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Abstract: With the popularity of location-based services and applications, a large amount of mobility
data has been generated. Identification through mobile trajectory information, especially asynchronous
trajectory data has raised great concerns in social security prevention and control. This paper advocates
an identification resolution method based on the most frequently distributed TOP-N (the most frequently
distributed N regions regarding user trajectories) regions regarding user trajectories. This method first
finds TOP-N regions whose trajectory points are most frequently distributed to reduce the computational
complexity. Based on this, we discuss three methods of trajectory similarity metrics for matching tracks
belonging to the same user in two datasets. We conducted extensive experiments on two real GPS
trajectory datasets GeoLife and Cabspotting and comprehensively discussed the experimental results.
Experimentally, our method is substantially effective and efficiency for user identification.

Keywords: GPS (Global Positioning System) trajectory; identification resolution; frequent pattern;
similarity measure

1. Introduction

Position services [1], including GPS and positioning of cellular communication networks, have become
widespread. Multi-source mobility trajectory datasets generated by mobile phones, networks, and vehicle
navigation, contain rich information about human activities. More and more researchers are working
on application based on location information, including socio-economic development and wellbeing [2],
human individual mobility characteristics [3,4], traffic analysis [5–7], travel guides [8–11], user behavior
modelling [12], cross domain recommendation [13], identifying and predicting lifestyles [14], construction
for 3D geospatial data [15],and so on.

In real-world applications, trajectory data is typically generated by a multi-source platform, or data
is temporally separated. An identification algorithm is very necessary to link the trajectory information
of users at different time periods, which focuses on improving the quantity and quality of mobility data.
In addition, multi-source data based identification algorithms have been extensively studied, but there are
few studies specifically for asynchronous trajectory information.

In this paper, we focus on the problem of user identification based on asynchronous mobility trajectory
data. In other words, it matches the trajectories from two different periods to determine whether two
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users’ trajectories belong to the same person. The study that determines the user to which the trajectory
belongs by measuring the similarity between the two trajectories has potential application value in social
security prevention. A typical application scenario is that criminals often use multiple mobile phones in
turn. Without the real name system of mobile phones, it is impossible to know that these mobile phones
(e.g., 2) are from the same person. When we acquire the trajectory data of the mobile phone by mobile
base station or GPS positioning, if the trajectories of the two phones (we do not know the ownership in
advance) are highly similar, they are likely generated by different phones of the same user. In this way,
we can judge that these phones are held by the same user.

It needs to be explained that the asynchronous trajectory means two trajectories do not coincide at all
time. Due to the fact that the human behavior always changes with time, there is a certain inconsistency
in the mobility trajectory, which thus results in difficulties for asynchronous identification resolution.
In order to facilitate the description of the method, we use the following symbols to describe the problem.
The trajectory of an object can be defined as the chronological sequence as follows:

T = {id, (LO1, LA1, t1), · · · , (LOk, LAk, tk)} (1)

Among them, the id is the person’s identity, which is a positive integer. Each position point is
represented by a three-dimensional coordinate(LOk, LAk, tk). LOk and LAk, respectively, represent the
longitude and latitude of the k-th recorded point of the track. tk denotes the recording time.

Two sets of trajectories of multiple objects at two different periods are described as

S = {Ts
id | id = 1, 2, · · · , m} (2)

Q = {Tq
id | id = 1, 2, · · · , n} (3)

The problem to be solved is to match the trajectory in S with the trajectory in Q, provided that
each trajectory in S has at least one trajectory in Q belonging to the same object. This is not a simple
problem because the trajectories in S and Q do not have any overlap in time, and we only use the
trajectory information of two objects to calculate the similarity without exploiting any other information.
We determine the trajectory most similar to the target as the matching result.

This paper proposes a framework called TOP-N (which uses TOP-N most frequently distributed
regions) to achieve mobility identification resolution. In addition, a similarity method based on
probabilistic deviation, angle cosine and weighted Jaccard similarity is used to measure similarity of
two trajectories. The location where the the trajectory points are frequently distributed is usually more
identifiable. For example, users usually stay in residences, companies, etc. for a long time; that is,
track points are frequently distributed in these areas. For the areas that the user routinely passes every
day, even if the speed is very fast, but as long as the time span is large enough, they are still the areas
where the track points are frequently distributed. The infrequently distributed areas are those that the user
randomly visits, which have no user identity implication. So, our method first finds TOP-N most frequently
distributed regions of the trajectory, called TOP-N region set. As for the set of TOP-N regions, we calculate
the scalar product of all pairs of co-distributed regions and then compute the product of the moduli of two
TOP-N region sets, taking the quotient of the two as its similarity, namely, cosine similarity. Obviously,
the more common regions that the two trajectory distributions share, the greater their similarity. However,
there is an alternative possibility. More precisely, the number of co-distributed areas in trajectories T and
T1 is n while the number of non-coinciding areas is m1; the number of co-distributed areas of T and T2 is
also n while the number of non-co-distributed areas is m2. Assuming that m1 > m2, it is very likely that T2

is more similar to T than T1. Therefore, both the co-distributed and the non-co-distributed areas must be
accounted for. In another situation, there are three trajectories, and their co-distribution region’s number
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and non-co-distributed region’s number are the same. In this case, if we want to distinguish which two
trajectories are more similar, we need to consider the frequency values of the trajectory points distributed
in each region. In short, when calculating the similarity between two trajectories, two sequences need to
be compared and reordered to find the pairs of co-distributed regions.

The main contributions are summarized as follows.

1. An user identification resolution method based on TOP-N frequent distribution regions of asynchronous
mobility trajectory is proposed.

2. The effectiveness of TOP-N method was verified on two real mobility trajectory datasets.
3. We prove that in the identification task of asynchronous trajectory, the length in time of the trajectory

has a great influence on the identification accuracy.

2. Related Work

Our work in this paper is closely related to the topic of the user identification and similarity
search based on human mobility data. In recent years, some researchers studied identity resolution
in cyberspace [1,16–20], while [21–27] exploited identity identification through trajectory information.
In [25,26,28–30] studied the uniqueness of the trajectories of different objects. Ref. [25] particularly
showed that it is enough to identify users in multiple trajectories based on this uniqueness. Because the
behaviors and habits of the same person are generally periodic, their activity trajectories also show
a certain periodicity [30]. For example, [14] proved that sometimes, some people’s expected lifestyles can
be analysed by the trajectory periodicity.

The identification task based on mobility information is roughly divided into two scenarios of
synchronization and asynchronous, and the synchronization scenario generally refers to cross-platform
trajectory matching. In [26], a robust distance function called EDWP (Edit Distance with Projections)
is proposed to match the trajectory data at inconsistent and variable sampling rates by dynamic
interpolation. Ref. [23] proposed a hotspot-matrix method, using cosine of the distribution matrix of two
trajectories to express the similarity. This method can achieve a certain degree of recognition accuracy,
but the amount of calculation is huge. Ref. [24] introduced a Signal-Jaccard co-filtering method for matching
multi-source trajectory, which can also be used to identify asynchronous trajectory. Only considering the
same distribution areas, [22] calculates cosine of all pairs in the same regions and uses learning-to-rank to
improve the identification. Particularly, a inverted-index strategy is used to reduce the computational cost.
Although the computational complexity can be substantially reduced, it needs to find all uniform regions
from a large number of regions of two trajectories. Ref. [31] presented a concept to capture both spatial and
temporal diversity aspects of the linkage, called K-L diversity. In [32], based on space-time matching points,
a real-time trajectory similarity measure method was proposed. Similarly, in [21], the authors proposed to
achieve identification by time-space matching trajectory points. The matching points of the two trajectories
require that the points are close in both time and space. This method is only for synchronous scenarios
that is unavailable in our problem.In a related work, [27] recently proposed a method called CDTraj2vec
for user trajectory matching across social networks. This method uses PV-DM (Distributed Memory Model
of Paragraph) model and paragraph2vec algorithm to extract the positional access order features in the
trajectory sequence, which obtains the vector representation of the user trajectory and thus represents the
trajectory similarity by the vector. However, this method ignores the distribution frequency of track points
and the important information of track transition status.

3. Proposed Method

We propose an effective method to deal with user identification across asynchronous mobility
trajectories. Our method includes the following procedures: (1) Find out the TOP-N areas where the
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trajectories of the objects are most frequently distributed; (2) The similarity is represented by the cosine,
probability deviation and weighted Jaccard similarity of TOP-N region sets; (3) Determine the trajectory
most similar to the target as the matching result.

3.1. Finding Top-N Regions

In order to find out the TOP-N regions where the trajectory points are most frequently distributed,
we take into account the case that the rectangle area is determined by the highest and lowest longitude
and latitude of the city. For the sake of simplified calculation, we ignore the location points exceeding the
latitude and longitude of the city coverage.

3.1.1. Latitude and Longitude Grid

The city is regarded as a rectangular region enclosed by the highest and the lowest longitude and
latitude. The rectangular region is divided into M × N small grids. Each small grid corresponds to
a geographical area of the city. Different divisions of the area will affect the amount of computation and
identification accuracy.

3.1.2. Distribution Matrix of A Trajectory

We count the frequency of the appearance of track points in each small area and then map them to
a M× N dimensional matrix to obtain the distribution of the track of an object. The specific method for
calculating the distribution matrix is presented as the following steps.

First, we suppose the observation scope is within the area represented by the following formula:

L = [max(LO), min(LO)]× [max(LA), min(LA)] (4)

Here, min(LO), max(LO), min(LA), max(LA) indicate the minimum and maximum values of the
city’s longitude and latitude, respectively. Accordingly, we mesh the entire area into many small rectangle
grids with a height of h_lo and a width of h_la. The total number of grids is thus M × N. We use
the expression

LM×N = {lij}(1 ≤ i ≤ M, 1 ≤ i ≤ N) (5)

to represent the entire city’s latitude and longitude network, where

M =
max(LO)−min(LO)

h_lo
, N =

max(LA)−min(LA)

h_la
(6)

Assume that the element corresponding to the i-th row and the j-th column of the two-dimensional
matrix AM×N is aij, the value is determined by the frequency that the trajectory appears in the i-th row
and the j-th column region of the latitude and longitude network, where

i = ceil(
LO−min(LO)

h_lo
), j = ceil(

LA−min(LA)

h_la
) (7)

We use the same method to individually count the frequency of the trajectory in each small area by
adopting the one-to-one mapping rule.

3.1.3. Top-N Region Set

A threshold PN is first set and we filter out all elements in the distribution matrix that are larger
than PN (or areas whose trajectory distribution frequency is greater than the value) to form a set called
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region_list. The region_list is ranked in frequency and the TOP-N elements with the highest frequency
values are used to produce the TOP-N region set. A TOP-N region set is regarded as

TNid = {(ak
ij, (i, j))k = 1, 2, · · · , TOP− N} (8)

where ak
ij denotes the distribution frequency of the trajectory in the k-th region and (i, j) represents the

coordinate of this region. In order to avoid the computational overflow, uniform standardization is applied
to all values of TOP-N region set. Namely, the TOP-N region set‘s element value of each trajectory is
divided by the total number of points of the trajectory. The algorithm pseudo code is summarized in
Algorithm 1.

Algorithm 1: Get TOP− N region sequence from trajectory T.

1 Input: parameters PN and TOP− N, maximum longitude and latitude max(LO),max(LA),
minimum longitude and latitude min(LO),min(LA), step size of h_lo and h_la.

Result: TOP− N region set
2 M = max(LO)−min(LO);
3 N = max(LA)−min(LA);
4 A=numpy.array([[0] ∗ N] ∗M);
5 region_list=[ ];
6 total_points = len(T);
7 for (LO, LA) in T do
8 i =floor((LO−min(LO))/h_lo);
9 j =floor((LA−min(LA))/h_la);

10 A[i][j]+ = 1
11 end
12 for a[i][j] in A do
13 if a[i][j] >= PN then
14 region_list.append((a[i][j], (i, j)))
15 end
16 end
17 ordered_regions=sorted(region_list,key=lambda x : x[0]);
18 TOP− N_region_set=ordered_regions[−TOP− N :];
19 for element in TOP− N_region_set do
20 element = element.value/total_points
21 end
22 return TOP− N_region_set;

3.2. Similarity of Top-N Region Set

The task of calculating the similarity of two trajectories is converted into calculating the similarity
of two TOP-N region sets. There are many ways to measure the similarity between two sets. Hereby,
we discuss three methods for comparing similarities. The first one is angle cosine of set, which is similar to
the angle cosine of vector, but the order of the set must be adjusted first. The second one is the probability
deviation, which explores the probability deviation of two trajectories appearing in all co-distributed
areas. The more close the probability of trajectories appearing in the same areas, the more similar they are.
Last one is weighted Jaccard similarity which was first proposed by Ioffe et al. [33].
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3.2.1. Angle Cosine of TN1 and TN2

Step 1: Find all common regions of the TOP-N sequences TN1 and TN2. We use the following notation
to express them.

BDTN1,TN2 = {(aTN1
ij , aTN2

mn ) | m = i, n = j} (9)

(aTN1
ij , aTN2

mn ) indicate the value pairs which fall between 0 and 1, and they are distributed in the same
area (i, j).

Step 2: First, calculate the modular product of TOP-N sequences TN1 and TN2. And then, calculate
their vector product of the co-distributed regions.

H = ∑(a
TN1
ij ,aTN2

mn )∈BDTN1,TN2
aTN1

ij · aTN2
mn (10)

G = (∑ak
ij∈TN1

(ak
ij)

2)
1
2 · (∑ak

mn∈TN2
(ak

mn)
2)

1
2 (11)

Note that (10) and (11) do not calculate the same object, while the set BDTN1,TN2 in (10) is the
intersection of TN1 and TN2 in (11). Equation (10) represents the vector product of BDTN1,TN2 , and (11)
denotes the modular product of the TOP− N region sets TN1 and TN2. It is seen that the co-distributed
and the non-co-distributed areas are both considered.

Step 3: Formulate the similarity between TOP-N sequences TN1 and TN2, namely,

simTN1,TN2 =| BDTN1,TN2 | ·
H
G

(12)

H and G are given by (10) and (11) respectively, with |BDTN1,TN2 | being the number of co-distributed
regions of TN1 and TN2.

3.2.2. Probability Deviation of TN1 and TN2

In order to simplify the model, this paper uses the frequency to represent the probability, i.e., the ratio
of the trajectory points in each region to the total number of trajectory points. Similar to angle cosine
method, the probability deviation similarity need to find out all regions which both TN1 and TN2 contain,
so as to accumulate the probability deviation of each co-distributed area and to calculate the average
deviation. The smaller the probability deviation is, the greater the similarity is. We also consider the
number of co-distributed areas, and the larger this value is, the more similar the trajectories are.

S = ∑(P
TN1
ij ,pTN2

mn )∈BDTN1,TN2
(PTN1

ij − PTN2
mn )2

+
1
2
· (∑P

TN1
ij ∈TN1∧P

TN1
ij /∈BDTN1,TN2

(PTN1
ij )2

+∑PTN2
mn ∈TN2∧PTN2

mn /∈BDTN1,TN2
(PTN2

mn )2

(13)

simTN1,TN2 = e
|BDTN1,TN2

|
|TN1 |+|TN2 | · e−

S
|TN1 |+|TN2 | (14)

PTN1
ij indicates the probability that T1 appears in the area (i, j). It should be noted that the method

also deals with the non-coincidence regions. Assuming that the probability of the trajectory T1 appearing
in the region r is P, T2 does not appear in r with the probability is 0. The probability deviation of T1 with
T2 appearing in the region r is P− 0 = P. Similarly, the number of areas where T1 and T2 co-distributed is
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also considered. In fact, the comparison of the similarity of two TOP− N sequences does not require that
they have the same length.

3.2.3. Weighted Jaccard Similarity of TN1 and TN2

The weighted Jaccard similarity measures the resemblance between two weighted sets. In our
problem, TN refers to a collection of TOP-N region sets. The weight of each region is the corresponding
visiting frequency. The similarity of TN1 and TN2 is defined as

W JS =
∑ min(aTN1

ij , aTN2
mn )

∑ max(aTN1
ij , aTN2

mn )
(15)

simTN1,TN2 =| BDTN1,TN2 | ·W JS (16)

(16) computes the weighted Jaccard similarity of TN1 and TN2. | BD | indicates the number of elements in
the set BD.

4. Experimental Evaluation

4.1. Description of Datasets

The experiments in this paper are conducted on two real datasets, including GeoLife [34] and
CabSpotting [35]. For GeoLife dataset, we only use the latitude and longitude of each recorded point,
while the time information associated with each point in CabSpotting dataset is used. In addition, in order
to facilitate the verification of the identification accuracy, trajectories need to be tagged as their id. The labels
are encoded by a series of numbers, which are used to check whether the result of matching is correct or
not after the identification.

GeoLife is a GPS-recorded dataset that records the trajectory information from 182 users from
April 2007 to August 2012, collected by Microsoft Research Asia. This dataset records the wide-ranging
outdoor activities of the tested users, including both routines for going home and going to work and
some entertainment and sports activities such as shopping, sightseeing, dining, hiking and cycling.
The trajectories were recorded by different GPS loggers and GPS phones, and have a variety of sampling
rates. 91.5% of the trajectories are logged in a dense representation, e.g., every 1–5 s or every 5–10 m per
point. Trajectories of 112 users are roughly located in Beijing, and, thus, the latitude and longitude mostly
span between 39.5–41 and 115.4–117.6, respectively. For the sake of calculation, it needs to delete all points
whose latitude and longitude are out of this range. Furthermore, in order to retain more experimental
data, we also keep the trajectory points in Beijing more than 30%, so a total of 164 user trajectories are
used for experiments. As most of the points in the trajectory are too time-intensive (every 1–5 s per point),
one point is taken by every four points in experiments. As a result, we can reduce the computational cost
without affecting the identification accuracy.

Cabspotting dataset is a public GPS dataset that contains trace information of 536 taxis in San
Francisco for less than a month (17 May 2008–10 June 2008). This dataset has been recently used by
Piorkowski et al. [36] to show that certain macroscopic characteristics specific to clustered mobile wireless
networks are prevalent in real mobility traces. Due to the inherent characteristics of this dataset(such as
common routes of taxis) and the fact that the trajectories are spatially constrained to lie on the streets,
the points are less unique. Because the tracks contain a lot of noise points, we delete the high-speed
moving point ahead, for instance, the points in which the adjacent speed exceeds 20 m/s.
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4.2. Experimental Method

Each trajectory in GeoLife and Cabspotting datasets is divided into two segments, so that two
verification sets are obtained respectively. Particularly, the GeoLife dataset is split into Dg1 and Dg2 ,
and Cabspotting dataset is split into Dc1 and Dc2 . During the experiments, each trajectory in Dg2 and
Dc2 is divided into 15 equal parts. We then take 9 copies in order (1–9, 6–15) one time, so that every
test trajectory can include 2 sub-trajectories for testing. For Dg1 and Dg2 , 164× 2 times of identification
experiments are performed with 164 trajectories while 536× 2 identification experiments are performed
with 536 trajectories for Dc1 and Dc2 . The ratio of successful identification times to total identification
times is taken as the identification accuracy.

Prior to recognition, all training trajectories and test trajectories are used to acquire their TOP-N
sequences. Thus, calculating the similarity of two trajectories only needs to compare their TOP-N sequences.
It notes that the recognition accuracy is related to the selection of parameters, including the size of steps
h_lo and h_la of the latitude and longitude as well as the number of TOP-N areas where the trajectories
are most frequently distributed. In addition, the time length of the trajectory also affects the identification
accuracy. In experiments, our TOP-N method includes three variants by embedding different similarity
metrics, denoted by TOP-N-PRO, TOP-N-COS and TOP-N-WJS, respectively.

4.3. Experimental Results and Analysis

4.3.1. Effects of h_lo and h_la

We have before explained that h_lo and h_la determine the size of the small mesh area after the
partition. Here the effect of h_lo and h_la on the experimental results is discussed briefly. The side length
of the small grid is taken as 50–500 m. As a result, the corresponding value of h_lo is 0–0.006 and the value
of h_la is 0–0.005.

Experimental results on two datasets (GeoLife and Cabspotting) are shown in Figure 1. As shown in
Figure 1, as the longitude h_lo increases, the identification accuracy tends to decrease. The smaller the
h_lo is, the more precise the actual position of each grid region becomes. We thus can easily distinguish
the actual distributed locations of the user‘s trajectories. Conversely, the larger the h_lo is, the less accurate
the locations are. As a result, one grid is likely to correspond to a number of completely different physical
locations. On the other hand, when h_lo is too small, it is possible to divide one physical location into
multiple grids, thus resulting in inaccurate matching. In addition, the h_lo accuracy graph exhibits obvious
oscillating situation. The fluctuation may be due to the division rule on urban areas. As mentioned
before, if one real area is divided by different h_lo, there will be multiple situations. In a simple example,
two different users (a and b) often pass by the same large park, where the user A passes the street on the
west side of the park and the user B passes through the small road on the east side. When the division by
h_lo is small, the east and west of the park are separated into two grids. When the division of h_lo is large,
they will fall into the same grid. Obviously, the division of the latter makes two users’ trajectories more
similar due to the increase in their same distribution areas.
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(a) Dc1 vs. Dc2 (b) Dg1 vs. Dg2

Figure 1. Comparing TOP-N-COS, TOP-N-PRO and TOP-N-WJS by accuracy vs. h_lo. (a) Cabspotting,
(b) Geolife.

4.3.2. Effects of Top-N

In order to discuss the effect of TOP-N on the identification accuracy, we should control the values
of h_lo and h_la. The experimental results from Section 4.3.1 show that as the longitude h_lo increases,
the recognition accuracy tends to decrease. Therefore, three specific h_lo and h_la parameter values are
selected, namely h_lo = 0.000578 and h_la = 0.000450, h_lo = 0.001137 and h_la = 0.0009, h_lo = 0.001705
and h_la = 0.001350, respectively, which accordingly correspond to a small grid side length of 50 m,
100 m, 150 m. We set the TOP-N value from 5 to 100 and performed an experimental analysis on Dg1 vs.
Dg2 and Dc1 vs. Dc2 . Figure 2 shows comparisons among probability deviation method, weighted Jaccard
similarity and cosine method. In Figure 2a,b we reveal the experimental results with h_lo = 0.000578,
h_la = 0.000450, (c) and (d) show the experimental results of h_lo = 0.001137, h_la = 0.0009, and (e) and
(f) takes h_lo = 0.001705 and h_la = 0.001350.

As seen from the six plots in Figure 2, with the increasing number of TOP-N areas, the identification
accuracy increases first, then stabilizes, and eventually tends to decrease. This is due to the fact that
the number of frequently distributed areas of an object’s trajectory is limited. When TOP-N grows to
a certain value and continues to increase, infrequently distributed areas are introduced. These infrequently
distributed regions have weak regularity and do not exhibit periodicity. Therefore, the larger TOP-N will
not only fail to improve identification accuracy, but also even reduce it. In addition, the TOP-N-COS
method is significantly superior over the TOP-N-PRO method because the recognition accuracy of the
TOP-N-PRO method is related to the probability of the user appearing in a given area. Moreover,
it is affected by the method of dealing with the probability deviation of two trajectories appearing
in non-co-distributed regions.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Comparing TOP-N-COS, TOP-N-PRO and TOP-WJS by accuracy vs. TOP-N. (a,c,e) Dc1 vs. Dc2 ,
(b,d,f) Dg1 vs. Dg2 .
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4.3.3. Effects of Time Length

To further explore the effect of trajectory time length on recognition accuracy, we performed three
sets of experiments on the GeoLife dataset, setting the length of time to 10 days, 30 days, and 50 days,
respectively. For experimental comparisons, we retained 54 trajectories in the GeoLife dataset that
are longer than 50 days in length to ensure that the trajectories of each set are from the same users.
We follow the same experimental method as the previous section where each trajectory is divided into
two segments. According to the experimental conclusions of Sections 4.3.1 and 4.3.2, and considering the
compromise between the amount of calculation and the identification accuracy, we set the h_lo = 0.000578,
h_la = 0.00045 and TOP-N = 39.

The experimental results are shown in Table 1. We can find that the identification accuracy of the
three methods substantially decreases with the shortening of the time length of the trajectory. When the
trajectory time length is 50 days, the accuracy exceeds 80%. When the time length is reduced to 10 days,
four methods are all reduced by about 20% in identification accuracy. This fact shows that the length of
the trajectory has a great influence on the identification performance. Meanwhile, although the trajectory
time is only 10 days, there is also a considerable possibility for successful identification.

Table 1. Experimental results on different time lengths on GeoLife dataset.

Time Spans TOP-N-PRO TOP-N-COS TOP-N-WJS

50 days 0.8796 0.8333 0.8889
30 days 0.7639 0.8056 0.8287
10 days 0.6296 0.6265 0.6636

4.3.4. Comparisons with Other Algorithms

To validate user identification, we performed comparisons of our method with previous representative
methods. Since our approach is designed for asynchronous scenarios, many existing identification
algorithms are not applicable. For example, Kondor et al. proposed to achieve identification by time-space
matching trajectory points [21]. It requires that the points of two trajectories are close in both time and
space. Therefore, we compare our method with three feasible existing algorithms.

Hao et al. [22] proposed a cross-domain trajectory similarity method (UNICORN) based on TF-IDF
(term frequency-inverse document frequency). TF-IDF transforms the original user trajectory into grid
representation, where each cell can be treated as a word, and each user trajectory is seen as a paragraph.
Each user trajectory is transformed into a vector by using the TF-IDF method to obtain trajectory similarity.

Zhang et al. [23] presented a very concise and effective method, called hot-matrix (HOT-MATRIX).
HOT-MATRIX method produces hotspot matrix by meshing the map and counting the frequency of the
trajectory appearing in each grid. Then the hotspot matrix is used to represent trajectory similarity.

Automatic user identification (AUI)presented in [24] matches the users by co-filtering the ID pairs
with signal base similarity(SIG) and weighted Jaccard similarity (WJS).

In [27], a cross-domain trajectory matching algorithm based on paragraph2vec (CDTraj2vec) is
presented. The method maps the trajectory into the grid, treats each small grid as a word and each
trajectory as a paragraph, and then uses the PV-DM model in the paragraph2vec algorithm to extract
the positional access order features in the trajectory sequence to obtain the vector representation of user
trajectory. Finally, the similarity of the vector is used to represent the trajectory similarity.

We then show the performance evaluation of our TOP-N method. In order to find the best combination
of parameters to reduce the amount of calculation and improve the recognition accuracy, we set the
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parameters TOP-N, h_lo, and h_la to 5–100, 0–0.006, 0–0.005, and did a lot of experiments. Finally,
the parameter settings for datasets Dg1 vs. Dg2 and Dc1 vs. Dc2 are shown in Tables 2 and 3, respectively.

Table 2. Parameter Setting for Dg1 vs. Dg2 .

Parameters TOP-N-PRO TOP-N-COS TOP-N-WJS

h_lo 0.000578 0.002359 0.003538
h_la 0.00045 0.0018 0.0027

TOP− N 63 23 25

Table 3. Parameter setting for Dc1 vs. Dc2 .

Parameters TOP-N-PRO TOP-N-COS TOP-N-WJS

h_lo 0.000578 0.000578 0.000578
h_la 0.00045 0.00045 0.00045

TOP− N 69 69 99

As seen from Table 4, all methods have better performance on dataset Dg1 vs. Dg2 than Dc1 vs.
Dc2 . This is due to the difference of information recorded in the two datasets. First, many trajectories in
GeoLife dataset used for experiments are more than 50 days in time span, and most of the time intervals
between the adjacent points are about 5 s. In contrast, the time span of Cabspotting dataset is only 23 days,
and the points are sparse. Second, GeoLife dataset records the wide-ranging outdoor activities of the tested
users, including not only routines for going home and going to work, but also some entertainment and
sports activities such as shopping, sightseeing, dining, hiking and cycling. Instead, because Cabspotting
dataset is collected by devices embedded in taxis, the routes and trajectories are spatially limited to street,
thus lacking private access. Therefore, the points in the Cabspotting dataset are not so discriminative,
thus making identification more challenging. For the above reasons, these two datasets result in very
different identification accuracy in our experiments.

Table 4. Comparison of results of different methods on two datasets.

Datasets HOT-MATRIX UNICORN AUI CDTraj2vec TOP-N-PRO TOP-N-COS TOP-N-WJS

Dg1 vs. Dg2 0.5732 0.3537 0.3682 0.4421 0.5915 0.5854 0.6616
Dc1 vs. Dc2 0.3713 0.2397 \ \ 0.4076 0.4086 0.4748

From the experimental results, we can see the advantages of the TOP-N method in the asynchronous
identification resolution provided that all three TOP-N variants outperform other comparison methods.
HOT-MATRIX method achieves a relatively high accuracy while the UNICORN method and the AUI
method obtain relatively poor identification results. For the UNICORN method, only the co-distributed
regions are considered, but the influence of the non-co-distribution areas is ignored. When the trajectories
of different users are sufficiently similar, it is difficult to distinguish them. For the CDTraj2vec method,
although it can extract the order features of the location point access of the trajectory, it ignores the
frequency of the visiting locations. The premise that the AUI method and CDTraj2vec method can identify
users is that the employed dataset contains many stay points. However, the Cabspotting dataset contains
very few stop points. Therefore, AUI and CDTraj2vec are not applicable to Cabspotting dataset that
contains almost no stay points.

At last, as far as the computational cost is concerned, we give a brief discussion. HOT-MATRIX
method needs a very huge computation because it uses cosine of the hot-matrix of two trajectories to
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express the similarity. UNICORN calculates cosine of all pairs in the same regions with a inverted-index
strategy to reduce the computational cost. Although the computational complexity can be considerably
reduced, it needs to find all co-distribution regions from a large number of trajectories. In our method, we
only consider TOP-N frequently distributed regions in calculation similarity, which thus leads to reduced
computational complexity. Experimentally, the TOP-N value corresponding to the highest identification
accuracy stably falls between 30 and 100.

5. Conclusions

This paper explores the user identification resolution based on asynchronous trajectory information.
The proposed method considers TOP-N most frequently distributed regions and exploit three applicable
methods to measure trajectory similarity, including angle cosine, probability deviation and weighted
Jaccard similarity. We validated the effectiveness of our algorithm in two real datasets. The experimental
results shows that only the TOP-N most frequently distributed regions need to be compared for user
identification task. Our method enjoys the highest computational efficiency because only TOP-N
regions are used to compute trajectory similarity. Although our method shows good results, in the
real application, since the number of frequently distributed areas (habitual access areas) varies for different
users, the parameter TOP-N in the algorithm is not well determined. Consequently, in order to achieve
higher identification accuracy, the values of h_lo and h_la should be small, so that when the user trajectory
is in large range, such as across cities, the calculation will accordingly expand. In addition, the method
does not consider the timing of the trajectory. How to consider the spatial stratification heterogeneity of
the trajectory information is a challenging problem.
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