
sensors

Article

An Enhanced Lightweight IoT-based Authentication
Scheme in Cloud Computing Circumstances

Rafael Martínez-Peláez 1,* , Homero Toral-Cruz 2, Jorge R. Parra-Michel 1 , Vicente García 3 ,
Luis J. Mena 4, Vanessa G. Félix 4 and Alberto Ochoa-Brust 5

1 Facultad de Tecnologías de Información, Universidad De La Salle Bajío, Av. Universidad 602,
León 37150, Mexico; jrparra@delasalle.edu.mx

2 Department of Sciences and Engineering, University of Quintana Roo, Blvd Bahía S/N,
Chetumal 77019, Mexico; htoral@uqroo.edu.mx

3 Departamento de Ingeniería Eléctrica y Computación, Universidad Autónoma de Ciudad Juárez, Av. José de
Jesús Macías Delgado 18100, Cd. Juárez 32310, Mexico; vicente.jimenez@uacj.mx

4 Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras
Km 3, Mazatlán 82199, Mexico; lmena@upsin.edu.mx (L.J.M.); vfelix@upsin.edu.mx (V.G.F.)

5 Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Av. Universidad 333,
Colima 28040, Mexico; aochoa@ucol.mx

* Correspondence: rmartinezp@delasalle.edu.mx; Tel.: +52-477-710-8567

Received: 16 March 2019; Accepted: 28 April 2019; Published: 6 May 2019
����������
�������

Abstract: With the rapid deployment of the Internet of Things and cloud computing, it is necessary
to enhance authentication protocols to reduce attacks and security vulnerabilities which affect the
correct performance of applications. In 2019 a new lightweight IoT-based authentication scheme in
cloud computing circumstances was proposed. According to the authors, their protocol is secure
and resists very well-known attacks. However, when we evaluated the protocol we found some
security vulnerabilities and drawbacks, making the scheme insecure. Therefore, we propose a new
version considering login, mutual authentication and key agreement phases to enhance the security.
Moreover, we include a sub-phase called evidence of connection attempt which provides proof about
the participation of the user and the server. The new scheme achieves the security requirements and
resists very well-known attacks, improving previous works. In addition, the performance evaluation
demonstrates that the new scheme requires less communication-cost than previous authentication
protocols during the registration and login phases.

Keywords: authentication; cloud computing; Internet of Things; mutual authentication; session
key agreement

1. Introduction

Information technology has grown rapidly in the past few years, mainly developing new technologies
focused on how to take advantage of the Internet. In this sense, innovations such as wireless access, high
speed connection, APIs and electronic services have successfully entered the Internet arena. At the same
time, researchers and computer professionals have developed new communication technologies, such
as Wi-Fi, 4G, 5G, routing protocols, LTE, Bluetooth, RFID, among others, which offer broader ranges to
users. In parallel, the cost of technology keeps decreasing, year by year, making Internet connectivity more
accessible for everyone through smaller devices as tablets and smartphones.

On the other hand, as the Internet has become ubiquitous, faster, and increasingly accessible
to non-technical communities, social networking and collaborative services, emerging technologies
such as artificial intelligence, big data, cloud computing, wireless sensor networks and the Internet of
Things (IoT) have appeared, enabling people to communicate and share interests in many more ways.

Sensors 2019, 19, 2098; doi:10.3390/s19092098 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2188-9892
https://orcid.org/0000-0002-9145-5574
https://orcid.org/0000-0003-2820-2918
https://orcid.org/0000-0003-3327-8562
http://www.mdpi.com/1424-8220/19/9/2098?type=check_update&version=1
http://dx.doi.org/10.3390/s19092098
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2098 2 of 22

As a consequence, these novel technologies are changing the world, again, creating new business
opportunities, new applications to enhance safety, comfort, and efficiency reducing human efforts,
and new ways to collect and analyse data.

Among these five emerging technologies, the IoT and cloud computing have become more
and more relevant to academia and industry. In 1999 Ashton introduced the concept of IoT [1],
which is defined as the connection of physical objects (devices/sensors) through the Internet [2].
Cloud computing, on the other hand, was introduced in 1961 by McCarthy [3], and 36 years later,
Chellappa explained the concept in the scenario of current technology era [4], defined as a large-scale
distributed computing paradigm which drives the economy of many companies based on virtualization,
managed computing power, and storage focused on its core business [3].

The IoT applications are classified into the following categories [5,6]: (a) Internet of sensors
(IoS), which is a network made up of sensors which collect and transmit a types of data; (b) Internet
of energy (IoE), which is a network of smart grids to analyse and control the energy production,
consumption, storage, and distribution; (c) machine to machine (M2M) communication is a network
of devices/sensors connected through the Internet; and (d) Internet of Vehicles (IoV), which is a
network of vehicles that can share information about the state of the road. Another classification is
based on the communication models [7]: (a) machine-to-machine communication, which includes
multiple devices/sensors connected to exchange data among them without a physical infrastructure;
(b) machine-to-cloud communication, which includes devices/sensors that consume services from
a cloud server for storing and processing data; and (c) machine-to-gateway communication, which
includes devices/sensors that collaborate as a proxy to expand the range of the network.

In the case of cloud computing, we can find four types of deployment models offered by cloud
providers. The first type is known as public cloud, where services and systems are available for
anyone through an open communication channel. The second type is known as private cloud where
services and systems are accessible for certain users/employees or organizations through a secure
communication channel. The third type is known as community cloud where the cloud is shared by
several organizations. The last type which includes a public and private cloud to share resources is
known as hybrid cloud [4].

From these service platforms, cloud computing allows the interconnection of everything around
us, including our vital signs, personal and sensitive data, that travel through an open communication
channel to different sites [8–10]. This is possible because devices/sensors automatically collect a huge
amount of data and stores them on cloud servers [11–14]. However, this also represents a significant
disadvantage in terms of security, because large amounts of personal and sensitive data stored in a
single database could be accessed without the approval of users [9].

On the other hand, the main advantage of the IoT, ubiquity, is also its main weakness, because it is also
necessary to have a high and complex security protocol. According to El-Hajj et al. [6] and Ferrag et al. [5],
IoT security requirements include authentication, authorization, integrity, confidentiality, non-repudiation,
availability, and privacy to protect the data, nodes, and messages against attacks.

Therefore, to address the security requirements of both emerging technologies is important focus
special attention on the authentication process, because it is the first line of defense against potential
attackers. The goal of the authentication protocol is verifying the identity of an entity to determine that
he/she or device/sensor is who or what it claims to be [5,6]. For this reason, the authentication process
is a key component for secure Internet communication.

In this sense, a strong authentication protocol needs to achieve the following two aims: mutual
authentication and session key agreement [15]. In addition, the authentication protocol must avoid the
denial-of-service, forgery, parallel session, password guessing, replay, smart card loss, and stolen-verifier
attacks [15]. In the threat model of any authentication protocol, an adversary or malicious user has the
computational power to compute complex operations in low time and control the public communication
channel to capture and store any messages. In general, security threats include more than thirty kinds

Sensors 2019, 19, 2098 3 of 22

of attacks [5]. However, the most popular attacks used for evaluating authentication protocols are
man-in-the-middle, impersonation and forging, and replay attacks [5].

In recent years, authentication protocols have used cryptosystems as countermeasures to enhance
security [5]. The main cryptosystems are hash functions, symmetric algorithms (AES), asymmetric
algorithms (RSA, D-H, ECC), digital signatures, and ID-based cryptography; and its adoption mainly
depends on the deployment, computational power and energy consumption of the device/sensor.
Thus, cryptosystems that require more computational power must be implemented in device/sensor
that needs high energy consumption. Therefore, we address to lightweight authentication protocols,
which require low computational operations. In this way, the studies carried out by Wang et al. in
2015 [16] and 2018 [17] contribute to understanding the security requirements, adversary model, types
of schemes, and evaluation criteria of lightweight authentication protocols.

1.1. Related Work

In this paper, we refer to lightweight authentication schemes which require low computational
operations, such as hash functions and exclusive-OR operation. The first lightweight authentication
scheme was proposed by Lamport in 1981 [18]. Lamport introduced the concept of a hash chain to
authenticate remote users through an open communication channel. Lamport’s scheme is feasible for
practical implementation due to its low computational cost, however, the scheme requires that the server
maintains a verification table making it vulnerable to steal personal data. In 1990, Hwang et al. [19]
proposed a scheme without a verification table. Later, Lin et al. [20] proposed an authentication scheme
based on the asymmetric ElGamal algorithm to improve the security characteristics of Li et al. in [21].
Since 1990, several authentication schemes were proposed to enhance the security of previous ones.
These schemes were designed for communication between n users and a single server.

Later, Liao et al. [22] proposed an authentication scheme for a multi-server environment.
Nevertheless, Liao et al.’s scheme is vulnerable to an insider attack, masquerade attack, server spoofing
attack, and registration center spoofing attacks [23]. Hsiang et al. [23] proposed a new authentication
scheme to resolve the security drawbacks of Liao et al.’s scheme. However, Martínez-Peláez et al. [24]
demonstrated that Hsiang et al.’s scheme is insecure. Two years later, Kim et al. [25] evaluated
Martínez-Peláez et al.’s scheme finding security vulnerabilities. The same year, Li et al. [26] evaluated
the scheme proposed by Sood et al. [27] finding it insecure. Then, Xue et al. [28] demonstrated
the security vulnerabilities of Li et al.’s scheme. Later, Amin et al. [1] proposed an authentication
scheme which remedies the security drawbacks of Xue et al.’s scheme. Nonetheless, Challa et al. [29]
demonstrated that Amin et al.’s scheme is vulnerable to privileged-insider and impersonation attacks.

In 2019, Zhou et al. [30] proposed a scheme based on hash function and exclusive-or operation
to provide authentication on large-scale IoT and cloud computing deployment. They explained that
Amin et al.’s scheme cannot resist off-line guessing attacks. They also claimed that their scheme is
secure against very well-known attacks.

1.2. Contribution

In this work, we review the scheme proposed by Zhou et al. [30] and point out that the scheme has
security vulnerabilities and drawbacks which make it insecure. In particular, the scheme is vulnerable
to insider, replay and user impersonation attacks. Moreover, the scheme fails to provide mutual
authentication and fails to protect secret keys. Therefore, the main contribution of this paper is a new
version of the authentication scheme proposed by Zhou et al. which achieves the following security
characteristics: mutual authentication and session key agreement. Moreover, our proposal maintains
the user’s anonymity against eavesdroppers and requires login phase.

On the other hand, in the security scheme of Zhou et al., neither the server or nor the user knows if
the other party is a legal member of the system. For that reason, the scheme includes a new sub-phase
called evidence of connection attempt which provides elements for identifying the participants of the
authentication request. This sub-phase complements the authentication phase included in [30].

Sensors 2019, 19, 2098 4 of 22

The rest of this paper is organized as follows: Section 2 presents the overview of Zhou et al.’s
scheme, in particular registration and authentication phases, and contains the results of the security
analysis carried out to the proposal of Zhou et al. based on [5,6,15]. The new proposal is explained
in Section 3. Security analysis and performance evaluation are given in Section 4. Conclusions are
presented in Section 5.

2. Review and Security Analysis of Zhou’s Scheme

Firstly, we provide a brief description about the registration and authentication phases of the
scheme proposed by Zhou et al. in [30]. Then, we carry out the security analysis to explain the
drawbacks and vulnerabilities found in their scheme.

2.1. Registration Phase

This phase is divided in user registration and cloud server registration sub-phases.

2.1.1. User Registration Sub-Phase

In this sub-phase, the user (Ui) is registered by the control server (CS). The communication
between Ui and CS is through a secure channel. The steps involved in this sub-phase are as follows:

Step 1: Ui selects an identity (IDi), pseudo-identity (PIDi), password (PWi), and nonce (bi).
Then, Ui computes HPi = h(PWi ‖ bi) and sends the registration request message M1 = {IDi, PIDi} to
CS were h(·) is a one-way hash function, ‖ represents concatenation operation and ⊕ represents an
exclusive-or operation.

Step 2: Upon receiving the registration request message M1, CS verifies if IDi is valid or not.
In case that IDi is invalid, the registration process will be closed. On the other hand, CS computes
C∗1 = h(PIDi ‖ IDCS ‖ x) and C∗2 = h(IDi ‖ x). Then, CS stores IDi in a database and sends the
registration response message M2 = {C1, C2, IDCS} to Ui.

Step 3: After receiving the registration response message M2, Ui computes C1 = C∗1 ⊕ HPi,
C2 = C∗2 ⊕ h(IDi ‖ HPi) and C3 = bi ⊕ h(IDi ‖ PWi), and stores (C1, C2, C3, PIDi, IDCS) in his smart card.

At this point, the user registration sub-phase is over and Ui was registered by CS.

2.1.2. Cloud Server Registration Sub-phase

In this sub-phase, the server
(
S j

)
is registered by the control server (CS). The communication

between S j and CS is through a secure communication channel. The steps involved in this sub-phase
are as follows:

Step 1: S j selects an identity
(
SID j

)
and pseudo-identity

(
PSID j

)
. Then, S j sends the registration

request message M3 =
{
SID j, PSID j

}
to CS.

Step 2: Upon receiving the registration request message M3, CS computes B1 = h
(
PSID j ‖ IDCS ‖ x

)
and B2 = h

(
SID j ‖ x

)
. Then, CS stores SID j and sends the registration response message

M4 = {B1, B2, IDCS} to S j.
Step 3: After S j receives the registration response message M4, S j stores

(
B1, B2, SID j, PSID j, IDCS

)
.

At this point, the cloud server registration sub-phase is over and S j was registered by CS.

2.2. Authentication Phase

This phase is divided in the following steps and the details are shown in Figure 1:

Step 1: This step is invoked by Ui, when she/he wants to get access to the service offered by S j.
Ui inserts his/her smart card and keys his/her IDi and PWi. Then, the smart card generates a random
number (rU) and new pseudo-identity

(
PIDnew

i

)
. After that, Ui computes bi = C3 ⊕ h(IDi ‖ PWi),

Sensors 2019, 19, 2098 5 of 22

HPi = h(PWi ‖ bi), C∗1 = C1 ⊕HPi, C∗2 = C2 ⊕ h(IDI ‖ HPI), D1 = C∗1 ⊕ rU, D2 = h(PIDi ‖ IDCS ‖ rU) ⊕

IDi, D3 = C∗2 ⊕ h(IDi ‖ HPi) ⊕ PIDnew
⊕ h(rU ‖ IDi), and D4 = h

(
IDi ‖ PIDi ‖ PIDnew

i ‖ rU ‖ D3
)
.

Then, Ui sends the authentication request message M5 = {PIDi, D1, D2, D3, D4} to S j through an open
communication channel.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 22

random number (ݎ௎) and new pseudo-identity (ܲܦܫ௜௡௘௪) . After that, ௜ܷ computes ܾ௜ = ଷܥ ⊕ℎ(ܦܫ௜ ∥ ܲ ௜ܹ) , ܪ ௜ܲ = ℎ(ܲ ௜ܹ ∥ ܾ௜) , ∗ଵܥ = ଵܥ ⊕ ܪ ௜ܲ , ∗ଶܥ = ଶܥ ⊕ ℎ(ܦܫூ ∥ ܪ ூܲ) , ଵܦ = ∗ଵܥ ⊕ ௎ݎ , ଶܦ = ℎ(ܲܦܫ௜ ஼ௌܦܫ∥ ∥ (௎ݎ ⊕ ௜ܦܫ , ଷܦ = ∗ଶܥ ⊕ ℎ(ܦܫ௜ ∥ ܪ ௜ܲ) ⊕ ௡௘௪ܦܫܲ ⊕ ℎ(ݎ௎ ∥ (௜ܦܫ , and ܦସ = ℎ(ܦܫ௜ ∥ ௜ܦܫܲ ∥ ௜௡௘௪ܦܫܲ ௎ݎ∥ ∥ (ଷܦ . Then, ௜ܷ sends the authentication request message ܯହ = ሼܲܦܫ௜, ,ଵܦ ,ଶܦ ,ଷܦ ସሽܦ to ௝ܵ
through an open communication channel.

Figure 1. Authentication phase of Zhou et al.’s scheme.

Step 2: This step is invoked by ௝ܵ. After receiving the authentication request message ܯହ, ௝ܵ
selects a new pseudo-identity ൫ܲܵܦܫ௝௡௘௪൯ and a random number (ݎௌ). Then, ௝ܵ computes ܦହ ଵܤ= ⊕ ௌݎ ଺ܦ , = ℎ൫ݎௌ ∥ ௝ܦܫܵܲ ∥ ஼ௌ൯ܦܫ ⊕ ௝ܦܫܵ ଻ܦ , = ଶܤ ⊕ ௝௡௘௪ܦܫܵܲ ⊕ ℎ൫ݎௌ ∥ ௝൯ܦܫܵ , and ଼ܦ = ℎ(ܵܦܫ௝ ௝ܦܫܵܲ ∥ ∥ ௝௡௘௪ܦܫܵܲ ∥ ௌݎ ∥ (଻ܦ . Finally, ௝ܵ sends the authentication request message ܯ଺ =൛ܲܦܫ௜, ,ଵܦ ,ଶܦ ,ଷܦ ,ସܦ ,௝ܦܫܵܲ ,ହܦ ,଺ܦ ,଻ܦ .through an open communication channel ܵܥ ൟ to଼ܦ

Step 3: This step is invoked by ܵܥ. Upon receiving the authentication request message ܯ଺, ܵܥ
computes ௎ݎ = ଵܦ ⊕ ℎ(ܲܦܫ௜ ∥ ஼ௌܦܫ ∥ (ݔ ௜ܦܫ , = ଶܦ ⊕ ℎ(ݎ௎ ∥ ௜ܦܫܲ ∥ (஼ௌܦܫ , and ܲܦܫ௜௡௘௪ = ଷܦ ⊕ℎ(ܦܫ௜ ∥ (ݔ ⊕ ℎ(ݎ௎ ∥ ସ are valid or not. If the verification processܦ ௜ andܦܫ checks if ܵܥ ,௜). Thenܦܫ
fails, ܵܥ closes the communication. On the other hand, ܵܥ computes ݎௌ = ହܦ ⊕ ℎ൫ܲܵܦܫ௝ ∥ ஼ௌܦܫ ൯ݔ∥ ௝ܦܫܵ , = ଺ܦ ⊕ ℎ(ݎௌ ∥ ௝ܦܫܵܲ ∥ (஼ௌܦܫ , and ܲܵܦܫ௝௡௘௪ = ଻ܦ ⊕ ℎ൫ܵܦܫ௝ ∥ ൯ݔ ⊕ ℎ൫ݎௌ ∥ ௝൯ܦܫܵ . Next, ܵܥ
checks if ܵܦܫ௝ and ଼ܦ are valid or not. If the verification process fails, ܵܥ closes the
communication. On the other hand, ܵܥ selects a random number (ݎ஼ௌ) and computes the session
key ܵܭ஼ௌ = ℎ(ݎ௎ ⊕ ௌݎ ⊕ (ௌ஼ݎ . Later, ܵܥ computes ܦଽ = ℎ(ܲܵܦܫ௝௡௘௪ ∥ ஼ௌܦܫ ∥ (ݔ ⊕ ℎ(ݎௌ ∥ (௝௡௘௪ܦܫܵܲ ଵ଴ܦ , = ℎ൫ܲܵܦܫ௝௡௘௪ ∥ ௌݎ ∥ ௝൯ܦܫܵܲ ⊕ ௎ݎ) ⊕ ,(஼ௌݎ = ℎ(ܵܭ஼ௌ ∥ ଽܦ ∥ ଵ଴ܦ ∥ ℎ(ܵܦܫ௝ ∥ ((ݔ ଵଶܦ , = ℎ(ܲܦܫ௜௡௘௪ ௖௦ܦܫ∥ ∥ (ݔ ⊕ ℎ(ݎ௎ ∥ (௜௡௘௪ܦܫܲ ଵଷܦ , = ℎ(ܲܦܫ௜௡௘௪ ∥ ௎ݎ ∥ (௜ܦܫܲ ⊕ ௌݎ) ⊕ (ௌ஼ݎ , and ܦଵସ = ℎ(ܵܭ஼ௌ ∥ ଵଶܦ ∥

Figure 1. Authentication phase of Zhou et al.’s scheme.

Step 2: This step is invoked by S j. After receiving the authentication request message

M5, S j selects a new pseudo-identity
(
PSIDnew

j

)
and a random number (rS). Then, S j

computes D5 = B1 ⊕ rS, D6 = h
(
rS ‖ PSID j ‖ IDCS

)
⊕ SID j, D7 = B2 ⊕ PSIDnew

j ⊕ h
(
rS ‖ SID j

)
,

and D8 = h
(
SID j ‖ PSID j ‖ PSIDnew

j ‖ rS ‖ D7

)
. Finally, S j sends the authentication request message

M6 =
{
PIDi, D1, D2, D3, D4, PSID j, D5, D6, D7, D8

}
to CS through an open communication channel.

Step 3: This step is invoked by CS. Upon receiving the authentication request
message M6, CS computes rU = D1 ⊕ h(PIDi ‖ IDCS ‖ x), IDi = D2 ⊕ h(rU ‖ PIDi ‖ IDCS),
and PIDnew

i = D3 ⊕ h(IDi ‖ x) ⊕ h(rU ‖ IDi). Then, CS checks if IDi and D4 are valid or not. If the
verification process fails, CS closes the communication. On the other hand, CS computes rS = D5 ⊕

h
(
PSID j ‖ IDCS ‖ x

)
, SID j = D6 ⊕ h

(
rS ‖ PSID j ‖ IDCS

)
, and PSIDnew

j = D7 ⊕ h
(
SID j ‖ x

)
⊕ h

(
rS ‖ SID j

)
.

Next, CS checks if SID j and D8 are valid or not. If the verification process fails, CS closes
the communication. On the other hand, CS selects a random number (rCS) and computes

the session key SKCS = h(rU ⊕ rS ⊕ rSC). Later, CS computes D9 = h
(
PSIDnew

j ‖ IDCS ‖ x
)
⊕

Sensors 2019, 19, 2098 6 of 22

h
(
rS ‖ PSIDnew

j

)
, D10 = h

(
PSIDnew

j ‖ rS ‖ PSID j

)
⊕ (rU ⊕ rCS), = h

(
SKCS ‖ D9 ‖ D10 ‖ h

(
SID j ‖ x

))
,

D12 = h
(
PIDnew

i ‖ IDcs ‖ x
)
⊕ h

(
rU ‖ PIDnew

i

)
, D13 = h

(
PIDnew

i ‖ rU ‖ PIDi
)
⊕ (rS ⊕ rSC),

and D14 = h(SKCS ‖ D12 ‖ D13 ‖ h(IDi ‖ x)). Finally, CS sends M7 = {D9, D10, D11, D12, D13, D14} to S j
through an open communication channel.

Step 4: This step is invoked by S j. Yet receiving the authentication response message M7, S j

computes (rU ⊕ rCS) = D10 ⊕ h
(
PSIDnew

j ‖ rS ‖ PSID j

)
and SKS = h(rS ⊕ rU ⊕ rCS). Then, S j checks if

D11 is correct or not. If the verification process is correct, S j computes Bnew
1 = D9 ⊕ h

(
rS ‖ PSIDnew

j

)
and

replaces B1, PSID j with Bnew
1 , PSIDnew

j . Finally, S j sends M8 = {D12, D13, D14} to Ui through an open
communication channel.

Step 5: This step is invoked by Ui. After receiving the authentication response message M8, Ui
computes (rS ⊕ rSC) = D13 ⊕ h

(
PIDnew

i ‖ rU ‖ PIDi
)

and SKU = h(rU ⊕ rS ⊕ rCS). Then, Ui checks if D14.

is correct or not. If the verification process is correct, Ui computes Cnew
i = D12 ⊕ h

(
rU ‖ PIDnew

i

)
⊕HPi

and replaces C1, PIDi with Cnew
1 , PIDnew

i .

2.3. Security Vulnerabilities

In this subsection, we explain the weaknesses found in the scheme proposed by Zhou et al. in [30].
The security analysis was conducted based on [5,6,15]. From these works, we performed the security
analysis. In this part, we assume the following capabilities of the attacker [31,32]:

• The attacker is a legal member of the system which means that he/she was registered by CS and
he/she has all the security parameters.

• The attacker can control the public communication channel giving him/her the possibility to
intercept, insert, store, delete, or modify any message.

• The attacker has high computational power connected to the public communication channel.

2.3.1. Insider Attack

This attack happens when a malicious user has enough knowledge to attack sensitive data or
the whole system. In this scenario, the attacker knows C∗2 = h(IDi ‖ x), computed by CS during the
user registration phase. According with Zhou et al., CS uses the same secret key (x) to register users
and servers, so he/she can find x from C∗2, searching exhaustively all possible random number y until
h(IDi ‖ y) = C∗2 = h(IDi ‖ x) to know the secret key of CS. This attack is possible because the attacker
knows IDi and C∗2.

2.3.2. Man-in-the-Middle Attack

This attack happens when an attacker has control over the public communication channel
providing him/her the possibility to listen the conversation between two entities. Under this scenario,
the attacker can intercept the authentication request message M5 = {PIDi, D1, D2, D3, D4} sent from
Ui to S j. Under this situation, the attacker can achieve the following active attacks.

Replay Attack

The attacker can transmit the last authentication request message M5 sent to S j, at any given time
and from any given place, to impersonate a legitimate Ui. The description of the attack is as follows:

Step 1: The attacker has, at-least, one authentication request message M5 sent by Ui to S j, and the
attacker knows IDCS and x.

Step 2: The attacker sends an authentication request message Mreplay
5 to S j. The message contains

the same information transmitted in previous communication.
Step 3: The attacker uses IDCS, x and PIDi to compute

C∗1 = h(PIDi ‖ IDCS ‖ x),

Sensors 2019, 19, 2098 7 of 22

rU = D1 ⊕ h(PIDi ‖ IDCS ‖ x),
IDi = D2 ⊕ h(rU ‖ PIDi ‖ IDCS), and
PIDnew

i = D3 ⊕ h(IDi ‖ x) ⊕ h(rU ‖ IDi).
Step 4: After CS verifies the authenticity of IDi and D4, CS computes and sends

D12 = h
(
PIDnew

i ‖ IDcs ‖ x
)
⊕ h

(
rU ‖ PIDnew

i

)
,

D13 = h
(
PIDnew

i ‖ rU ‖ PIDi
)
⊕ (rS ⊕ rSC), and

D14 = h(SKCS ‖ D12 ‖ D13 ‖ h(IDi ‖ x)).
Step 5: Upon receiving the authentication response message M8, the attacker computes

(rS ⊕ rSC) = D13 ⊕ h
(
PIDnew

i ‖ rU ‖ PIDi
)

and
SKU = h(rU ⊕ rS ⊕ rCS).

As a consequence, the attacker can launch the replay attack successfully.

User Impersonation Attack

The attacker can compute a valid authentication request message which contains the correct
parameters to be authenticated by CS. The description of the attack is presented below:

Step 1: The attacker knows IDCS, x and PID. Thus, he/she computes
C∗1 = h(PIDi ‖ IDCS ‖ x).

Step 2: The attacker recovers rU from D1 computing
rU = D1 ⊕ h(PIDi ‖ IDCS ‖ x).

Step 3: The attacker has enough information to recover sensitive data as follows
IDi = D2 ⊕ h(rU ‖ PIDi ‖ IDCS) and
PIDnew

i = D3 ⊕ h(IDi ‖ x) ⊕ h(rU ‖ IDi).
Step 4: From this point, the attacker computes a fake authentication request message as follows:

D f ake
1 = C∗1 ⊕ r f ake

U ,

D f ake
2 = h

(
PIDnew

i ‖ IDCS ‖ r f ake
U

)
⊕ IDi,

D f ake
3 = C∗2 ⊕ PID f ake

i ⊕ h
(
r f ake

U ‖ IDi
)
, and

D f ake
4 = h

(
IDi ‖ PIDnew

i ‖ PID f ake
i ‖ r f ake

U ‖ D f ake
3

)
.

Step 5: The attacker sends the fake authentication request message M f ake
5 ={

PIDnew
i , D f ake

1 , D f ake
2 , D f ake

3 , D f ake
4

}
to Sj. After Sj finalizes the process, Sj sends the authentication

request message M6 =
{
PIDnew

i , D f ake
1 , D f ake

2 , D f ake
3 , D f ake

4 , PSIDj, D5, D6, D7, D8
}

to CS. Upon receiving

the authentication request message M6, CS carries out the verification process of D f ake
4 computing

h
(
IDi ‖ PIDnew

i ‖ PID f ake
i ‖ r f ake

U ‖ D f ake
3

)
and verifying D f ake

4 ? = h
(
IDi ‖ PIDnew

i ‖ PID f ake
i ‖ r f ake

U ‖ D f ake
3

)
.

It is obvious that, D f ake
4 will pass the verification process because it contains the original IDi and last PIDnew

i .

2.4. Security Drawbacks

In this subsection, we expose the absence of security requirements in the scheme of Zhou et al. [30].
The security analysis was conducted based on [5,6,15]. From these references, we initialized the
security analysis.

2.4.1. Fails to Provide Mutual Authentication

The scheme proposed by Zhou et al. does not provide mutual authentication. The CS verifies the
identity of Ui and S j during the third step of the authentication phase; however, neither the user nor
server verifies the identity of each other. Moreover, the authentication request messages M5 and M6 do
not contain information which establishes a relationship between Ui and S j, as evidence to the attempt
of connection.

Sensors 2019, 19, 2098 8 of 22

2.4.2. Fails to Protect Secret Key

In the scheme proposed by Zhou et al., the CS uses the same secret key (x) to register users and
servers. Moreover, the secret key is hidden by means of C∗1 = h(PIDi ‖ IDCS ‖ x) and C∗2 = h(IDi ‖ x);
however an attacker can recover it for three reasons.

The first reason is related with the fact that CS uses the same secret key to register each user and
each server, increasing the possibility of finding the correct value of x. The second reason is related
with the fact that an attacker knows IDCS and PIDi; this means that, each user knows two of three
security parameters, decreasing the entropy to find x, in polynomial time. Finally, the low execution
time of the hash function makes possible to find the secret key in polynomial time, in specific, using
C∗2 = h(IDi ‖ x) because the attacker knows IDi.

3. Proposed Scheme

In this section, we present our new version of a lightweight IoT-based authentication scheme in cloud
computing circumstances. The scheme includes mutual authentication and key agreement to provide
strong security for accessing any server of the cloud. The scheme consists of the following phases:

Registration is the process through CS creates the security parameters of each member of the
system. This phase is mandatory for users and servers. The communication among participants is
through a secure channel avoiding eavesdropper.

Login is the process through Ui gets access to security parameters stored in his/her SCU. Ui needs
to insert his/her SCU, and inputs IDi and PWi. Then, SCU computes and verifies the legitimacy of Ui.
If the verification process is correct, Ui sends the authentication request message to S j through an open
communication channel.

Authentication is the processes by CS carries out the validation process of Ui and S j. Moreover, CS
verifies that both entities want to establish a secure communication.

Key agreement is the process by CS computes the session key for Ui and S j. The session key
is unique.

Mutual authentication is the process through Ui and S j verifies the legitimacy of each other. In this
case, Ui sends a challenge to S j. If the response is correct, Ui knows that S j is a member of the system.

Table 1 summarizes the notations used throughout our proposal.

Table 1. Notations of the proposed scheme.

Symbol Description

Ui User
S j Cloud server
CS Control server
SCi Smart card of Ui

IDi, SID j, IDCS Identity of Ui, S j, CS, respectively
PIDi, PSID j Pseudo-identity of Ui, S j, respectively

PWi Password of Ui
x, y, z Secret keys of CS. Secret keys are long integers

nU, nS, nCS Random nonce of Ui, S j, CS, respectively
TU, TS, TCS Timestamp of Ui, S j, CS, respectively

SKU−S Session key between Ui and S j
ESK(·)/DSK(·) Symmetric encryption/decryption using SKU−S

h(·) Collision free one-way hash function
⊕ Exclusive-OR operation
‖ Concatenation operation
⇒ Secure communication channel
→ Open communication channel

Sensors 2019, 19, 2098 9 of 22

3.1. Registration Phase

This phase includes user registration and server registration.

3.1.1. User Registration Sub-Phase

This sub-phase is initialized by Ui when wants to be part of the system. The details of each step
are shown in Figure 2.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 22

Step 1: ௜ܷ inserts his/her ܵܥ௜ into a device and keys his/her ܦܫ௜ and ܲ ௜ܹ. Then, ܵܥ௜ generates
a random nonce (݊௎), obtains the current timestamp value (௎ܶ) and computes: ܲܦܫ௜ = ℎ(௎ܶ ∥ ݊௎) (1)

௜ܷ ⇒ :ܵܥ ଵܯ = ሼܦܫ௜, ௜ሽܦܫܲ

Equation (1) is used to compute the pseudo-identity of each user.
Step 2: After receiving the registration request message ܯଵ, ܵܥ verifies the validity of ܦܫ௜. If ܦܫ௜ is valid, ܵܥ computes: ܥଵ = ℎ(ܦܫ௜ ∥ ଶܥ ௜) (2)ܦܫܲ = ℎ൫ܲܦܫ௜ ∥ ℎ(ܦܫ஼ௌ ∥ (ݔ ∥ ℎ(ܦܫ஼ௌ ∥ ൯(ݕ ⊕ ℎ(ܦܫ஼ௌ ∥ (ݔ ⊕ ℎ(ܦܫ஼ௌ ∥ ଷܥ (3) (ݕ = ℎ൫ܦܫ௜ ∥ ௜ܦܫܲ ∥ ℎ(ܦܫ஼ௌ ∥ (ݔ ∥ ℎ(ܦܫ஼ௌ ∥ ൯(ݕ ⊕ ௜ܦܫܲ ⊕ ℎ(ݔ ∥ ܵܥ ݁ݏܾܽܽݐܽ݀ ܽ ݊݅ ଵܥ ܵܧܴܱܶܵ (4) (ݕ ⇒ ௜ܷ: ܯଶ = ሼܥଶ, ܵܥ ଷሽܥ registers ௜ܷ by Equation (2). Equations (3) and (4) are security parameters for future

authentication purpose.
Step 3: Upon receiving the registration response message ܯଶ, ܵܥ௜ computes: ܥସ = ℎ൫ܦܫ௜ ∥ ܲ ௜ܹ ∥ ℎ(݊௎)൯ (5) ܱܴܵܶܦܫܲ ܵܧ௜, ,ଶܥ ,ଷܥ ,ସܥ ℎ(݊௎) ݅݊ ܵܥ௜ ܵܥ௜ computes the local user authentication parameter using Equation (5) and stores all the security

parameters received from ܵܥ. The user registration sub-phase is over.

Figure 2. User registration sub-phase.

3.1.2. Cloud Server Registration

This sub-phase is initialized by each ௝ܵ in order to be part of the system. The details of each
step are shown in Figure 3.

Step 1: ௝ܵ generates a random nonce ݊ௌ , obtains the current timestamp value ௌܶ and
computes: ܲܵܦܫ௝ = ℎ(ௌܶ ∥ ݊ௌ) (6)

௝ܵ ⇒ :ܵܥ ଷܯ = ൛ܵܦܫ௝, ௝ൟܦܫܵܲ

Figure 2. User registration sub-phase.

Step 1: Ui inserts his/her SCi into a device and keys his/her IDi and PWi. Then, SCi generates a
random nonce (nU), obtains the current timestamp value (TU) and computes:

PIDi = h(TU ‖ nU) (1)

Ui ⇒ CS : M1 = {IDi, PIDi}

Equation (1) is used to compute the pseudo-identity of each user.
Step 2: After receiving the registration request message M1, CS verifies the validity of IDi. If IDi is

valid, CS computes:
C1 = h(IDi ‖ PIDi) (2)

C2 = h(PIDi ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)) ⊕ h(IDCS ‖ x) ⊕ h(IDCS ‖ y) (3)

C3 = h(IDi ‖ PIDi ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)) ⊕ PIDi ⊕ h(x ‖ y) (4)

STORES C1 in a database

CS⇒ Ui : M2 = {C2, C3}

CS registers Ui by Equation (2). Equations (3) and (4) are security parameters for future
authentication purpose.

Step 3: Upon receiving the registration response message M2, SCi computes:

C4 = h(IDi ‖ PWi ‖ h(nU)) (5)

STORES PIDi, C2, C3, C4, h(nU) in SCi

SCi computes the local user authentication parameter using Equation (5) and stores all the security
parameters received from CS. The user registration sub-phase is over.

Sensors 2019, 19, 2098 10 of 22

3.1.2. Cloud Server Registration

This sub-phase is initialized by each S j in order to be part of the system. The details of each step
are shown in Figure 3.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 22

Equation (6) is used to compute the pseudo-identity of each server.
Step 2: After receiving the registration request message ܯଷ, ܵܥ verifies the validity of ܵܦܫ௝. If ܵܦܫ௝ is correct, ܵܥ computes: ܤଵ = ℎ൫ܵܦܫ௝ ∥ ଶܤ ௝൯ (7)ܦܫܵܲ = ℎ ቀܲܵܦܫ௝ ∥ ℎ(ܦܫ஼ௌ ∥ (ݖ ∥ ℎ(ܦܫ஼ௌ ∥ ቁ(ݕ ⊕ ℎ(ܦܫ஼ௌ ∥ (ݖ ⊕ ℎ(ܦܫ஼ௌ ∥ (8) (ݕ

ଷܤ = ℎ ቀܵܦܫ௝ ∥ ௝ܦܫܵܲ ∥ ℎ(ܦܫ஼ௌ ∥ (ݖ ∥ ℎ(ܦܫ஼ௌ ∥ ቁ(ݕ ⊕ ௝ܦܫܵܲ ⊕ ℎ(ݖ ∥ ܵܥ ݁ݏܾܽܽݐܽ݀ ܽ ݊݅ ଵܤ ܵܧܴܱܶܵ (9) (ݕ ⇒ ௝ܵ: ସܯ = ሼܤଶ, ܵܥ ଷሽܤ registers ௝ܵ by Equation (7). Equations (8) and (9) are security parameters for future
authentication purpose.

Step 3: After receiving the registration response message ܯସ, ௝ܵ stores ܤଶ and ܤଷ.

Figure 3. Server registration sub-phase.

3.2. Login Phase

Once ௜ܷ was registered, ௜ܷ can connect to any server of the cloud by initiating the login phase.
The details are shown in Figure 4.

Figure 4. Login phase.

Step 1: In order to start the authentication phase, ௜ܷ must first complete the login phase. Firstly, ௜ܷ inserts ܵܥ௜ and keys his/her ܦܫ௜∗ and ܲ ௜ܹ∗.
Step 2: Then, ܵܥ௜ computes and checks:

Figure 3. Server registration sub-phase.

Step 1: S j generates a random nonce nS, obtains the current timestamp value TS and computes:

PSID j = h(TS ‖ nS) (6)

S j ⇒ CS : M3 =
{
SID j, PSID j

}
Equation (6) is used to compute the pseudo-identity of each server.
Step 2: After receiving the registration request message M3, CS verifies the validity of SID j. If SID j

is correct, CS computes:
B1 = h

(
SID j ‖ PSID j

)
(7)

B2 = h
(
PSID j ‖ h(IDCS ‖ z) ‖ h(IDCS ‖ y)

)
⊕ h(IDCS ‖ z) ⊕ h(IDCS ‖ y) (8)

B3 = h
(
SID j ‖ PSID j ‖ h(IDCS ‖ z) ‖ h(IDCS ‖ y)

)
⊕ PSID j ⊕ h(z ‖ y) (9)

STORES B1 in a database

CS⇒ S j : M4 = {B2, B3}

CS registers S j by Equation (7). Equations (8) and (9) are security parameters for future
authentication purpose.

Step 3: After receiving the registration response message M4, S j stores B2 and B3.

3.2. Login Phase

Once Ui was registered, Ui can connect to any server of the cloud by initiating the login phase.
The details are shown in Figure 4.

Step 1: In order to start the authentication phase, Ui must first complete the login phase. Firstly, Ui
inserts SCi and keys his/her ID∗i and PW∗i .

Step 2: Then, SCi computes and checks:

C∗4 = h
(
ID∗i ‖ PW∗i ‖ h(nU)

)
? = C4 (10)

Equation (10) is used to verify the legitimacy of Ui by SCi for getting access to security parameters
provided by S j.

Sensors 2019, 19, 2098 11 of 22

Step 3: If the verification process is correct, SCi generates a random nonce nnew
U , obtains the current

timestamp value Tnew
U and computes:

D1 = C2 ⊕ IDi (11)

D2 = C3 ⊕ h
(
Tnew

U ‖ IDi
)
⊕ h(nnew

u) (12)

Ui → S j : M5 =
{
Tnew

U , D1, PIDi, D2
}

Equations (11) and (12) contain Ui´s information which will be used by CS to verify its
legitimacy. Finally, Ui sends the user authentication request message M5 to S j through an open
communication channel.

Step 4: After receiving the user authentication request message M5, S j generates a random nonce
nnew

S , obtains the current timestamp value Tnew
S and computes:

D3 = B2 ⊕ SID j (13)

D4 = B3 ⊕ h
(
Tnew

S ‖ SID j
)
⊕ h

(
nnew

S

)
(14)

D5 = h
(
PIDi ‖ Tnew

U ‖ SID j ‖ PSID j ‖ Tnew
S

)
(15)

S j → CS : M6 =
{
Tnew

U , D1, PIDi, D2, Tnew
S , D3, PSID j, D4, D5

}
Equations (13) and (14) contain S j´s information which will be used by CS to verify its legitimacy.

Equation (15) contains information about Ui and S j as evidence of its connection attempt. Finally, S j
sends the authentication request message M6 to CS through an open communication channel.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 22

Equation (6) is used to compute the pseudo-identity of each server.
Step 2: After receiving the registration request message ܯଷ, ܵܥ verifies the validity of ܵܦܫ௝. If ܵܦܫ௝ is correct, ܵܥ computes: ܤଵ = ℎ൫ܵܦܫ௝ ∥ ଶܤ ௝൯ (7)ܦܫܵܲ = ℎ ቀܲܵܦܫ௝ ∥ ℎ(ܦܫ஼ௌ ∥ (ݖ ∥ ℎ(ܦܫ஼ௌ ∥ ቁ(ݕ ⊕ ℎ(ܦܫ஼ௌ ∥ (ݖ ⊕ ℎ(ܦܫ஼ௌ ∥ (8) (ݕ

ଷܤ = ℎ ቀܵܦܫ௝ ∥ ௝ܦܫܵܲ ∥ ℎ(ܦܫ஼ௌ ∥ (ݖ ∥ ℎ(ܦܫ஼ௌ ∥ ቁ(ݕ ⊕ ௝ܦܫܵܲ ⊕ ℎ(ݖ ∥ ܵܥ ݁ݏܾܽܽݐܽ݀ ܽ ݊݅ ଵܤ ܵܧܴܱܶܵ (9) (ݕ ⇒ ௝ܵ: ସܯ = ሼܤଶ, ܵܥ ଷሽܤ registers ௝ܵ by Equation (7). Equations (8) and (9) are security parameters for future
authentication purpose.

Step 3: After receiving the registration response message ܯସ, ௝ܵ stores ܤଶ and ܤଷ.

Figure 3. Server registration sub-phase.

3.2. Login Phase

Once ௜ܷ was registered, ௜ܷ can connect to any server of the cloud by initiating the login phase.
The details are shown in Figure 4.

Figure 4. Login phase.

Step 1: In order to start the authentication phase, ௜ܷ must first complete the login phase. Firstly, ௜ܷ inserts ܵܥ௜ and keys his/her ܦܫ௜∗ and ܲ ௜ܹ∗.
Step 2: Then, ܵܥ௜ computes and checks:

Figure 4. Login phase.

3.3. Authentication Phase

This phase is divided in three sub-phases. The details of user authentication, server authentication
and evidence of connection attempt are shown in Figure 5.

3.3.1. User Authentication

Step 1: Upon receiving the authentication request message M6, CS checks the freshness of the
message by means of Tnew

U . If the verification process is positive, CS computes:

C∗2 = h
(
PID∗i ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)

)∗
⊕ h(IDCS ‖ x) ⊕ h(IDCS ‖ y)

where PID∗i is the pseudo-identity of Ui contained in message M2. CS computed C∗2 using PID∗i and
Equation (3).

Sensors 2019, 19, 2098 12 of 22

Step 2: CS verifies the legitimacy of Ui by means of C1 as follows:

D1 = C∗2 ⊕ IDi

D1 = h
(
PID∗i ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)

)∗
⊕ h(IDCS ‖ x) ⊕ h(IDCS ‖ y) ⊕ IDi

ID∗i = h
(
PID∗i ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)

)∗
⊕ h(IDCS ‖ x) ⊕ h(IDCS ‖ y) ⊕D1

(16)

C∗1 = h
(
ID∗i ‖ PIDi

)
? = C1 (17)

Equation (16) is used to recover ID∗i from D1. Equation (17) is used to verify the legitimacy of Ui
using ID∗i and C1. If the verification process is correct, CS continues with the next step; otherwise, CS
finalizes the process.

Step 3: After verifying the legitimacy of Ui, CS recovers h
(
nnew

U

)
as follows:

h
(
nnew

U

)∗
= h

(
ID∗i ‖ PID∗i ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)

)∗
⊕ PID∗i ⊕ h(x ‖ y) ⊕ h

(
Tnew

U ‖ ID∗i
)∗
⊕D2 (18)

Equation (18) is used to recover h
(
nnew

U

)∗
from D2.

Step 4: CS computes Cnew
1 with Tnew

U and h
(
nnew

U

)∗
using Equation (19). Then, CS updates C1 in

the database:
Cnew

1 = h
(
IDi ‖ h

(
Tnew

U ‖ C1 ‖ h
(
nnew

U

)))
(19)

3.3.2. Server Authentication

Step 1: Upon finalizing the user authentication process, CS checks the freshness of the message by
means of Tnew

S .
Step 2: If the verification process is positive, CS verifies the legitimacy of S j as follows:

D3 = B2 ⊕ SID j

B2 = h
(
PSID∗j ‖ h(IDCS ‖ z) ‖ h(IDCS ‖ y)

)∗
⊕ h(IDCS ‖ z) ⊕ h(IDCS ‖ y) ⊕ SID j

SID∗j = h
(
PSID∗j ‖ h(IDCS ‖ z) ‖ h(IDCS ‖ y)

)∗
⊕ h(IDCS ‖ z) ⊕ h(IDCS ‖ y) ⊕D3

(20)

B∗1 = h
(
SID∗j ‖ PSID∗j

)
? = B1 (21)

Equation (20) is used to recover SID∗j from D3, using PSID∗j. Then, CS computes Equation (21) to
obtain B∗1 and compares it with B1. If the verification process is correct, CS continues with the process,
otherwise, CS finalizes the process.

Step 3: After verifying the legitimacy of S j, CS recover h
(
nnew

S

)
as follows:

h
(
nnew

S

)∗
= h

(
SID∗j ‖ PSID∗j ‖ h(IDCS ‖ z) ‖ h(IDCS ‖ y)

)∗
⊕ PSID∗j ⊕ h(z ‖ y) ⊕ h

(
Tnew

S ‖ SID∗j
)
⊕D4 (22)

Finally, Equation (22) is used to recover h
(
nnew

S

)∗
from D4.

3.3.3. Evidence of Connection Attempt

Step 1: CS corroborates that Ui wants to establish a connection with S j as follows:

D∗5 = h
(
PID∗i ‖ Tnew

U ‖ SID∗j ‖ PSID∗j ‖ Tnew
S

)∗
? = D5 (23)

in this case, CS has evidence of the connection attempt between Ui and S j. It is important to note that,
Equation (23) requires the fresh timestamp from Ui and S j. Moreover, D5 contains PIDi, SID j and
PSID j which demonstrate the interest of the two entities for establishing a secure communication.

Sensors 2019, 19, 2098 13 of 22

Sensors 2019, 19, x FOR PEER REVIEW 13 of 22

Figure 5. User authentication, server authentication and evidence of connection attempt
sub-phases.

3.4. Key Agreement Phase

This phase is divided in three sub-phases. The details of each phase are shown in Figure 6.

3.4.1. Session Key Creation

In this sub-phase, ܵܥ computes the session key between ௜ܷ and ௝ܵ as follows:

Step 1: ܵܥ generates a random nonce ݊஼ௌ௡௘௪ and computes the session key ܵܭ௎ିௌ as follows: ܵܭ௎ିௌ = ℎ൫ℎ(݊௎௡௘௪) ⊕ ℎ(݊ௌ௡௘௪) ⊕ ℎ(݊஼ௌ௡௘௪ ∥ ஼ܶௌ௡௘௪)൯ (24)

Equation 24 is used to compute the session key. The session key contains security parameters
generated by ௜ܷ, ௝ܵ and ܵܥ which represents the relationship among all the participants.

Step 2: ܵܥ computes the verification parameters for ௝ܵ and ௜ܷ as follows: ܦ଺ = ଶܤ ⊕ ℎ൫ ௌܶ௡௘௪ ∥ ௝൯ܦܫܵ ⊕ ஼ܶௌ௡௘௪ (25) ܦ଻ = ℎ(݊஼ௌ௡௘௪ ∥ ஼ܶௌ௡௘௪) ⊕ ℎ൫ܵܦܫ௝ ∥ ஼ܶௌ௡௘௪൯ ⊕ ℎ(݊௎௡௘௪) (26) ଼ܦ = ଶܥ ⊕ ℎ(௎ܶ௡௘௪ ∥ (௜ܦܫ ⊕ ஼ܶௌ௡௘௪ (27) ܦଽ = ℎ(݊஼ௌ௡௘௪ ∥ ஼ܶௌ௡௘௪) ⊕ ℎ(ܦܫ௜ ∥ ஼ܶௌ௡௘௪) ⊕ ℎ(݊ௌ௡௘௪) (28)

where ܦ଺ and ܦ଻ are for ௝ܵ, while ଼ܦ and ܦଽ are for ௜ܷ. Equations (25) to (28) contain information
generated by ܵܥ for computing the session key.

Step 3: ܵܥ computes the challenge-response message for ௝ܵ and ௜ܷ as follows: ܦଵ଴ = ௌ௄ܧ ቀℎ(݊஼ௌ௡௘௪) ⊕ ℎ൫ܵܦܫ௝ ∥ ௝ܦܫܵܲ ∥ ଶ൯ቁ (29)ܤ

ଵଵܦ = ௌ௄൫ℎ(݊஼ௌ௡௘௪)ܧ ⊕ ℎ(ܦܫ௜ ∥ ௜ܦܫܲ ∥ ܵܥ ଶ)൯ (30)ܥ → ௝ܵ: ଻ܯ = ሼܦ଺, ,଻ܦ ,ଵ଴ܦ ,଼ܦ ,ଽܦ ଵଵሽܦ

Figure 5. User authentication, server authentication and evidence of connection attempt sub-phases.

3.4. Key Agreement Phase

This phase is divided in three sub-phases. The details of each phase are shown in Figure 6.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 22

ℎ(݊஼ௌ௡௘௪ ∥ ஼ܶௌ௡௘௪)∗ ⊕ ℎ(݊௎௡௘௪) = ൫ℎ(݊஼ௌ௡௘௪݁ݑ݈ܸܽݎ݁ݒݎ݁ݏ ∥ ஼ܶௌ௡௘௪) ⊕ ℎ(݊௎௡௘௪)൯ = ℎ(݊஼ௌ௡௘௪ (39) (ଵ଴ܯ)ௌ௄ܦ ∥ ஼ܶௌ௡௘௪)∗? = ℎ(݊஼ௌ௡௘௪ ∥ ஼ܶௌ௡௘௪) (40)

finally, ௜ܷ recovers the response from ܯଵ଴ using Equation (39) and verifies the legitimacy of ௝ܵ by
means of Equation (40).

Step 4: ௜ܷ replaces ܲܦܫ௜ , ℎ(݊௎) , and ܥସ = ℎ൫ܦܫ௜ ∥ ܲ ௜ܹ ∥ ℎ(݊௎)൯ with ܲܦܫ௜௡௘௪ = ൫ℎ(௎ܶ௡௘௪ ∥ℎ(ܦܫ௜ ∥ (௜ܦܫܲ ∥ ݊௎௡௘௪)൯, ℎ(݊௎௡௘௪), and ܥସ௡௘௪ = ℎ൫ܦܫ௜ ∥ ܲ ௜ܹ ∥ ℎ(݊௎௡௘௪)൯, respectively.

Figure 6. Key agreement and mutual authentication phases.

3.6. Password Change Phase

When ௜ܷ wants to change or to update his/her password, he/she needs to key his/her ܦܫ௜ and ܲ ௜ܹ. Then, ܵܥ௜ computes Equation (10) to verify his/her legitimacy. If the verification process is
correct, ௜ܷ keys ܲ ௜ܹ௡௘௪ and ܵܥ௜ computes Equation (40): ܥସ௡௘௪ = ℎ൫ܦܫ௜ ∥ ܲ ௜ܹ௡௘௪ ∥ ℎ(݊௨)൯ (41) ܷܲܥ ܵܧܶܣܦସ

4. Security Analysis and Performance Evaluation

In this section, we carry out the security analysis and performance evaluation comparison of
our proposal. The security analysis includes an informal cryptanalysis, security of session key and
countermeasures to improve security. The performance evaluation includes computational- and
communication-cost comparison with Zhou et al.’s, Amin et al.’s and Xue et al.’s schemes.

4.1. Informal Cryptanalysis

In this sub-section, we analyse the security of our proposal using informal security analysis.

4.1.1. User Anonymity

In our scheme, ௜ܷ sends ܲܦܫ௜ = ℎ(௎ܶ ∥ ݊௎) to ௝ܵ instead of ܦܫ௜ in clear text. Moreover, ܲܦܫ௜
is updated after finalizing the user authentication sub-phase with ௎ܶ௡௘௪ and ݊௎௡௘௪ , keeping the
identity of each user anonym. In consequence, when the user sends the authentication request

Figure 6. Key agreement and mutual authentication phases.

3.4.1. Session Key Creation

In this sub-phase, CS computes the session key between Ui and S j as follows:

Step 1: CS generates a random nonce nnew
CS and computes the session key SKU−S as follows:

SKU−S = h
(
h
(
nnew

U

)
⊕ h

(
nnew

S

)
⊕ h

(
nnew

CS ‖ Tnew
CS

))
(24)

Sensors 2019, 19, 2098 14 of 22

Equation (24) is used to compute the session key. The session key contains security parameters
generated by Ui, S j and CS which represents the relationship among all the participants.

Step 2: CS computes the verification parameters for S j and Ui as follows:

D6 = B2 ⊕ h
(
Tnew

S ‖ SID j
)
⊕ Tnew

CS (25)

D7 = h
(
nnew

CS ‖ Tnew
CS

)
⊕ h

(
SID j ‖ Tnew

CS

)
⊕ h

(
nnew

U

)
(26)

D8 = C2 ⊕ h
(
Tnew

U ‖ IDi
)
⊕ Tnew

CS (27)

D9 = h
(
nnew

CS ‖ Tnew
CS

)
⊕ h

(
IDi ‖ Tnew

CS

)
⊕ h

(
nnew

S

)
(28)

where D6 and D7 are for S j, while D8 and D9 are for Ui. Equations (25) to (28) contain information
generated by CS for computing the session key.

Step 3: CS computes the challenge-response message for S j and Ui as follows:

D10 = ESK
(
h
(
nnew

CS

)
⊕ h

(
SID j ‖ PSID j ‖ B2

))
(29)

D11 = ESK
(
h
(
nnew

CS

)
⊕ h(IDi ‖ PIDi ‖ C2)

)
(30)

CS→ S j : M7 = {D6, D7, D10, D8, D9, D11}

CS computed the challenge-response message for each entity using the session key; this means that,
a legitimate participant can recover the security parameters to construct the session key. Finally, CS
sends the authentication response message M7 to S j through an open communication channel.

3.4.2. Server Session Key

Step 1: After receiving M7, S j computes and verifies the freshness of M7:

Tnew∗
CS = B2 ⊕ h

(
Tnew

S ‖ SID j
)
⊕D6 (31)

Equation (31) is used to extract Tnew∗
CS from D6.

Step 2: If M7 is fresh, S j computes:

h
(
nnew

CS ‖ Tnew
CS

)∗
⊕ h

(
nnew

U

)∗
= h

(
SID j ‖ Tnew

CS

)
⊕D7 (32)

SK∗U−S = h
(
h
(
nnew

U

)∗
⊕ h

(
nnew

S

)
⊕ h

(
nnew

CS ‖ Tnew
CS

)∗)
h
(
nnew

CS

)∗
= h

(
nnew

CS

)
⊕ h

(
SID j ‖ PSID j ‖ B2

)
= DSK∗(D10) (33)

S j → Ui : M8 = {D8, D9, D11}

at this point, S j knows the session key
(
SK∗U−S

)
and the value h

(
nnew

CS

)∗
. Finally, S j sends M8 to Ui

through an open communication channel.

3.4.3. User Session Key

Step 1: Upon receiving the user authentication response message M8, Ui computes and verifies
the freshness of M8:

Tnew∗
CS = C2 ⊕ h

(
Tnew

U ‖ IDi
)
⊕D8 (34)

Step 2: If M8 is fresh, Ui computes:

h
(
nnew

CS ‖ Tnew
CS

)∗
⊕ h

(
nnew

S

)∗
= h

(
IDi ‖ Tnew

CS

)
⊕D9 (35)

Sensors 2019, 19, 2098 15 of 22

SK∗U−S = h
(
h
(
nnew

U

)
⊕ h

(
nnew

S

)∗
⊕ h

(
nnew

CS ‖ Tnew
CS

)∗)
DSK∗(D11) = h

(
nnew

CS

)
⊕ h(IDi ‖ PIDi ‖ C2) = h

(
nnew

CS

)∗
(36)

Ui knows the session key and the value h
(
nnew

CS

)∗
.

3.5. Mutual Authentication

Step 1: Ui sends the challenge message M9 to S j. M9 contains h
(
nnew

CS

)
as proof of his/her legitimacy

and requests the response:

Ui → S j : M9 =
{
ESK

(
h
(
nnew

CS

)
‖ serverValue(challenge)

)}
Step 2: Upon receiving the challenge message M9, S j computes

h
(
nnew

CS

)∗
‖ serverValue(challenge) = DSK(M9) (37)

h
(
nnew

CS

)∗
? = h

(
nnew

CS

)
(38)

S j → Ui : M10 =
{
ESK

(
serverValue

(
h
(
nnew

CS ‖ Tnew
CS

)
⊕ h

(
nnew

U

)))}
S j knows that Ui is the user who requested the user authentication by means of Equations (37) and (38).
Then, S j sends the response to Ui.

Step 3: Upon receiving the message M10, Ui computes and verifies the legitimacy of S j as follows:

h
(
nnew

CS ‖ Tnew
CS

)∗
⊕ h

(
nnew

U

)
= serverValue

(
h
(
nnew

CS ‖ Tnew
CS

)
⊕ h

(
nnew

U

))
= DSK(M10) (39)

h
(
nnew

CS ‖ Tnew
CS

)∗
? = h

(
nnew

CS ‖ Tnew
CS

)
(40)

finally, Ui recovers the response from M10 using Equation (39) and verifies the legitimacy of S j by
means of Equation (40).

Step 4: Ui replaces PIDi, h(nU), and C4 = h(IDi ‖ PWi ‖ h(nU)) with PIDnew
i =(

h
(
Tnew

U ‖ h(IDi ‖ PIDi) ‖ nnew
U

))
, h

(
nnew

U

)
, and Cnew

4 = h
(
IDi ‖ PWi ‖ h

(
nnew

U

))
, respectively.

3.6. Password Change Phase

When Ui wants to change or to update his/her password, he/she needs to key his/her IDi and PWi.
Then, SCi computes Equation (10) to verify his/her legitimacy. If the verification process is correct, Ui
keys PWnew

i and SCi computes Equation (40):

Cnew
4 = h

(
IDi ‖ PWnew

i ‖ h(nu)
)

(41)

UPDATES C4

4. Security Analysis and Performance Evaluation

In this section, we carry out the security analysis and performance evaluation comparison of
our proposal. The security analysis includes an informal cryptanalysis, security of session key and
countermeasures to improve security. The performance evaluation includes computational- and
communication-cost comparison with Zhou et al.’s, Amin et al.’s and Xue et al.’s schemes.

4.1. Informal Cryptanalysis

In this sub-section, we analyse the security of our proposal using informal security analysis.

Sensors 2019, 19, 2098 16 of 22

4.1.1. User Anonymity

In our scheme, Ui sends PIDi = h(TU ‖ nU) to S j instead of IDi in clear text. Moreover, PIDi is
updated after finalizing the user authentication sub-phase with Tnew

U and nnew
U , keeping the identity of

each user anonym. In consequence, when the user sends the authentication request message to S j,
the PIDi will be different. Furthermore, an attacker cannot recover IDi from PIDi, D1, or D2 without
security parameters. Therefore, the scheme provides user anonymity.

4.1.2. Off-line User Identity and Password Guessing Attack

In the case that a malicious user obtains SCi, he/she can recover PIDi, C2, C3, C4, h(nU) [33,34].
However, he/she cannot obtain sensitive data from C2 because nobody knows x, y, z, and IDCS. From C3

the attacker can extract PIDi which it is stored in SCi. In this case, he/she is not capable to extract
sensitive data from SCi.

4.1.3. Privileged Insider Attack

In our scheme, security parameters are personalized using data from each user or cloud server,
making more complex the possibility to know secret keys of CS. If a malicious user tries to extract x
and y from C2 or C3, he/she needs to recover h(IDCS ‖ x) or h(IDCS ‖ y) from Equations (3) or (4):

C2 = h(PIDi ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)) ⊕ h(IDCS ‖ x) ⊕ h(IDCS ‖ y)

C3 = h(IDi ‖ PIDi ‖ h(IDCS ‖ x) ‖ h(IDCS ‖ y)) ⊕ PIDi ⊕ h(x ‖ y)

but the attacker only know PIDi. Moreover, CS does not include its IDCS in any messages or shares it
in clear text. Thus, the scheme resists this attack.

4.1.4. Impersonation Attack

In the case that an attacker obtains PIDi, C2, C3, C4, h(nU) from SCi [33,34] and M5 ={
Tnew

U , D1, PIDi, D2
}

the attacker cannot create a valid authentication request message by any type of

combination of the security parameters. In this case, the malicious user computes D f ake
1 = C2 ⊕ ID f ake

i

using ID f ake
i but he/she cannot compute a valid PIDi and C3 which are required to compute a valid D2.

In consequence, the attacker cannot impersonate a legal user.

4.1.5. Replay Attack

In this attack, the malicious user needs to know previous authentication request message
M5 =

{
Tnew

U , D1, PIDi, D2
}
. However, our scheme uses random nonce (nU) and timestamp (TU) to

avoid replay attack. The control server verifies the freshness of the timestamp every time.

4.2. Security of Session Key

A key purpose of an authentication scheme is the establishment of a session key, so the session
key should be protected against known-key security and forward secrecy [22].

4.2.1. Known-key Security

In our scheme, CS computes new session key every time the authentication is correct. This means
that, CS uses the new random nonce

(
nnew

U

)
,
(
nnew

S

)
and

(
nnew

CS

)
, and its current timestamp

(
Tnew

CS

)
to

compute a fresh session key, avoiding the compromise of previous session keys. If the attacker knows
M7 = {D6, D7, D10, D8, D9, D11}, he/she cannot compute a valid session key (SKU−S) without random
nonce and CS′s timestamp. Even though the attacker knows past session key

(
SKold

U−S

)
, he/she cannot

compute the new session key by means of any type of combination.

Sensors 2019, 19, 2098 17 of 22

4.2.2. Forward Secrecy

In our scheme, CS computes the session key without the use of secret keys (x, y, z), avoiding
compromise its security in case that an attacker knows the secret keys. Let us suppose that, an attacker
knows (x, y, z), he/she cannot compute the correct session key because it does not contain the secret
keys. Thus, the attacker cannot create a valid session key.

4.3. Countermeasures

4.3.1. Local Protection against Malicious Users

In our scheme, SCi verifies the legitimacy of Ui by means of Equation (10). This mean that Ui
must be authenticated by SCi before it computes the user authentication request message [22].

4.3.2. Mutual Authentication

In our scheme, Ui and S j verify that each other is a legitimate user in the system and want to
establish a secure communication through Equations (37) to (40). In this case, Ui sends a challenge to
S j for carrying out the mutual authentication process. The response message contains

(
nnew

CS ‖ Tnew
CS

)
which represents the fresh of the communication. Moreover, Ui knows the same value, thus avoiding a
man-in-the-middle attack.

4.3.3. Evidence of Connection Attempt

In our scheme, S j computes D5, using Equation (15), which contains information from Ui and S j,
making unique the value of D5. Then, CS verifies the connection attempt between Ui and S j by means
of Equation (23). Moreover, CS computes the session key using information of Ui, S j and CS.

4.4. Security Comparison

This sub-section presents the security comparison of the proposed scheme with Zhou et al.’s
scheme, Amin et al.’s scheme and Xue et al.’s schemes in terms of security properties. Table 2 lists
comparative results.

Table 2. Security comparison.

Security Property Xue et al. Amin et al. Zhou et al. Our Scheme

Provide evidence of connection attempt fails fails fails success
Provide mutual authentication fails fails fails success
Provide user anonymity fails success
Resist impersonation attack fails fails fails success
Resist off-line user identity/password attack fails success
Resist privileged-insider attack fails fails success
Resist replay attack fails success

According to Table 2, it is clear that previous works are vulnerable to different attacks and fails to
provide mutual authentication between the server and the user. Moreover, previous works do not
provide evidence of connection attempts. In consequence, our protocol resists very well-known attacks,
provides evidences of connection attempts, mutual authentication and user anonymity.

4.5. Computational-cost Comparison

This sub-section presents the performance evaluation of the proposed scheme with Zhou et al.’s
scheme, Amin et al.’s scheme and Xue et al.’s scheme in terms of execution-time. The evaluation of
each scheme was based on the following considerations:

Sensors 2019, 19, 2098 18 of 22

• Th represents a hash function.
• TS represents an encryption/decryption operation using AES algorithm.
• The execution time for Th is case 1: 0.00517 ms [30] and case 2: 0.0000328 ms [32].
• The execution time for TS is case1: 0.02148 ms [30] and case2: 0.0214385 ms [32].

Table 3 summarizes the operations carried out by Ui, S j and CS during the registration, login and
authentication phases. The execution time required by Ui, S j and CS during each phase is shown in
Table 4.

Table 3. Performance comparison.

Phase Xue et al. Amin et al. Zhou et al. Our Scheme

Registration
Ui 3Th 3Th 3Th 2Th
S j 0Th 0Th 0Th 1Th
CS 4Th 4Th 4Th 12Th

Login
Ui 6Th 6Th 6Th 3Th
S j 3Th 1Th 3Th 3Th
CS 0Th 0Th 0Th 0Th

Authentication
Ui 3Th 3Th 4Th 4Th + 3Ts
S j 3Th 3Th 4Th 2Th + 3Ts
CS 14Th 10Th 19Th 21Th + 2Ts

Total 36Th 30Th 43Th 48Th + 8Ts

Table 4. Execution-time by participant.

Xue et al. Amin et al. Zhou et al. Our

Op Case 1 Case 2 Op Case 1 Case 2 Op Case 1 Case 2 Op Case 1 Case 2

R
Ui 3Th 0.01551 0.0000984 3Th 0.01551 0.0000984 3TH 0.01551 0.0000984 2Th 0.01034 0.0000656
S j 0Th 0 0 0Th 0 0 0TH 0 0 1Th 0.00517 0.0000328
CS 4Th 0.02068 0.0001312 4Th 0.02068 0.0001312 4TH 0.02068 0.0001312 12Th 0.06204 0.0003936

L
Ui 6Th 0.03102 0.0001968 6Th 0.03102 0.0001968 6Th 0.03102 0.0001968 3Th 0.01551 0.0000984
S j 3Th 0.01551 0.0000984 1Th 0.00517 0.0000328 3Th 0.01551 0.0000984 3Th 0.01551 0.0000984
CS 0Th 0 0 0Th 0 0 0Th 0 0 0Th 0 0

A
Ui 3Th 0.01551 0.0000984 3Th 0.01551 0.0000984 4Th 0.02068 0.0001312 4Th + 3Ts 0.08512 0.0644467
S j 3Th 0.01551 0.0000984 3Th 0.01551 0.0000984 4Th 0.02068 0.0001312 2Th + 3Ts 0.07478 0.0643811
CS 14Th 0.07238 0.0004592 10Th 0.0517 0.000328 19Th 0.09823 0.0006232 21Th + 2Ts 0.15153 0.0435658

Total 36Th 0.18612 0.0011808 30Th 0.1551 0.000984 43Th 0.22231 0.0014104 48Th + 8Ts 0.420000 0.173082

*R = Registration phase, L = Login phase, A = Authentication phase, Op = Number of operations.

From Table 3, it is easy to see that our scheme requires more computational operations than
previous works. However, it is necessary to compute the execution-time in a real scenario. For that
reason, we used the execution-time described in [30] and [32] to compare the performance of each
scheme. The execution-time results are shown in Table 4, and it is clear that the execution time depends
on: (a) the characteristics of each device, (b) the cryptography libraries and (c) the computational
load. In our scheme, CS is the participant which computes more computational operations because we
assume that has more resources than Ui and S j. Moreover, Ui computes more computational operations
than S j because we assume that Ui will request few connections per day; however, S j will receive
many request for connection, considering a high volume of users it is necessary that S j computes few
computational operations. According with the results summarized in Table 4, the scheme with les
computational operations was proposed by Amin et al. [1].

In fact, the execution time of each device must be considered as show in Table 4. The computational
operations evaluated using case 2 gives better results than case 1. Under this situation, our scheme
requires 40% less time which represents an acceptable performance, less than 0.1862 ms [30].

Figure 7 shows the computational-cost comparison by participant and scheme. In this case,
we used the execution-time of the case 1. The main difference between our scheme and previous
works is the inclusion of symmetric operations during the authentication phase. The symmetric
operations are used to provide mutual authentication between Ui and S j, increasing the security of the
proposed scheme.

Sensors 2019, 19, 2098 19 of 22

Sensors 2019, 19, x FOR PEER REVIEW 19 of 22

Figure 7. Computational-cost comparison by participant.

4.6. Communication-cost Comparison

In this sub-section, we compare the communication-cost of our scheme with Zhou et al.’s
scheme, Amin et al.’s scheme and Xue et al.’s scheme in terms of message length. For conventional
comparison, we assume two bit length cases:

 Case 1: any identity, password, pseudo-identity, timestamp, random nonce, and hash output
are 128 bits.

 Case 2: any identity, password, pseudo-identity, timestamp, random nonce, and hash output
are 256 bits.

 The block length of the symmetric encryption is 128 bits.

Table 5 summarizes the message length by each entity during the scheme.

Table 5. Communication cost comparison.

 Xue et al. Amin et al. Zhou et al. Our scheme
 Length Case 1 Case 2 Length Case 1 Case 2 Length Case 1 Case 2 Length Case 1 Case 2

R

௜ܷ 3 384 768 2 256 512 2 256 512 2 256 512 ௝ܵ 2 256 512 2 256 512 2 256 512 2 256 512 1024 512 4 1536 768 6 768 384 3 512 256 2 ܵܥ
ST 896 1792 896 1792 1280 2560 1024 2048

L

௜ܷ 6 768 1536 5 640 1280 5 640 1280 4 512 1024 ௝ܵ 11 1408 2816 9 1152 2304 10 1280 2560 9 1152 2304 0 0 0 0 0 0 0 0 0 0 0 0 ܵܥ
ST 2176 4352 1792 3584 1920 3840 1664 3328

A

௜ܷ 0 0 0 0 0 0 0 0 0 2 256 512 ௝ܵ 2 256 512 2 256 512 3 384 768 5 640 1280 1536 768 6 1536 768 6 1024 512 4 1024 512 4 ܵܥ
ST 768 1536 768 1536 1152 2304 1664 3328

 T 30 3840 7680 27 3456 6912 34 4352 8704 34 4352 8704

*R = Registration phase, L= Login phase, A = Authentication phase, ST = Subtotal, T= Total

From Table 5, we see very clearly that our scheme requires the same message length as Zhou et
al.’s scheme, 4352 bits or 8704 bits. However, our scheme provides mutual authentication and
evidence of connection attempt, which requires more information to share among participants. If we
pay attention phase by phase, our scheme requires less message length during the registration phase

0

0.05

0.1

0.15

0.2

0.25

U S CS

Ti
m

e
(m

s)

Xue et al. Amin et al. Zhou et al. Our

Figure 7. Computational-cost comparison by participant.

4.6. Communication-Cost Comparison

In this sub-section, we compare the communication-cost of our scheme with Zhou et al.’s scheme,
Amin et al.’s scheme and Xue et al.’s scheme in terms of message length. For conventional comparison,
we assume two bit length cases:

• Case 1: any identity, password, pseudo-identity, timestamp, random nonce, and hash output are
128 bits.

• Case 2: any identity, password, pseudo-identity, timestamp, random nonce, and hash output are
256 bits.

• The block length of the symmetric encryption is 128 bits.

Table 5 summarizes the message length by each entity during the scheme.

Table 5. Communication cost comparison.

Xue et al. Amin et al. Zhou et al. Our Scheme

Length Case 1 Case 2 Length Case 1 Case 2 Length Case 1 Case 2 Length Case 1 Case 2

R

Ui 3 384 768 2 256 512 2 256 512 2 256 512

S j 2 256 512 2 256 512 2 256 512 2 256 512

CS 2 256 512 3 384 768 6 768 1536 4 512 1024

ST 896 1792 896 1792 1280 2560 1024 2048

L

Ui 6 768 1536 5 640 1280 5 640 1280 4 512 1024

S j 11 1408 2816 9 1152 2304 10 1280 2560 9 1152 2304

CS 0 0 0 0 0 0 0 0 0 0 0 0

ST 2176 4352 1792 3584 1920 3840 1664 3328

A

Ui 0 0 0 0 0 0 0 0 0 2 256 512

S j 2 256 512 2 256 512 3 384 768 5 640 1280

CS 4 512 1024 4 512 1024 6 768 1536 6 768 1536

ST 768 1536 768 1536 1152 2304 1664 3328

T 30 3840 7680 27 3456 6912 34 4352 8704 34 4352 8704

*R = Registration phase, L = Login phase, A = Authentication phase, ST = Subtotal, T = Total.

Sensors 2019, 19, 2098 20 of 22

From Table 5, we see very clearly that our scheme requires the same message length as Zhou et al.’s
scheme, 4352 bits or 8704 bits. However, our scheme provides mutual authentication and evidence of
connection attempt, which requires more information to share among participants. If we pay attention
phase by phase, our scheme requires less message length during the registration phase than Zhou et al.’s
scheme, making our proposal more efficient. In fact, our proposal requires less message length in the
login phase than previous works, making it more efficient. After achieving the performance evaluation
of the proposed scheme, it is possible to confirm that the proposal has good performance.

5. Conclusions

In this paper, we demonstrated that Zhou et al.’s scheme is not secure against insider, replay and
user impersonation attacks. Moreover, we found security drawbacks which make the scheme proposed
by Zhou et al. insecure for IoT in cloud computing circumstances. As a consequence, we propose a
new scheme to remedy the security vulnerabilities and drawbacks of Zhou et al.’s scheme.

The new scheme achieves mutual authentication and key agreement, providing secure access
to cloud servers. Moreover, the proposal keeps the user identity anonymous against eavesdroppers,
provides security for the session key and includes a challenge-response method. In addition, the new
scheme includes a sub-phase called evidence connection attempt which proves to the control server
any connection attempt between a user and a server.

Furthermore, our performance evaluation demonstrates that our scheme does not require
high computational power or several messages to achieve security requirements. On the contrary,
the proposed scheme requires less communication-cost than Zhou et al.’s, Amin et al.’s and Xue et al.’s
schemes in the registration and login phases, and the computational-cost is acceptable considering the
security characteristics included in the scheme. Thus, the scheme meets the security requirements for
a secure IoT-based authentication scheme in cloud computing circumstance, enhancing security of
previous works.

Author Contributions: Conceptualization, R.M.P. and H.T.C.; methodology, R.M.P., J.R.P.M., V.G. and L.J.M.;
formal analysis, R.M.P.; writing—original draft preparation, V.G.F.; writing—review and editing, A.O.B. All authors
provided critical feedback and collaborated in the research.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amin, R.; Kumar, N.; Biswas, G.P.; Iqbal, R.; Chang, V. A light weight authentication protocol for IoT-enabled
devices in distributed cloud computing environment. Future Gener. Comput. Syst. 2018, 78, 1005–1019.
[CrossRef]

2. Noura, M.; Atiquzzman, M.; Gaedke, M. Interoperability in internet of things: Taxonomies and open
challenges. Mob. Netw. Appl. 2018. [CrossRef]

3. Foster, I.; Zhao, Y.; Raicu, I.; Lu, S. Cloud computing and grid computing 360-degree compared. In Proceedings
of the Workshop on Grid Computing Environments (GCE), Austin, TX, USA, 12–16 November 2008.
[CrossRef]

4. Sova, P. Cloud computing in brief. IOSR J. Comput. Eng. 2016, 18, 101–103.
5. Ferrag, M.A.; Maglaras, L.A.; Janicke, H.; Jiang, J.; Shu, L. Authentication protocols for internet of things: A

comprehensive survey. Secur. Commun. Netw. 2017. [CrossRef]
6. El-Hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A survey of internet of things (IoT) Authentication

schemes. Sensors 2019, 19, 1141. [CrossRef]
7. Yu, W.; Liang, F.; He, X.; Grant Hatcher, W.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the

internet of things. IEEE Access 2017, 6, 6900–6919. [CrossRef]
8. Fernández Maimó, L.; Huertas Celdrán, A.; Perales Gómez, A.L.; García Clemente, F.J.; Weimer, J.; Lee, I.

Intelligent and dynamic ransomware spread detection and mitigation in integrated clinical environments.
Sensors 2019, 19, 1114. [CrossRef]

http://dx.doi.org/10.1016/j.future.2016.12.028
http://dx.doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dx.doi.org/10.1155/2017/6562953
http://dx.doi.org/10.3390/s19051141
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.3390/s19051114

Sensors 2019, 19, 2098 21 of 22

9. Baker, S.B.; Xiang, W.; Atkinson, I. Internet of things for smart healthcare: Technologies, challenges,
and opportunities. IEEE Access 2017, 5, 26521–26544. [CrossRef]

10. Jang, Q.; Ma, J.; Yang, C.; Ma, X.; Shen, J.; Chaudhry, S.A. Efficient end-to-end authentication protocol for
wearable health monitoring systems. Comput. Electr. Eng. 2017, 63, 182–195. [CrossRef]

11. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

12. Perera, C.; Harold Liu, C.; Jayawardena, S.; Chen, M. A survey on internet of things from industrial market
perspective. IEEE Access 2015, 2, 1660–1679. [CrossRef]

13. El-Sayed, H.; Sankar, S.; Prasad, M.; Puthal, D.; Gupta, A.; Mohanty, M.; Lin, C.T. Edge of things: The big
picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access
2017, 6, 1706–1717. [CrossRef]

14. Jiang, Q.; Qian, Y.; Ma, J.; Ma, X.; Cheng, Q.; Wei, F. User centric three-factor authentication protocol for
cloud-assited wearable devices. Int. J. Commun. Syst. 2009, 9, e3900. [CrossRef]

15. Madhusudhan, R.; Mittal, R.C. Dynamic id-based remote user password authentication schemes using smart
cards: A review. J. Netw. Comput. Appl. 2012, 35, 1235–1248. [CrossRef]

16. Wang, D.; He, D.; Wang, P.; Chu, C.-H. Anonymous two-factor authentication in distributed systems: Certain
goals are beyond attainment. IEEE Trans. Dependable Secur. Comput. 2015, 12, 428–442. [CrossRef]

17. Wang, D.; Wang, P. Two birds with one stone: Two-factor authentication with security beyond conventional
bound. IEEE Trans. Dependable Secur. Comput. 2018, 15, 708–722. [CrossRef]

18. Lamport, L. Password authentication with insecure communication. Commun. ACM 1981, 24, 770–772.
[CrossRef]

19. Hwang, T.; Chen, Y.; Laih, C.S. Non-interactive password authentication without password tables.
In Proceedings of the 1990 IEEE Region 10 Conference on Computer and Communication Systems, Hong
Kong, China, 24–27 September 1990.

20. Lin, L.C.; Hwang, M.S.; Li, L.H. A new remote user authentication scheme for multi-server architecture.
Future Gener. Comput. Syst. 2003, 19, 13–22. [CrossRef]

21. Li, L.; Lin, L.; Hwang, M.S. A remote password authentication scheme for multi-server architecture using
neural networks. IEEE Trans. Neural Netw. 2001, 12, 1498–1504. [PubMed]

22. Liao, Y.P.; Wang, S.S. A secure dynamic ID based remote user authentication scheme for multi-server
environment. Comput. Stand. Interfaces 2009, 31, 24–29. [CrossRef]

23. Hsiang, C.; Shih, W.K. Improvement of the secure dynamic ID based remote user authentication scheme for
multi-server environment. Comput. Stand. Interfaces 2009, 31, 1118–1123. [CrossRef]

24. Martínez-Peláez, R.; Rico-Novella, F.; Satizábal, C.; Pomykala, J. Efficient and secure dynamic ID-based
remote user authentication scheme with session key agreement for multi-server environment. Int. J. Netw.
Secur. Its Appl. 2010, 2, 106–116. [CrossRef]

25. Kim, M.; Park, N.; Won, D. Security Improvement on a Dynamic ID-Based Remote User Authentication
Scheme with Session Key Agreement for Multi-server Environment. In Computer Applications for Security,
Control and System Engineering; Springer: Berlin/Heidelberg, Germany, 2012.

26. Li, X.; Xiong, Y.P.; Ma, J.; Wang, W.D. An efficient and security dynamic identity based authentication
protocol for multi-server architecture using smartcards. J. Netw. Comput. Appl. 2012, 35, 763–769. [CrossRef]

27. Sood, S.K.; Sarje, A.K.; Singh, K. A secure dynamic identity based authentication protocol for multiserver
architecture. J. Netw. Comput. Appl. 2011, 34, 609–618. [CrossRef]

28. Xue, K.; Hong, P.; Ma, C. A lightweight dynamic pseudonym identity based authentication and key agreement
protocol without verification tables for multi-server architecture. J. Comput. Syst. Sci. 2014, 80, 195–206.
[CrossRef]

29. Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated key
agreement scheme in cloud-assisted cyber-physical systems. Future Gener. Comput. Syst. 2018. [CrossRef]

30. Zhou, L.; Li, X.; Yeh, K.H.; Su, C.; Chiu, W. Lightweight IoT-based authentication scheme in cloud computing
circumstance. Future Gener. Comput. Syst. 2019, 91, 244–251. [CrossRef]

31. Amin, R.; Biswas, G.P. A secure light weight scheme for user authentication and key agreement in
multi-gateway based wireless sensor networks. Ad Hoc Netw. 2016, 36, 58–80. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2017.2775180
http://dx.doi.org/10.1016/j.compeleceng.2017.03.016
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/ACCESS.2015.2389854
http://dx.doi.org/10.1109/ACCESS.2017.2780087
http://dx.doi.org/10.1002/dac.3900
http://dx.doi.org/10.1016/j.jnca.2012.01.007
http://dx.doi.org/10.1109/TDSC.2014.2355850
http://dx.doi.org/10.1109/TDSC.2016.2605087
http://dx.doi.org/10.1145/358790.358797
http://dx.doi.org/10.1016/S0167-739X(02)00093-6
http://www.ncbi.nlm.nih.gov/pubmed/18249979
http://dx.doi.org/10.1016/j.csi.2007.10.007
http://dx.doi.org/10.1016/j.csi.2008.11.002
http://dx.doi.org/10.5121/ijnsa.2010.2409
http://dx.doi.org/10.1016/j.jnca.2011.11.009
http://dx.doi.org/10.1016/j.jnca.2010.11.011
http://dx.doi.org/10.1016/j.jcss.2013.07.004
http://dx.doi.org/10.1016/j.future.2018.04.019
http://dx.doi.org/10.1016/j.future.2018.08.038
http://dx.doi.org/10.1016/j.adhoc.2015.05.020

Sensors 2019, 19, 2098 22 of 22

32. Wu, F.; Xu, L.; Kumari, S.; Li, X.; Shen, J.; Raymond-Choo, K.K.; Wazid, M.; Das, A.K. An efficient
authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment.
J. Netw. Comput. Appl. 2017, 89, 72–85. [CrossRef]

33. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Advances in Cryptology; Wienner, M., Ed.; Springer:
Berlin, Germany, 1999; pp. 388–397.

34. Messerger, T.S.; Dabbish, E.A.; Sloan, R.H. Examining smart-card security under the threat of power analysis
attacks. IEEE Trans. Comput. 2002, 51, 541–552. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jnca.2016.12.008
http://dx.doi.org/10.1109/TC.2002.1004593
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contribution

	Review and Security Analysis of Zhou’s Scheme
	Registration Phase
	User Registration Sub-Phase
	Cloud Server Registration Sub-phase

	Authentication Phase
	Security Vulnerabilities
	Insider Attack
	Man-in-the-Middle Attack

	Security Drawbacks
	Fails to Provide Mutual Authentication
	Fails to Protect Secret Key

	Proposed Scheme
	Registration Phase
	User Registration Sub-Phase
	Cloud Server Registration

	Login Phase
	Authentication Phase
	User Authentication
	Server Authentication
	Evidence of Connection Attempt

	Key Agreement Phase
	Session Key Creation
	Server Session Key
	User Session Key

	Mutual Authentication
	Password Change Phase

	Security Analysis and Performance Evaluation
	Informal Cryptanalysis
	User Anonymity
	Off-line User Identity and Password Guessing Attack
	Privileged Insider Attack
	Impersonation Attack
	Replay Attack

	Security of Session Key
	Known-key Security
	Forward Secrecy

	Countermeasures
	Local Protection against Malicious Users
	Mutual Authentication
	Evidence of Connection Attempt

	Security Comparison
	Computational-cost Comparison
	Communication-Cost Comparison

	Conclusions
	References

