
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larger the standard deviation and/or maximum values are, the greater the possibility that the driver
is erratic. Based on effectiveness, we introduce four summary statistics including mean, standard
deviation, minimum, and maximum, as new elements to our features.

Since there are d elements in each data chunk, the dimension of the summary statistics indices
should be 4d. Therefore, we reshape the data chunk by concatenating the row vectors of original chunks
and appending the row vector of summary statistics. The new data vector is shown in Equation (2).

D' = [ Xemn, Xi_u-1ys -+ X, St | k)

(1) (d)

where Xy = [xt, S Xy, | is the row vector at time #’ in the original matrix D ; St is the summary
statistics vector as in Equation (3).

S; = [ Mean(D(t)),Std(D(t)),Min(D(t)),Max(D(t)) ] 3)

where, the Mean, Std, Min, and Max row vectors are in the same shape. Take the Mean vector as an
example in Equation (4).

®)Y) — r(v™) () ]
Mezm(D ) o [ (t=m)—(t=n)+17 """ 7 (=m)—(t-n)+1 @)
where, Y() = [xgn, xﬁ)(n_l), e, xﬁ)m]T is the i-th column of the original data chunk, i € {1,...,d}.

3.4. Features Creation with Fast Fourier Transform

The fast Fourier transform (FFT) can transfer the data sequence from the time domain to the
frequency domain in order to reveal the rate of recurrence characteristics of the sequence. Zhang et al.,
in 2010, utilized the FFT data to recognize the driving patterns of the drivers in [19], and set up an
example to use frequency domain features to reveal the dynamic characteristics of the driver behaviors.
Therefore, the FFT can also be useful in the current study to provide more frequency information than
normal vehicle dynamic mobility data. Using the temporal data sequence Y = [x1, xp, ..., xN]T as an
example, the FFT coefficients of Y are shown in Equation (5).

N
y[n]:Zxke_jZWn”k,nzl,...,N (5)
k=1

When a driver starts to make the attempt to turn or shift lane, they tend to manipulate the vehicle
more. This makes the vehicle’s motion status and devices’ statuses vary more frequently than during
normal driving (i.e., staying in the lane). Using the FFT method, we can analyze the temporal data
sequence of each element in the data chunk, find out the frequency with the highest FFT coefficient, and
observe the variation of said frequency which gives some indication of changing driving status. These
frequencies of the elements are calculated and concatenated to the reshaped data vector as new features
are created. Both groups of the created features, summary statistics, and FFT frequencies can be quickly
calculated. The limited computing resources needed will allow data processing while driving.

3.5. Feature Selection

In order to make the application easy to be deployed in vehicles and increase the raw data
availability, we focused on kinetic measurements, such as vehicle acceleration, and excluded several
features that are either irrelevant, such as the number of GPS satellites and the headlight status, or
directly indicated the turning action, such as crossing the left lane track and crossing the right lane track.
The selected features are described in Table 1. It is to be noted that the “distance to left (right) marker”
in the table indicates the distance from vehicle centerline to the inside of the left-side (right-side)
lane marker.
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Table 1. Selected features from the original dataset.

Element Name Units
GPS speed meters/second
Vehicle pitch rate degrees/second
Vehicle roll rate degrees/second
Brake status none
Longitudinal acceleration meters/second?
Longitudinal speed meters/second
Vehicle yaw rate degrees/second
Distance to left marker millimeter
Distance to right marker millimeter

To illustrate the kinetic characteristics of the observations, we also included the first and the
second derivatives of the “longitudinal acceleration” with respect to time as well as the speed and the
acceleration of the vehicle to the left and right markers are also included. Take the jerk (first order time

5) .05 6 1"

t=n’ Ti—(n=1) 7 Mtem
to express the vector of longitudinal acceleration in the matrix D*) of the original dataset, the jerk is
calculated as shown in Equation (6).

jerk = [ (xg - Xﬂnm)' (XS)(n—l) - xg)' I ("S)m "‘S)(mm) ]T ©

The number “5” appears here and indicates the longitudinal acceleration is the fifth feature in the
dataset. Other aforementioned features can be taken as similar discrete differentials and be calculated
in the same manner.

Thus, there are 15 basic features. We included summary statistics, as well as FFT analysis of these
features as other features. Here we used 5 s as the total time window for each lateral motion event.
With m = 5, this window resulted in 750 features.

The importance of prediction features was evaluated with random forest (RF) [20] and its
corresponding predictor permutation technique [21]. RF is an ensemble classifier that is composed
of decision tree classifiers that have been generated based on random portions of the training data
observations and features. The RF was first trained on the training data. The features of the training
data were then methodically permuted and fed back to the RFE. The out-of-bag (OOB) error was then
monitored on this new data. If the OOB error increased significantly, that feature was important
in the classification process. The OOB errors for each feature are shown in Figure 1. The results
show, intuitively, that features that occurred closer to the lateral motion event are more important
in classification as they are more indicative of a lateral motion event. As can be seen, summary
statistics and FFT magnitudes of the window are an effective processing step as they are generally
more important than other features.

derivative of longitudinal acceleration) as an example. Using o = [ X X X

Taking the feature vector and concatenating it back into the matrix form with one feature across
time per column, we can average the error increase in each column to determine which measurements
are the most important for lateral motion. As shown in Figure 2, the 1st, 6th, 8th, 9th, 14th, and 15th
features are more important than the other nine features. Such outstanding features are the GPS
speed (acquired by GPS), longitudinal speed (acquired by in-vehicle devices), distances to the left and
right lane markers, and lateral acceleration of the vehicle. This is intuitively correct since vehicles
lateral motions are highly relevant with their kinetic characteristics and relative positions to lane edges.
Therefore, considering this relevance and easy accessibility, the original features described in Table 1
are selected.
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Figure 2. Mean of the importance of the original features.
4. Two-Stage Methodology

A two-stage data-driven method was designed to predict the lateral motion of the preceding
vehicle based on the processed dataset in the previous section. The steps are shown in Figure 3.
The vehicle mobility data processed in the previous section is taken as the input to the method. Two
ensembled decision trees were trained to provide the initial lateral motion prediction results. Based on
the driver behavior or driving manner classification, the initial results were given various weights and
the combination of the weighted results were taken as the final prediction.
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Stage 1: Raw Prediction Stage 2: Weight by Clustering
Vehicle Mobility Data Various Ensembled Driver Driving Manner o| Weighted Prediction
with Generated Features Decision Trees Classification g Results

Figure 3. Two-stage method schematic diagram.

To be more specific, in this paper, we used one-day data of a two-month dataset to be the training
dataset. Our training set contained mobility data of 51 unique vehicles within 587,812 time instances
(16.33 h of driving) [5]. One bagging decision tree [22] and one random under-sampling (RUS) boosted
decision tree [23] were trained on the dataset to predict lateral motion. A GMM was used to cluster
drivers based on the erraticness of their driving [24]. The dataset for the clustering combined the
training data and the testing instance. Generally, the model created a voting scheme between two
ensembles weighted by the driver type probabilities in order. In this way, the model skewed the
classification away from false negatives with more erratic drivers.

4.1. Ensembled Decision Tree Classification

Considering the skewness nature of the dataset, we conducted multiple experiments based on
different classification methods (three times for each method), including the supporting vector machine
(SVM), basic decision tree (DT), and several ensemble decision trees (EDT). The bagging decision trees
and the RUS boosted decision trees demonstrated better performance on the cross-validations.

4.1.1. Bagging Decision Trees

The term “bagging” is an acronym of “bootstrap aggregating” [22]. The learning scheme was
created to improve the classification accuracy of the traditional algorithms by using a bootstrap [25]
method to randomly sample the training dataset when training multiple weak learners, or decision
trees in this instance, and to make a prediction based on the voting or average of the results of decision
tree trained on the sampled datasets. Take 7" = {(I,, x,),n € {1,...,N}} as the training dataset, where
I, is the label or class of the n-th training data instance x,. A normal DT is trained on all the training
data to make future predictions of the testing data xy.s; as shown in Equation (7).

ltest = Eb(xtest/ T) (7)

Within the bagging decision trees algorithm, bootstrap samples {T b} are repeatedly and randomly
drawn, with replacement, from the original training dataset 7~ when training each tree in the ensemble.
The final prediction was then obtained as a vote among the DTs in the ensemble. For this work, the
labels include {Turn Left, Won’t Turn, Turn Right}, i.e., {-1,0, 1}.

The adaptive synthetic (ADASYN) sampling approach [26] was utilized to deal with the imbalanced
training data. The algorithm generated more synthetic data for the minority classes which were Turn
Left and Turn Right here in this case. We used ADASYN to generate the synthetic data for Turn Left
class against the Won’t Turn class examples and that for Turn Right class against the Won’t Turn class
examples, respectively. The combined dataset of these two new datasets formed the actual training
dataset. Ten-fold cross-validation results of the bagging ensembled based on the training dataset
processed by the ADASYN are shown in Table 2.
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Table 2. The confusion matrix of the bagging trees.

. Predicted Class
Bagging Trees
Turn Left Won’t Turn Turn Right
Turn left 88 67 0
True Classes Won’t turn 78 5324 49
Turn right 2 66 46

In this table, false negative rates are more than 43% for Turn Left and around 59% for Turn Right
which was due to the high disparity between classes. On the other hand, the bagging trees ensemble
tended to bias more conservatively towards a no turn prediction.

4.1.2. Random Under-Sampling Boosted Decision Trees

The RUS boosted decision trees were utilized to resolve skewness of the training data. The idea
was to down-sample the training dataset using RUS so that the amount of the minority class data
was comparable to that of the majority class data. The ratio of the quantities of different classes was
predefined to make the observations of the three classes equal to each other. The weak learners we
used were normal decision trees. For each iteration, the under-sampling was conducted based on
the predefined ratio, and the weight for each instance of the sampled training dataset was calculated.
The sampled dataset and the corresponding weights were used to train one weak learner. According
to the error, the weight for the current weak learner was computed and the weights of each instance
were adjusted based on it. After predefined times of iteration, multiple weak learners were generated
based on training datasets that had more class-balanced data. For each testing instance, the weighted
voting of each weak learner classification results was the prediction. The RUS boosted trees ten-fold
cross-validation results are shown in Table 3. In this table, the false negative rates have been largely
improved. The RUS boosted trees performed effective prediction of lateral motion. It is to be noted
that the false positive cases are important here. In order to decrease the positive predictive value, this
method tends to be more aggressive with its positive (—1, 1) labels at the expense of the false positives
increasing from 2.33% to 13.81% as compared with the bagging method.

Table 3. The confusion matrix of the RUS boosted trees.

Predi 1
RUS Boosted Trees redicted Class
Turn Left Won't Turn Turn Right
Turn left 149 4 2
True Classes Won’t turn 384 4698 369
Turn right 4 6 104

4.2. Gaussian Mixture Models Clustering

The ensemble decision trees algorithms expressed two opposite biases on the prediction results.
We observed such biases in several different learning schemes. To secure safer trips, we utilized these
biases with predictions on more erratic drivers given that they have more of a tendency to change
current driving status. Since the bagged trees tended to provide more conservative predictions, i.e.,
predicted a lack of lateral motion when it did occur (false negatives), it reduced risk if we chose to
cast less trust on its results when facing more erratic drivers. At the same time, since the RUS boosted
trees tended to provide more aggressive predictions, i.e., falsely predicting turns (false positives), it
reduced risk if we choose to cast more trust on its results when facing front drivers driving with more
erratic manners.

Multiple well-developed studies have been conducted to cluster the behaviors of drivers based
on their aggressiveness. Kanarachos et al., in 2018, summarized the features used to implement the
clustering, including acceleration and smoothness (variance of acceleration) [27]. The harsh acceleration
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and harsh cornering behavior of the drivers mentioned in [28] are widely used for driver behavior
classification. Their connections with the vehicle lane changes are also revealed. Therefore, the relevant
data in the current dataset were assessed and corresponding metrics were selected for the clustering.

As observed in the training dataset, the mobility data showed a fairly clear boundary between the
two groups of drivers. We took data of two features, the mean of longitudinal acceleration and the
mean of the jerk, as an example and showed the two-dimensional plot of them in Figure 4. It can be
seen that there is a group of vehicles that have comparatively small or even negative mean values of
jerk. On the other hand, the other group of vehicles, or more specifically their drivers, tend to use
more variable and aggressive acceleration actions which is illustrated by the increment of acceleration
(positive and high jerk). Given that the mean acceleration can be determined by different driving
scenarios and environments, which can be encountered by any driver, it is more reasonable to take
the driving manners with more frequent actions and a tendency to increase the acceleration as more
erratic. Therefore, after analyzing the physical meaning of the data, we clustered the drivers into two
categories: consistent (the former group) or erratic (the latter group), and this provided a theoretical
basis for the further processing of the ensemble trees predictions.

Mean(Accl)

-0.5 0 0.5 1 1.5 2 25
Mean(Jerk)

Figure 4. Original data grouping behavior.

In order to combine the two algorithms” ascendancy on the algorithm, we utilized GMM to cluster
the driver into one of the two clusters. The clusters of GMM are represented by two different Gaussian
distributions characterized by distinct expectations and variances. Here we use N(u1, X1) as the
distribution for consistent drivers’ cluster and N(u2, X) as the distribution for erratic drivers’ cluster.
The clustering problem is thus transformed into finding the distributions of the observations in the
dataset, which means to find the u, X1, pp, and .

The clustering results based on the training samples are listed in Figure 5a,b. The GMM is
conducted on the mean of the longitudinal acceleration versus the mean of the longitudinal jerk
within the original training dataset in Figure 5a. We also used principal component analysis (PCA) to
analyze the training data. The GMM was also conducted on the processed data after PCA, and this is
shown in Figure 5b. Using the clustering model based on original data, we also plotted the grouping
characteristics of multiple kinematic variables as shown in Figure 6. According to these plots, there
exist two groups of driving behaviors, and based on the physical meaning of these kinematic variables,
we categorize them into two classes: more consistent drivers and less consistent drivers.
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1

(i)

(i)

and p,

Erratic
. Consistent

that indicate the chances the driver

belongs to each of the two clusters or distributions. Since the two posteriors indicate the probabilities

of the driver belonging to a respective cluster, and they sum to one, they are naturally suitable for

normalizing the two predictions made by the ensembled methods to find a new average. Take a = pg)

to be the probability of the front driver belongs to the consistent drivers’ cluster and g = pgi) to be that
of the front driver belongs to the erratic drivers’ cluster. The final prediction is shown in Equation (8).

Cr= quant( aChagging + PCRUSBoosteds 1 )

®)

where, Cf is the final prediction; Cp,gging and Cryispoosted are the predictions made by the bagging DTs
and the RUS boosted DTs, respectively; the quant(-, 1) is the quantize function that categorizes the real
number into the set of {—1, 0, 1}, which means turn left, won’t turn, and turn right.

The flow chart of the two-stage method is shown in Figure 7.

START

| Preceding Vehicle Motion Data Collection |

A 4 h 4
Summary Statistics | I FFT
I |
A\ 4
| Prediction Feature Generation |
v v

Trained Bagging Trees

Trained RUS Boosted Trees

Coagging

y

| Driving Behavior Clustering

| CRUSBOOSled

a=p

B=p,

Prediction Result C

END

Figure 7. Two-stage method flow chart.
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5. Experiments Results and Discussion

The remaining 60-day observation data in the aforementioned two-month dataset was used as
test data for the demonstration of the effectiveness of the proposed prediction algorithm. The dataset
collected on April 11, 2013 and used as training data in the previous methodology was excluded.

After the training process, 40% of the data were used for the model test. The prediction results
of the trained bagging trees are shown in Table 4. The false-negative rate is around 36.35%, and the
false-positive rate is around 4.37% which is less meaningful, because of the large quantity of the
“won’t turn” events. The prediction results using trained RUS boosted trees are shown in Table 5. The
false-negative rate has largely decreased here, and it is 5.37%. The false-positive rate is 11.91%.

Table 4. The confusion matrix of the bagging trees trained by 61-day data.

. Predicted Class
Bagging Trees
Turn Left Won’t Turn Turn Right
Turn left 1392 1165 10
True Classes Won't turn 1726 154,939 5346
Turn right 9 651 1821

Table 5. The confusion matrix of the RUS boosted trees trained by 61-day data.

Predicted Cl
RUS Boosted Trees redicted Class
Turn Left Won’t Turn Turn Right
Turn left 2400 104 63
True Classes Won't turn 9944 142,722 9345
Turn right 60 44 2377

Using the proposed GMM clustering integrated algorithm, the prediction results are shown in
Table 6 (without PCA) and Table 7 (with PCA).

Table 6. The confusion matrix of the proposed method without PCA.

Proposed Method Without PCA Predicted Class
Turn Left Won't Turn Turn Right
Turn left 1614 884 22
True Classes Won't turn 3437 152,102 6472
Turn right 20 505 1898

Table 7. The confusion matrix of the proposed method with PCA.

Proposed Method with PCA Predicted Class
Turn Left Won't Turn Turn Right
Turn left 2212 258 50
True Classes Won't turn 8761 144,577 8673
Turn right 47 146 2230

As demonstrated in Tables 4-7, in the scenarios where the GMM algorithm was integrated, with
or without PCA, and were utilized, the prediction results perform more balanced than that of either
one of the two ensemble methods. The false-negative rates are notably smaller than the bagging
trees and the false-positive rates are also remarkably smaller than the RUS boosted trees while the
true-positive and true-negative rates are not remarkably sacrificed. The comparison demonstrated
the effectiveness and advantages of the GMM clustering serving as a preprocessing step before the
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actual prediction procedure. As for the PCA processing, it can easily be seen that this process largely
increases the true-positive rate, and decreases the false-negative rate, and makes the prediction more
accurate. The false-positive rate is also influenced and downgrades the accuracy. However, in general,
the algorithm with PCA can make the results more conservative by predicting more active motions of
the vehicle. Thus, in reality, this “preference” of the prediction algorithm could provide more safety.

For comparison, the observations with the 0.1 s prediction time were also generated. The results
of the implementation based on this dataset are listed in the following tables. The prediction results
of the trained bagging trees are shown in Table 8. The false-negative rate has decreased to 21.09%
and the false-positive rate has also decreased to 3.10%. The prediction results using trained RUS
boosted trees are shown in Table 9. The false-negative rate almost remains the same, and it is 5.68%.
The false-positive rate is 10.51%.

Table 8. The confusion matrix of the bagging trees with 0.1 s prediction time.

. Predicted Class
Bagging Trees
Turn Left Won'’t Turn Turn Right
Turn left 1989 470 13
True Classes Won't turn 2409 156,959 2618
Turn right 21 566 2014

Table 9. The confusion matrix of the RUS boosted trees with 0.1 s prediction time.

RUS Boosted Trees Predicted Class
Turn Left Won’t Turn Turn Right
Turn left 2313 111 48
True Classes Won't turn 7212 144,957 9817
Turn right 74 55 2472

Using the proposed GMM clustering integrated algorithm, the prediction results are shown in
Table 10 (without PCA) and Table 11 (with PCA). One can see notable improvement of the accuracy
with a shorter prediction time, i.e., 0.1 s. The false-negative rate decreased from 28.95 to 15.94% without
PCA, and from 10.14 to 8.14% with PCA. The false-positive rate also decreased from 6.12 to 4.76%
without PCA, and from 10.76 to 9.52% with PCA. The results coincide with our intuition that the closer
to the actual vehicle actions the more accurate is the prediction.

Table 10. The confusion matrix of the proposed method without PCA with 0.1 s prediction time.

Predicted Class

Proposed Method without PCA

Turn Left Won’t Turn Turn Right
Turn left 2071 337 21
True Classes Won't turn 3524 154,268 4194
Turn right 35 400 2110

Table 11. The confusion matrix of the proposed method with PCA with 0.1 s prediction time.

Predicted Class

Proposed Method with PCA

Turn Left Won’t Turn Turn Right
Turn left 2219 170 40
True Classes Won't turn 6528 146,563 8895

Turn right 66 129 2350
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In addition, we observed skewness with the 0.5 s prediction time. It seems that the prediction on
the motion towards the right is more accurate than the others in terms of the false-negative rate. While
with the corresponding false-positive cases considered, the trained decisions trees tend to provide
more “turn right” predictions. The reason could be that in the training dataset, there are more “turn
right” events.

Overall, the high accuracy of the prediction results indicates that the proposed algorithm is
effective and the idea of predicting the motion of other vehicles based on their accessible mobility
data is realistic. Though some of the accuracy parameters can reach a level of more than 95%, the
absolute numbers of the misclassifications are still to be decreased. This problem could be resolved
with larger and more diverse training dataset, more detailed clusters, and even shorter prediction time.
Because the functionality can be used in the autonomous driving vehicles, the computing capability of
the vehicle-installed computers and processing capability of the corresponding software systems can
tolerate much shorter reaction time than 0.1 s. The deployment of the proposed algorithm on such
vehicles can downgrade much on-road uncertainty and provide more safety for the passengers.

6. Conclusions

In this paper, we proposed an algorithm to predict the preceding vehicles’ lateral motions with their
real-time mobility data considering the classification of drivers’ behaviors. The lateral motion prediction
functionality can serve as part of the autonomous vehicle driving systems or other driver assistance
software. The data-drive prediction technique includes two parts: drivers’ behaviors clustering and
ensembled decision trees (bagging and RUS boosted) prediction. We validated the technique with
the real-world vehicle mobility data from the SPMD database and the random forest feature selection.
We also used summary statistics and the FFT to process the time series data. The prediction results
on the real-world vehicle data demonstrate the effectiveness of the algorithm and its potential to be
utilized in on-road vehicles. With more available complete and diverse real-world vehicle mobility
data, the implementation of the prediction system can have higher accuracy and thus provide the
driving assistant systems with more useful driving information. In the context of the emerging
autonomous driving technique, it is expected to experience a time period when both autonomous
driving systems and human drivers coexist. The application of the proposed prediction technique
can decrease the uncertainty brought by human drivers in preceding cars, which can improve the
safety level of drivers and passengers in vehicles as well as pedestrians. The designed approach
also contributes to the development of highly automated transportation systems as well as building
intelligent and smart cities.
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