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Abstract: In this paper, the theory behind the design of a microwave sensor for the accurate
measurement of firn complex permittivity is presented. This class of microwave sensors, based on
the open-coaxial re-entrant cavity method, is specifically designed to measure, by means of a
simple and quick procedure, the complex permittivity profile of low loss materials. A calibration
procedure is introduced to derive the complex permittivity of the material under measurement
(MUM). Two specimens of this class of microwave sensors have been realized to sample the complex
permittivity profile of a 106-m long ice core drilled from the Antarctic plateau at Concordia Station.
The preliminary results of the on site measurement campaign are reported, showing very good
agreement with theoretical models available in the literature.

Keywords: complex permittivity measurement; dielectric spectroscopy; dielectric measurement;
Antarctic firn

1. Introduction

It is currently ascertained that Antarctic Peninsula climate changes, such as warming, are more
rapid than in any other region on Earth [1]. Even if the causes of these changes have not yet
been fully understood and probably will be the subject of scientific inquiry for a long time, it is
undoubted that to proceed in understanding the mechanisms that affect the global climate changes of
the Earth, we need to observe and monitor the entire geographic extent of the polar regions, including
Antarctica. One of the most common methods to assess the impact of climate change is to monitor the
Antarctica Ice Sheet change in mass over time. Due to Antarctica’s extent, extreme weather conditions,
and remoteness, satellite remote sensing constitutes a unique tool that may provide the consistent
spatial and temporal coverage necessary to estimate the ice-sheet mass balance and document the
real climate and environmental changes throughout this continent [2—4]. The availability of new
low-frequency microwave spaceborne sensors pushed the investigations further, into the deeper layers
of the ice sheet and firn, down to the bedrock. However, to maximize the scientific return of these
new satellite missions, corresponding in situ measurements of the firn electromagnetic characteristics,
such as the complex permittivity, are required in order to calibrate and validate satellite remote sensing
data. A model of the firn permittivity in the 400 MHz-2 GHz frequency is fundamental to describe the
interactions of electromagnetic waves with matter, their propagation velocity, their reflections by the
various layers, and the maximum depth they can penetrate, at a given frequency, into the medium.
Up to now, all of the activities done to characterize the permittivity of the Antarctic cover were focused
on frequencies below 250 MHz, very often up to 50 MHz [5,6]. So far, the most reliable models for
the permittivity of firn in the GHz domain can predict quite well its real part (which governs wave
reflections), but very poorly its imaginary part, which is responsible for wave absorption. Furthermore,
the dependence of the firn permittivity on the temperature and chemical composition of the medium
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is not fully understood [7]. In the framework of the Italian Antarctic Program, a project has been
funded with the general objective to characterize the real and imaginary parts of the firn permittivity
versus depth in the 400 MHz-2 GHz microwave range by means of in situ measurements at Concordia
Station. The technique mainly consists of drilling a borehole in the Antarctic firn and then measuring
the real and imaginary parts of the extracted core every 5-10 cm using a dedicated sensor, followed by
additional chemical analysis on each core slice. As a consequence, taking also into account the harsh
measurement environments, the main requirements of the instrumentation were:

1. performing a non-destructive and non-contaminating measure;
2. allowing a fast, easy, and reliable measurement procedure;
3. providing a high sensitivity to the expected very low loss tangent of the firn permittivity.

The measurement of very low values of the loss tangent is not possible by means of reflection
methods (such as the “classic” open coaxial method). Indeed, these are well known to be unsuitable
for measuring both the real and the imaginary part of permittivity when these two parameters are
very unbalanced [8].

Therefore, in this paper, a dedicated microwave sensor is presented that has been designed,
realized, and tested for the accurate measurement of the firn complex permittivity. This is based on the
open-coaxial re-entrant cavity method [9,10] typically used for the electromagnetic characterization
of low loss materials. The microwave sensor was obtained by short-circuiting a coaxial section at
one end, leaving the other end open to load the cavity through a firm contact with the material
under measurement. The obtained cavity was loosely coupled with external circuitry by means of
two ports through which a measurement of the complex transmission coefficient Sy; was performed.
It was found that the transmission coefficient was vanishing except near the resonance frequencies of
the cavity. Two microwave sensors have been finally designed and realized to sample the complex
permittivity in the frequency range of interest (0.4—2 GHz). The first one had been designed to exhibit
frequency resonances in clean air at f; = 395 MHz and f, = 1.174 GHz, while the second one exhibited
frequency resonances in clean air at f; = 895 MHz and f, = 2.68 GHz. The complex permittivity of the
material under measurement (MUM) was derived by comparing the measured resonance frequencies
and quality factors of the loaded cavity, with that obtained by the unloaded cavity (the open end
facing the air) and by loading it with a low loss dielectric material of known electrical characteristics.
Tests performed on four ice samples in a cold lab (—20 °C) and on known samples have shown that the
sensor is able to measure very low loss tangents, on the order of tan§ = 10~*. The paper is organized
as follows. In Section 2, a circuit model of the cavity is introduced and analyzed in order to derive
the relationship between the transmission coefficient and the complex permittivity of the material
to be measured. In Section 3, a measurement procedure that allows deriving the unknown complex
permittivity as a function of the measured parameters is presented and discussed. Finally, in Section 4,
the measurement procedure is applied to derive the complex permittivity of real ice samples, and the
results are reported and discussed.

2. The Cavity Sensor

Figure 1 shows the geometry of the cavity sensor. The coaxial line constituting the cavity was
short circuited at one end, while the other end was open and used to probe the MUM. Figure 2 shows
the fabricated cavity operating at 895 MHz and 2.68 GHz in air.



Sensors 2019, 19, 2099 30f13

Figure 1. Geometry of the cavity sensor.

Figure 2. The cavity sensor operating in the higher frequency band.

As the sensor diameter was small compared to the wavelength of the exciting signal, its radiation
resistance was negligible, i.e., the sensor worked in the evanescent field region. The cavity opening
electrically consisted of a capacitor-dominated impedance, the capacitance being directly related to the
dielectric constant of the MUM facing the opening. In a first, very rough, approximation, a cavity of
length D has infinite resonant frequencies, the lowest approximately corresponding to a wavelength A
equal to 4D, i.e., the cavity resonates at a frequency such that the cavity length is D = A /4. At that
frequency, the resonance mode is well known to be transverse electro-magnetic (TEM). Due to the
small, but non-zero, terminating capacitance, the actual resonance frequency was slightly lower
than that value or, in other words, the end capacitance made the cavity a little “electrically” longer.
Higher frequency TEM resonance modes occurred at D = (2N + 1) /4 with Nintegers, while different
non-TEM higher-order modes can also occur, if excited, having a magnetic field component along the
cavity axis (TE modes) or an electric field component on that axis (TM modes).

The following analysis will be limited to TEM modes, and in particular, our attention will be
focused on the lowest frequency one. Figure 3 shows the equivalent circuit of the sensor. The following
analysis can be easily extended to higher order modes, provided that evanescent field conditions
(i.e., low radiation resistance) are fulfilled. The coaxial transmission line of characteristic impedance
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Zy constituting the cavity (thick lines in Figure 3) was connected to a vector network analyzer (VNA),
represented by the generator circuit (Vg, R, L1) and by the load circuit (Rg, Lp), representing the
transmitting and receiving ports of the VNA. The cavity was loosely coupled to such ports, via two
magnetic loops, represented by the mutual inductances M; and Mj. M3 takes into account the direct
coupling between the transmitting and receiving coil, whose geometrical arrangement was such that
it made that parameter negligibly small. The resistance Ry, is a function of frequency, as it includes
both the ohmic losses of the cavity and the generator and load resistances transformed by the mutual
inductances. The coaxial line (short-circuited on the left side) terminated on an admittance Y (w, €)
depending on the geometry of the coaxial aperture and on the complex permittivity of the material
facing it.

. Ri(w)

Z, Y(w,€)

Figure 3. Electrical schematic of the measurement cavity sensor.

The circuit can be further simplified by defining a frequency-dependent lumped inductance L(w),
which represents the impedance seen towards the short circuit from the open end of the coaxial line
(dashed line in Figure 3):

L(w) = Zptan(BD) 1)
w

where f is the wavenumber in the transmission line, corresponding to the angular frequency w, and D

is the cavity length.

The admittance Y (w, €) essentially consists of a complex capacitance C(e) = C' — jC” having in
parallel a conductance G representing the radiation resistance of the coaxial opening [11]. If the coaxial
size is small with respect to the wavelength, the cavity radiation is negligibly small, and the G term can
be included in the frequency-dependent resistance Ry (w). The capacitance C is a complicated function
of the mode structure of the electric field at the coaxial opening [8,12]. However, a simple analysis can
be conducted, based on the Deschamps theorem [13], establishing a relationship between the open
admittance in air, Y(w, 1), and that on the material of (relative) complex permittivity € = €’ — je”,
Y(w,e€):

Y(w,€) = VeY(wv/e, 1) @)

Equation (2) asserts that the admittance in the material is /€ times the admittance in air at the “scaled”
frequency w+/e.

Denoting by C, the capacitance when air terminates the cavity sensor (i.e., without the MUM),
the admittance corresponding to a material of complex permittivity € is Y (e) = jwe'C, 4+ we”’C,.
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The quantity measured by the VNA is the transmission coefficient between Ports 2 and 1,
571, consisting of the ratio between the voltages denoted by v, and v; in the electrical schematic.
Straightforward calculations give the following expression [10]:

Z)z lXRg
Sa = ZT1 ~ | ; o M} 2 MM, ®)
jwLy + jwaMs + w7+ — aw*=,=2
with: .
Zs = R jcwL

W Ww* My M; — jwMsZs
wW2M3 + (Rq + jwLy)Zs

Note that the inductances in the “secondary” circuit including the cavity have been implicitly
included in L(w). It can be easily shown that the frequency behavior of Sy;, at least in the region
around the resonance peak, can be well described by an expression like:

4)

where A is a constant. In other words, the information about the real and imaginary part of the MUM
permittivity (which are related to the resonance frequency and quality factor) is contained in the
zeros of the series impedance Z; (the dependence on w has been explicitly indicated in (4)); hence,
an analysis of the series impedance of the cavity is all we need.

3. Measurement Procedure

The measurement of the dielectric properties of an unknown material (€,;) requires determining
the unknown parameters in Z;. To accomplish this, we performed two “calibration” measurements,
with the cavity facing air and with the cavity placed on a dielectric material with known dielectric
permittivity. In this case, we used the Eccostock®0005 (ES5), a low loss, cross-linked, polystyrene
having certified dielectric properties (flat on a very large frequency band) that were: €’ = 2.53 and
tand =5 x 1074,

3.1. Calibration Facing Air

In Figure 4 is shown the series impedance of the resonant cavity equivalent circuit when the
open-end was facing the free-space.

L(w) Ry(w)
Ea

C,

Figure 4. Equivalent circuit of the cavity facing air.

The resonance condition corresponds to Im(Zs) = 0. Of course, this happens at an angular

frequency w, such that:
1

w,C,

weL(wg) = Zptan(B,D) = ®)
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Equation (5) allows obtaining the cavity termination capacitance in air C,.
The quality factor is defined as usual:

_ Zptan(B,D)

Q=T ©)

3.2. Calibration Facing ES5

In Figure 5 is shown the equivalent circuit for the resonant cavity when the open-end was facing
the ES5 dielectric material.

L(w) R(w)
— T —
£'C,== | |W&"C,

Figure 5. Equivalent circuit of the cavity facing the calibration material ES5.

From Equation (2), we obtain the expression of the termination admittance when the cavity opens
onto the “test” material ES5:

Yi(w, er) = VerY(Vew, 1) = jweCy (7)

where €; = €] — je/ is the complex permittivity of ES5.

The “full” termination admittance, when the cavity open-end faces a dielectric of complex
permittivity €;, should be given by the parallel between the termination admittance (7) and the radiation
conductance of the aperture. This last is a function of the frequency and should be conveniently
included in the total frequency-dependent resistance of the cavity. However, as long as the radiation
conductance of the aperture can be neglected, the termination susceptance is practically given by:

/!
Bt = we;Cy

while the termination conductance is:
Gt = wey'Cy

Denoting by R, the series resistance of the admittance terminating the line in Figure 5, the quality
factor is now:

Zotan(B:D)
Qr = Zotan(piD) 8)
Rp (wt) + R,
where B is the propagation constant and w; the resonance angular frequency, the subscript “t” referring
to the resonance conditions with the “test” material terminating the cavity, and:
7
€
R, = L (9)

— wiCaler|?

In (8), Ry, is not known at the angular frequency w;, because using a single cavity, we are not able
to estimate the frequency behavior of Ry. To obtain the w dependence of R}, a numerical model has
been implemented, as described in the following subsection.

3.3. Frequency Dependence of the Total Cavity Wall Resistance

A finite-element (FE) model of the cavity sensor has been implemented using COMSOL
Multiphysics®. The model only represents the “secondary” circuit (shown in Figure 4), and it is
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axially symmetric. Figure 6 shows a cross-section of the model: the semi-spherical region closing the
cavity on the “open” side has dimensions such that it negligibly perturbs the electric field distribution
at the cavity aperture.

Figure 6. The axially-symmetrical model of the cavity sensor.

The electrical conductivity assigned to the cavity walls was such that it gave the
experimentally-measured Q, at the resonance angular frequency w,. Such an effective conductivity
takes into account all loss sources, e.g., the actual ohmic losses of the walls and the losses transported
into the secondary circuit by the two primary circuits (generator and load) shown in Figure 3.
The semi-spherical region was assumed as a perfect-electric conductor.

In order to compute the frequency dependence of R, we have to change the resonant frequency
of the cavity without changing its geometrical length. The only way to do this is to change the dielectric
constant of the material filling the semi-spherical region, of course without introducing spurious losses
(i.e., assuming purely real permittivity values). For every dielectric constant value, the FE model allows

computing a complex resonance frequency w;, = w; (1 + 2%27) , where w, = Re(wy), and therefore:

Wy

Q= D@

As a last step, Ry, is computed at each frequency by means of (6). Figure 7 shows the calculated
frequency dependence of Ry. The frequency dependence of the resistance is a fourth-order polynomial.
Such a behavior is very similar to what has been experimentally determined for re-entrant cavity
devices [10], where changing the termination capacitance in air is possible. At this point, a doubt
could arise about the possibility of avoiding the numerical model and experimentally measuring
Ry (w). As we noted above, to change the resonance frequency, we have to change the termination
capacitance. To do that experimentally, without introducing additional losses, we must have available
a certain number of loss-free dielectrics, but of course, we have not. An alternative could be to use real
dielectrics (i.e., with losses, however small they are) with precisely-known loss tangent values and to
take into account those loss values. That is feasible, in principle, but not very easy to realize.
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Figure 7. Computed frequency-dependent total resistance of the cavity sensor walls.

3.4. Measurement on Unknown Material

The equivalent circuit of the measurement is represented in Figure 8. The unknown dielectric
constant €}, and loss tangent tan §,, were computed from the measured resonance frequency wy, and
quality factor Q;,, respectively. The subscript “m” refers to the material under measurement.

L(w) R(w)
— -

weLC,

Figure 8. Equivalent circuit of the cavity facing the material under measurement (MUM).

The dielectric constant comes from equating to zero the total impedance of the resonant circuit.
This latter is the series among the impedances at the left and at right of the capacitor:

Zs = Zo(wy) tanh(y,, D) — § (10)

Win€mCa
where the propagation constant 7, and the characteristic impedance Zy(wy,) are complex quantities
because the coaxial line constituting the cavity is a (low) lossy line.

Expressing the C, air capacity in terms of the measured resonance frequency in air (5), we obtain:

e = jZo(wg)wg tan(B,D)

~ Zo(wWm)wy, tanh(7,,D) (11)
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It is easy to show that for low loss materials, and for a very low loss coaxial line (as needed for
having a high Qvalue), the characteristic impedance Z is practically real and frequency independent
and (11) becomes:

, wg tan(B,D)
_ 12
T o tan(Bm D) (12)

where B, = Im(ym)
The loss tangent tan d,, is computed from (8) and (9). If €], < €}, we obtain:

Zot D

tandn = anclCa | 220D gy (0, (13)
m

Actually, Expressions (12) and (13), which only depend on the measurement on the unknown
material and on air, must usually be corrected taking into account the measurement on a material
of known properties (close to those of the material of interest), in our case the ES5 (see Section 3.2).
For the purpose of obtaining a higher precision, for example, Expression (12) must take into account
the presence of a very small thickness of air between the sensor head and part of the specimen, which
results in a series capacitance C; given in terms of the €; computed by (12) and the “true” value €

/
€;.Cy
Cs tc

= — 14
€./€ep—1 (14)

As a consequence, assuming the same average air thickness for the unknown material (the
flatness of the specimen surface is a prerequisite; therefore, the presence of air is mainly due to small
imperfections in the sensor head), the corrected €}, is obtained from (12) by:

/
i €nGs

T TG )

The loss tangent given by (13) is corrected multiplying it by a correction factor involving the
quality factor measured with ES5 (Q;) and the quality factor in air (Q,;) “translated” to the same

resonant frequency w;:
tan &y

T 1/Qi—1/Qu
where tan J; is the “true” loss tangent value of ES5. Eventually, the loss tangent value of the material
is given by:

Kt (16)

tan d,,c = K tan dyy (17)

3.5. Sensing Depth

The sensitivity of the sensor resonance frequency (fr) and quality factor (Q) on the sample
thickness have been investigated numerically. The FEM simulation computed the complex frequency
of the first eigenmode of the resonant cavity terminated by an ice sample backed by a metallic plate.
To investigate the worst-case conditions, ice was assumed to have the permittivity of superficial firn
(€' = 1.5, tand = 5 x 10~%). A greater value of permittivity further reduces the error due to the metal
perturbation. The metal termination, although not realistic (usually samples are not placed on a
metallic support), is clearly the worst-possible condition for the electric field.

Figure 9 shows how the resonance frequency depends on the sample thickness. The relative
percentage error on f, decreasing the thickness from 5-2.5 cm was about 0.03%.
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Figure 9. Sensitivity of resonance frequency to the sample thickness.

Analogously, Figure 10 shows how the resonant cavity loaded Q depends on the sample thickness.
The relative percentage variation on Q on the thickness range 2.5-5 cm was about 0.01%.
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Figure 10. Sensitivity of Q to the sample thickness.

As the dielectric constant €’ is mainly (and almost linearly) related to f,, while the loss tangent
tand is mainly related to Q, we expect similar errors on the dielectric parameters, due to the finiteness
of the sample thickness.

The correctness of the above analysis has been verified experimentally by measurements on Teflon
samples of different thickness backed by a metallic plate. The dielectric parameters obtained did not
depend on the thickness, if the samples were thicker than a couple of cm.

4. Results and Discussion

The measurement procedure has been initially tested on Teflon®, which is a commercial name for
polytetrafluoroethylene, since its dielectric properties slightly change among manufacturers. From data
found in the literature (e.g., [14,15]), Teflon’s dielectric constant is between 2.0 an 2.1 in a wide frequency
range (up to several GHz), and its loss tangent is usually between 1 x 10~# and 4 x 10~*. Using the
first of the two fabricated sensors, the measured value at the frequency resonance of 860 MHz was:
€ref = 2.03, tandr,y = 1.4 x 104, These results are in a very good agreement with those typically
found in literature.
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In preparation for the Antarctic measurement campaign, four ice samples have been prepared
and measured in a cold lab at —20 °C. One of the samples was obtained from de-ionized water, and
the other three from saline solutions having NaCl concentrations of 0.1, 0.01, and 0.001 moles/ liter.
Table 1 shows the measurement results at the reference frequency resonance of 840 MHz.

Table 1. Measured complex permittivity of several saline solutions.

cnacy (moles/liter) €’ tan g
0 27 38x107*
0.001 27 50x107%
0.01 27 14x1073
0.1 24 8x1073

The results on Teflon and those reported in Table 1 showed that the measurement method was
able to measure very low loss tangents. On the other hand, while the dielectric constant of the teflon
sample was properly obtained, the values for ice suffered for a systematic error, as the correct value of
the ice permittivity is known to be close to 3.15. The low dielectric constant values for low-salinity ice
(first three rows of the table) were probably due to an imperfect contact between the probe and the ice
surface or, in other words, to the presence of air between the probe and the material. The large error in
the dielectric constant of the high-salinity ice was due to the material consistency, which, due to the
massive presence of salt, was like a gel rather than a hard solid.

Although the relative error on € was not so huge in the first three cases (the measured permittivity
was about 14% lower than the expected one), we were warned to obtain an as smooth as possible
surface of the samples during the Antarctic campaign.

4.1. Preliminary Results on Antarctic Firn

This section reports preliminary results of measurements conducted in an ice/firn carrot drilled
out from the Antarctic pack close to Concordia Station on December 2018. The carrot, about 106 m
long, has been cut in slices of thicknesses around 10 cm. Figure 11 shows the measured dielectric
constant as a function of depth (blue line). The measurement frequency varied between 830 MHz
(deeper samples) and 830 MHz (superficial samples). The first usable samples were at a depth of about
3 m, because more superficial samples deteriorated during the drilling/extraction phase.

It is well known that the dielectric constant €’ is related to the ice specific density p (ice density
relative to that of liquid water at 4 °C) by the following expression [6]:

¢ =(1+p)?

where v = 0.845. Moreover, the specific density of ice is an exponential function of the depth (see,
for example, [16]), such that the depth dependence of the dielectric constant is like:

2
€(z) = (1.77 — ae‘ﬁz) (18)
The fitting function (18), fulfilling the condition for pure ice:

lim €’ ~ 3.15

Z—00
is also shown in Figure 11 (dashed line). It is worth noting that the fitting function was well
superimposed on the experimental data. Incidentally, the B constant obtained from the fitting
corresponded to a “decay length” 1/ of the order of 45 m, consistent with the physical situation.
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Figure 11. Measured dielectric constant at about 850 MHz, as a function of depth.

In Figure 12, the measured loss tangent as a function of depth is shown (black line). It was found
that loss tangent was rather variable with depth, varying between 0.5 x 10~% and 5 x 10~*. However,
the fitted value (red line) was monotonically growing with depth varying from 0.5 x 10743 x 1074
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Figure 12. Measured loss tangent at about 850 MHz, as a function of depth.
4.2. Conclusions

In this paper, the theory behind the design of a microwave sensor for the accurate measurement
of firn complex permittivity was presented, based on the open-coaxial re-entrant cavity method.
Such a microwave sensor has been specifically designed to measure, by means of a simple and quick
procedure, the complex permittivity profile of low loss materials, such as firn. A calibration procedure
has been introduced to derive the complex permittivity of the material under measurement (MUM).
This was obtained by comparing the measured resonance frequencies and quality factors of the cavity
with the MUM, with that obtained by the unloaded cavity (the open end facing clean air) and by
loading it with a low loss dielectric material of known electrical characteristics. This allows one to
attain a very good degree of accuracy in the estimation of the loss tangent of the MUM, as confirmed
by tests on known materials. Two specimens of this class of microwave sensors have been finally
realized to sample the complex permittivity profile, in the frequency range of interest (0.4-2 GHz),
of a 106 m-long ice core drilled from the Antarctic plateau at Concordia Station. Preliminary results,
at a frequency of 868 MHz, showed that the measured profile was in very good agreement with those
calculated by theoretical models.
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