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Abstract: In this paper, complementary metamaterial sensor is designed for nondestructive evaluation
of dielectric substrates. The design concept is based on electromagnetic stored energy in the
complementary circular spiral resonator (CCSR), which is concentrated in small volume near the host
substrate at resonance. This energy can be employed to detect various electromagnetic properties of
materials under test (MUT). Effective electric permittivity and magnetic permeability of the proposed
sensor is extracted from scattering parameters. Sensitivity analysis is performed by varying the
permittivity of MUT. After sensitivity analysis, a sensor is fabricated using standard PCB fabrication
technique, and resonance frequency of the sensor due to interaction with different MUT is measured
using vector network analyzer (AV3672series). The transcendental equation is derived for the
fabricated sensor to calculate relative permittivity for unknown MUTs. This method is very simple
and requires calculating only the resonant frequency, which reduces the cost and computation time.

Keywords: complementary metamaterial sensor; CCSR; nondestructive evaluation; material under
test; permittivity; transcendental equation

1. Introduction

Recently there has been increased growth in utilization of microwave sensors to improve quality
assurance in various fields like food [1], healthcare [2], agriculture [3], and environment [4]. Advantages
like low cost, ease of fabrication, robust design, and integration with other microwave devices are
the main reasons for the popularity of microwave sensors based on complementary metamaterials
(MTMs) [5]. Complementary MTMs are manufactured artificially and their properties depend on
structure and orientation rather than composition. The first complementary MTM structure was
introduced by F. Falcone et al. in 2004 [6] by applying duality argument on split ring resonator (SRR),
which was introduced by Pendry et al. as a resonant magnetic particle in 1999 [7]. SRR consisted
of two concentric copper rings having a small gap between them and split in each ring to support
resonance. SRR acts as an LC resonator where the circumference of metallic rings provide inductance
while the gap between the rings and splits provides the capacitance. The resonance frequency of SRR
depends on the size of splits, diameter, and gap between the rings. Meanwhile, complementary split
ring resonator (CSRR) is a negative image of SRR, which can be obtained by etching out SRR from
a metallic plate. The intrinsic circuit and excitation model for isolated and coupled SRR and CSRR
structures have already been discussed in Ref. [8].

Microwave sensors based on SRRs are usually magnetically coupled with the microstrip
transmission line, therefore, these structures are etched on the top layer of microwave sensor near the
microstrip line [9]. At the resonance frequency of SRRs, an electric field appears near the narrow split
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region, which can be employed for liquid characterization [10] and biomedical sensing [11]. SRRs-based
sensors are not suitable for microwave sensing of large samples, because of the narrow fringing electric
fields. This problem has been solved by utilizing CSRRs in place of SRRs for the measurement
of dielectric samples with large dimensions [12]. CSRRs are usually electrically coupled with the
microstrip transmission line and etched in the ground plane [13]. At resonance of CSRRs, large fringing
electric fields appear in the ground plane, which can be employed to evaluate dielectric thickness [14]
and loss tangent [15]. CSRRs have also been used for the synthesis of highly sensitive sensors for
concentration of fluid materials [16], and identification of different liquids from a mixture [17].

In this paper, we are using a complementary circular spiral resonator (CCSR) to design a microwave
sensor for nondestructive evaluation of dielectric substrates. Electric field concentration, effective
electric permittivity, and magnetic permeability of the proposed sensor are calculated numerically.
A sensor is fabricated and the magnitude of transmission coefficient (S21) is measured using vector
network analyzer (AV3672 series). Five dielectric materials (MUTs) are placed on the fabricated sensor
and S21 of the sensor is measured due to interaction with these MUTs. This measured data is used to
derive a transcendental equation for the sensor. The sensor design is explained in Section 2. Sensitivity
analysis is performed in Section 3. Fabrication and measurement results are discussed in Section 4.
The transcendental equation is formulated in Section 5 and the research is concluded in Section 6.

2. Sensor Design

The proposed sensor is based on 1 mm thick FR4 substrate, which has two copper layers of 35 µm
each. The upper copper layer consists of a microstrip transmission line while the bottom copper layer
has a complementary circular spiral resonator (CCSR) as shown in Figure 1. The dielectric constant (εre)
and characteristic impedance (Zc) of microstrip transmission line are calculated using the following
equations [18]:

εre =
εr + 1
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)}−1
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where εr = 4.4 is permittivity of dielectric substrate and η = 120π Ω is impedance of wave in free space,
w = 3 mm is width of the microstrip transmission line, h = 1 mm is height of FR4 epoxy substrate.
The proposed sensor is simulated in ANSYS Electronics Desktop 2018, which includes a direct link to a
high frequency structure simulator (HFSS). The proposed sensor is excited with electrical polarization
in z direction, magnetic polarization in x direction, wave vector in y direction, and the simulation
conditions are given in Table 1.

Table 1. ANSYS High Frequency Structure Simulator (HFSS) Simulation Condition.

Analysis Area
Size 25 × 30 × 50 mm3

Boundary Condition Radiation

Cells
Number 14,201

Shape Tetrahedron

Feed Wave port (50 Ω)

Solution Type Driven Model

Convergence condition determination Maximum number of passes; 20
Maximum delta S; 0.02
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Figure 1. (a) Sensor design based on FR4 epoxy substrate (h = 1 mm). (b) Top view of the sensor
(a = 30 mm, b = 25 mm, w = 3 mm). (c) Bottom view of the sensor (rext = 3 mm, r0 = 1.5 mm, c = d = 0.5 mm).

The magnitude and phase of simulated transmission (S21) and reflection (S11) coefficients are
shown in Figure 2; Figure 3, respectively. The fundamental resonance frequency of the sensor is
2.32 GHz with notch depth −16.54 dB. Scattering parameters are used to extract effective electric
permittivity (ε) and magnetic permeability (µ) of the proposed sensor using the following relations [19]:

ε =
n
z

(3)

µ = nz (4)

where n is refractive index which can be calculated using following equation:
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where,
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where z is the complex impedance which can be calculated using following equation:
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Figure 2. Magnitude of simulated reflection (S11) and transmission (S21) coefficient for the proposed 

sensor. Resonance frequency of sensor is 2.32 GHz with notch depth −16.54 dB. 

 

Figure 3. Phase of simulated reflection (S11) and transmission (S21) coefficient for the proposed sensor. 

A sudden change in phase occurs at resonance frequency. 

The extracted plot of electric permittivity for the proposed sensor is plotted in Figure 4 and it 

shows negative permittivity from 2.10 GHz to 2.12 GHz, and the maximum value of negative 

permittivity is −3.57 at 2.11 GHz. The extracted plot of magnetic permeability for the proposed 

Figure 2. Magnitude of simulated reflection (S11) and transmission (S21) coefficient for the proposed
sensor. Resonance frequency of sensor is 2.32 GHz with notch depth −16.54 dB.
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Figure 3. Phase of simulated reflection (S11) and transmission (S21) coefficient for the proposed sensor.
A sudden change in phase occurs at resonance frequency.

The extracted plot of electric permittivity for the proposed sensor is plotted in Figure 4 and
it shows negative permittivity from 2.10 GHz to 2.12 GHz, and the maximum value of negative
permittivity is −3.57 at 2.11 GHz. The extracted plot of magnetic permeability for the proposed
sensor is plotted in Figure 5 and it shows negative permeability from 2.27 GHz to 2.42 GHz, and the
maximum value of negative permeability is −199.2 at 2.30 GHz. From Figures 4 and 5, it is clear that
the proposed sensor is giving negative values of permittivity and permeability, which is a property of
metamaterials. The values of electric permittivity and magnetic permeability are dimensionless as they
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are relative to free space and can vary with the orientation of the sensor, temperature of environment,
and molecular structure of the material. The number of CCSR structures in the ground plane of the
proposed sensor is increased and their effect on resonance frequency, notch depth, and bandwidth
are shown in Figure 6 and tabulated in Table 2. By increasing the number of CCSR in the ground
plane, there is no effect on resonance frequency, but notch depth and bandwidth increase and the
transmission curve becomes sharper. Since the resonance frequency of each CCSR structure is the same,
there is no effect on resonance frequency, but each structure contributes to the notch depth. Due to the
increase in notch depth, the bandwidth also increases. Figure 7 shows the electric field distribution at
resonance frequency of the proposed sensor based on one, two, three, and four CCSR structures in the
ground plane. The maximum magnitude of electric field is 2.31 × 105 V/m for one CCSR in the ground
plane and it is concentrated inside the inner ring. For two, three, and four CCSRs, the same electric
field distributes among two structures and the maximum magnitude of electric field is 2.20 × 105 V/m,
2.09 × 105 V/m, and 2.0 × 105 V/m, respectively.
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Figure 5. Extracted plot of magnetic permeability for proposed sensor, showing negative permeability
from 2.27 GHz to 2.42 GHz, and maximum value of negative permeability is −199.2 at 2.30 GHz.
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Figure 6. Simulated transmission coefficient of proposed sensor with one, two, three, and four
complementary circular spiral resonator (CCSR) in the ground plane separated 1 mm apart. By
increasing number of CCSR in the ground plane, notch depth and bandwidth increase but resonance
frequency remains the same.
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Figure 7. Distribution of electric field at resonance of proposed sensor based on (a) one CCSR, (b) two
CCSR, (c) three CCSR, and (d) four CCSR.

Table 2. Effect of CCSR number on resonance frequency, notch depth, and bandwidth.

Number of CCSR in Ground Plane Resonance Frequency
(GHz)

Notch Depth
(dB)

B.W at 3dB
(GHz)

One 2.32 −16.54 0.36

Two 2.32 −30.10 0.88

Three 2.32 −46.54 1.01

Four 2.32 −77.93 0.96

3. Sensitivity Analysis

The basic operating principal of microwave sensors is to measure the change in resonance frequency
due to interaction with the material under test (MUT). According to the theoretical development,
the shift in resonance frequency of sensor due to interaction with the MUT can be expressed as [14]:

∆ fr
fr

=

∫
υ
(∆εE1 · E0 + ∆µH1 ·H0)dυ∫
υ
(ε0|E0|

2 + µ0|H0|
2)dυ

(9)

where ∆fr, ∆ε, ∆µ are change in resonance frequency, permittivity, and permeability, respectively. υ is
the perturbed volume. E0 and E1 are the electric fields distribution without and with perturbation,
respectively. H0 and H1 are the magnetic fields distribution without and with perturbation, respectively.
For sensitivity analysis, we selected the sensor based on four CCSR structures due to its sharp
transmission curve. MUT is placed in the ground plane without air gap as shown in Figure 8.
Sensitivity analysis is performed on permittivity perturbation of MUTs. Four MUTs (teflon, quartz,
FR4, and silicon nitrate) with constant dimension (6 mm × 27 mm × 1 mm) are placed under the
ground plane and their impact on transmission coefficient of the sensor is shown in Figure 9. Simulated
resonance frequencies of the sensors due to interaction with air, teflon, quartz, FR4, and silicon nitrate
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are 2.32 GHz, 2.17 GHz, 2.04 GHz, 2.0 GHz, and 1.84 GHz, respectively. From Figure 9, it is clear that
the relative permittivity of the MUT is inversely proportional to the resonance frequency of the sensor.
Permittivity of MUT basically changes the total capacitance of the device, and resonance frequency
due to interaction with MUT can be calculated as follows [15]:

f =
1

2π
√

L(Csubstrate + CMUT)
(10)
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4. Fabrication and Measurement

The sensor based on four CCSR structures is fabricated on FR4 substrate using standard PCB
fabrication technique and the fabricated prototype is shown in Figure 10b. Vector network analyzer
(AV3672series) is used for measurement of transmission coefficient with a frequency sweep of 1 to
4 GHz as shown in Figure 10a. The fabricated sensor is used to measure the resonance frequencies
of sensors due to interaction with air, teflon, quartz, FR4, and silicon nitrate as shown in Figure 11.
Measured resonance frequencies of the sensors due to interaction with air, teflon, quartz, FR4, and
silicon nitrate are 2.29 GHz, 2.20 GHz, 2.06 GHz, 2.02 GHz, and 1.82 GHz, respectively. For comparison,
simulated and measured results for the sensor are tabulated in Table 3. The differences between
simulated and measured results are very small and can be attributed to fabrication tolerance, conductor,
dielectric and radiation losses.

Table 3. Simulated and measured results of sensor for different MUTs.

Material Under
Test (MUT)

Relative
Permittivity of

MUT

Simulated
Resonance

Frequency (GHz)

Measured
Resonance

Frequency (GHz)

Difference Between
Simulation and
Measurement

Air 1 2.32 2.29 0.05
Teflon 2.1 2.17 2.20 0.03

Quartz Glass 3.78 2.04 2.06 0.02
FR4 Epoxy 4.4 2.0 2.02 0.02

Silicon Nitrate 7 1.84 1.82 0.02
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Resonance frequencies of sensors due to interaction with air, teflon, quartz, FR4, and silicon nitrate are
2.29 GHz, 2.20 GHz, 2.06 GHz, 2.02 GHz, and 1.82 GHz, respectively.

5. Formulation

The transcendental equation for the proposed sensor is formulated with fitting parameters
using measured results. As shown in Figure 11, the resonance frequency of the sensor varies with
relative permittivity of MUT. This variation in resonance frequency can be expressed by the following
equation [20]:

fr,MUT = fr,Air

√
εe f f ,AIR

εe f f ,MUT
(11)

where fr,MUT and fr,AIR are resonance frequencies of the sensor with and without MUT, respectively.
While εeff,MUT and εeff,AIR are effective permittivity of MUT and air, respectively. Figure 12 shows
the relationship between relative permittivity of MUT and the resonance frequency of sensor due to
interaction with MUT. This relationship shows that resonance frequency of the sensor is decreasing by
increasing the relative permittivity of MUT. In Ref. [20], resonance frequencies are approximated with
a parabolic equation with respect to relative permittivity of MUT. The parabolic equation is given as:

fr,MUT = A1 + A2ε
′
r + A3ε

′
r
2 (12)

where εr’ is relative permittivity of MUT. A1, A2, and A3 are constant values of polynomial. The reference
MUT is air, which has dielectric constant 1. For reference, MUT resonance frequency must be equal to
A1, so Equation (12) can be expanded with respect to (εr’ − 1),

fr,MUT = A1 + A2(ε
′
r − 1) + A3(ε

′
r − 1)2 (13)

By measuring the results of standard materials (Air, Teflon, and FR4) for which dielectric constants
are well known and curve fitting, the constant parameters of Equation (13) are extracted. Finally,
the equation becomes:

fr,MUT = 2.29− 0.08297(ε′r − 1) + 0.00105(ε′r − 1)2 (14)
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Equation (14) can be used to predict resonance frequency of known MUTs with permittivity
ranges from 1 to 10. To check validity of Equation (14), various MUTs are placed on the sensor and
resonance frequencies are extracted through Electromagnetic (EM) simulation. In Figure 13, the solid
line shows the resonance frequencies extracted from Equation (14) and dash line shows the resonance
frequencies extracted through simulation. It is clear that Equation (14) is fairly reliable for the prediction
of resonance frequency of the sensor due to the interaction with MUTs of permittivity ranges up
to 10. To calculate the relative permittivity of unknown MUT, the transcendental equation can be
expressed as:

ε′r =
0.08297−

√
0.00688− 0.0042(2.29− fr,MUT)

0.0021
+ 1 (15)

Equation (15) can be used to calculate relative permittivity of unknown MUTs. In order to
check the validity of Equation (15), measured resonance frequencies are used to calculate the relative
permittivity of different MUTs and are tabulated in Table 4. It is clear that the relative permittivity
values obtained from Equation (15) are very close to the actual values.

Table 4. Relative permittivity evaluation using measured result.

Material Under Test (MUT) Relative Permittivity (εr’) Equation (15) Calculation or εr’

Air 1 1.01
Teflon 2.1 2.11

Quartz Glass 3.78 3.88
FR4 Epoxy 4.4 4.41

Silicon Nitrate 7 7.15
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6. Conclusions

A complementary metamaterial sensor based on the microstrip transmission line and
complementary circular spiral resonator (CCSR) was designed numerically and verified experimentally
for nondestructive evaluation of dielectric substrates. Constitutive parameters for the proposed sensor
were calculated using ANSYS electronics desktop. A sharp transmission curve was achieved using
four CCSR structures in the ground plane. Sensitivity analysis was performed using permittivity
perturbation of material under test (MUT). The shift in the resonance frequency of the sensor due to
interaction with MUT is presented as a function of permittivity of MUT. The transcendental equation
was derived for the sensor to predict the resonance frequency of dielectric materials. Simulated,
measured, and formulated results are very close to each other within permittivity range from 1 to 10.
The proposed design is very compact and fabrication is easy and inexpensive. Although the main
emphasis of this work is for the evaluation of dielectric substrates, in the future the design will be
improved for biosensing and security applications.
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