
sensors

Article

Animations in Cross-Platform Mobile Applications:
An Evaluation of Tools, Metrics and Performance

Andreas Biørn-Hansen 1,2,* , Tor-Morten Grønli 1 and Gheorghita Ghinea 2

1 Department of Technology, Kristiania University College, 0670 Oslo, Norway;
tor-morten.gronli@kristiania.no

2 Department of Computer Science, Brunel University, London UB8 3PH, UK; george.ghinea@brunel.ac.uk
* Correspondence: andreas.biorn-hansen@kristiania.no

Received: 27 February 2019; Accepted: 28 April 2019; Published: 5 May 2019
����������
�������

Abstract: Along with the proliferation of high-end and performant mobile devices, we find that
the inclusion of visually animated user interfaces are commonplace, but that research on their
performance is scarce. Thus, for this study, eight mobile apps have been developed for scrutiny
and assessment to report on the device hardware impact and penalties caused by transitions and
animations, with an emphasis on apps generated using cross-platform development frameworks.
The tasks we employ for animation performance measuring, are those of (i) a complex animation
consisting of multiple elements, (ii) the opening sequence of a side menu navigation pattern, and (iii) a
transition animation during in-app page navigation. We employ multiple performance profiling tools,
and scrutinize metrics including frames per second (FPS), CPU usage, device memory usage and
GPU memory usage, all to uncover the impact caused by executing transitions and animations. We
uncover important differences in device hardware utilization during animations across the different
cross-platform technologies employed. Additionally, Android and iOS are found to differ greatly
in terms of memory consumption, CPU usage and rendered FPS, a discrepancy that is true for both
the native and cross-platform apps. The findings we report are indeed factors contributing to the
complexity of app development.

Keywords: cross-platform mobile development; app development; app animations; user interfaces

1. Introduction

Nowadays, we frequently encounter animated graphical user interfaces in mobile applications [1],
or apps for short. Use cases typically include those of branding purposes, communication of information
and interaction patterns, training, and to enhance overall user experience [2]. Throughout a regular
day’s worth of mobile device usage, we are likely to have been exposed to a multitude of different
animations. Examples include the loading spinners appearing upon refreshing social media feeds, the
animated proposed travel path drawn by the Uber app on-top of their Google Map component, and the
view-filling animation transition triggered when launching an app on an iOS device [3]. Thus, it should
be safe to assume that animations and transitions are integral parts of modern user interfaces, also on
performance- and view-estate constrained handheld mobile devices.

Not only do app developers face such inherent device-related constraints, they are also exposed
to a myriad of technological options to choose between prior to even beginning development.
In mobile app development, traditionally, apps have been developed using platform-specific languages,
Objective-C or Swift for iOS [4], Java [5] or Kotlin [6] for Android, and C# or C++ for the Windows
Phone/Mobile/Universal platform [7]. All of these languages add to the list of required competency
for developing mobile apps for a widest possible audience, a customer base which in 2018 generated
approximately $419 billion USD in revenue, according to recent numbers from Statista [8]. These types

Sensors 2019, 19, 2081; doi:10.3390/s19092081 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2836-790X
https://orcid.org/0000-0002-2026-4551
https://orcid.org/0000-0003-2578-5580
http://www.mdpi.com/1424-8220/19/9/2081?type=check_update&version=1
http://dx.doi.org/10.3390/s19092081
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2081 2 of 21

of platform-specific apps are referred to as native apps [9], as they are pieces of software written using
tools and technologies that are native to their respective platform. In fact, not only do the mentioned
platforms require different programming languages, there is also a complete lack of interoperability
between them, resulting in developers having to implement all business logic and user interface code
from scratch for each platform deemed necessary to have presence on [10]. Ahmad et al. [10] identified
this lack of code re-use to be a concern among native app developers, in their empirical study on
challenges in mobile development. In addition to challenges concerning code re-use across platforms,
the device fragmentation on Android can also render native development a complicated endeavour.
Taking into account OpenSignal’s [11] latest report (2015) on Android fragmentation identifying more
than 24,000 distinct Android devices, and that Android’s market share in 2017 was 85.9% according to
Statista [12], it should be safe to assume that the majority of practitioners develop mobile applications
for both a device- and platform-fragmented audience.

To reach this fragmented customer base without investing in platform-specific re-implementations
of the same features and user interfaces, cross-platform development emerge to help maximize code
re-use across mobile platforms [13]. In our context, cross-platform is an umbrella term describing
numerous concepts and technical solutions for minimizing the amount of code needed to deploy a
codebase to as many mobile platforms as possible. Additionally, a frequently encountered requirement
in the literature is that such apps should perform similar to native apps, as discussed in Xanthopoulos
and Xinogalos’ well-cited early work on the subject, stating that "The ultimate goal of cross-platform
mobile app development is to achieve native app performance and run on as many platforms as possible." [14].
Native-like performance is typically tried achieved through the use of cross-platform development
frameworks, examples being those of Ionic Framework, Xamarin, React Native [15] and similar
tools [5,16]. We categorize these frameworks into approaches depending on characteristics, typically
those of execution environment, user interface rendering techniques, and code compiling and
transpilation steps [17].

In this study, we employ frameworks of the Hybrid, Interpreted and Cross-Compiled approaches.
While they can all aid in the development of cross-platform apps, they differ in terms of characteristics
such as those previously mentioned. The Hybrid approach offers the possibility to develop apps using
traditional web technologies. The code, typically JavaScript, CSS and HTML, is wrapped inside a
regular native app displaying the code through an embeddable web browser component, referred
to as a WebView. This WebView component can then communicate with platform-specific code such
as Java or Objective-C existing in the native app in which the component and web code is wrapped,
enabling the use of device- and platform functionality not available to web apps executed in a regular
web browser.

Like Hybrid apps, the Interpreted approach relies on an underlying native application to execute
the cross-platform code. However, a major difference between the two approaches is that Interpreted
apps are not dependent on a WebView component to render user interfaces or communicate with
device- and platform functionality. Instead, the Interpreted approach is based on programming
language interpreters, including but not limited to JavaScriptCore and V8, to facilitate the rendering
of native user interface components along with communication with native code. No web-based
components are rendered to the screen when developing Interpreted apps, instead frameworks of
the approach can communicate with- and render to the screen components that are as native as those
available in traditional native apps.

The final approach included in this study is the Cross-Compiled approach. This allows for the
use of a language such as C# to be compiled to platform-specific byte code, and thus avoid the use
of interpreters and WebView components all together. Due to executing as native byte code, also the
Cross-Compiled approach renders native user interfaces, similar to the Interpreted approach, and can
communicate with device and platform features without the need of an abstraction layer such as a
WebView or code interpreter [16].

Sensors 2019, 19, 2081 3 of 21

The user experience provided by apps developed using these cross-platform approaches has not
been researched to any great extent, as we further discuss in Section 2. The importance of this topic
however has been covered in numerous studies, recently by Ahmad et al. [10] and Biørn-Hansen
et al. [18,19]. All three studies indicate that user experience is a concern and challenge developers
typically relate to cross-platform mobile apps, more so than for native apps [10]. The same studies also
indicate that there is a lack of academic effort put forth to investigate the validity of these concerns.
For this current study, we are motivated by the identified gap in the knowledge base, along with
industry relevance and the potential practical and theoretical implications of our findings. We target
specifically animations and transitions in mobile user interfaces, and make use of multiple performance
profiling tools and performance-related metrics to discuss and report on animations performance in
cross-platform and native apps running on Android and iOS devices.

The rest of this paper is structured as follows: In Section 2, we discuss the state of research
on cross-platform development, with a particular focus on performance-oriented studies. Section 3
outlines our research questions and overall design of the study and experiment. An overview of the
artifacts designed and developed is presented in Section 4, before we present our results in Section 5,
and discuss the experiment and its outcomes in Section 6. A conclusion along with thoughts on further
work is then presented in Section 7.

2. Related Work

We have identified several studies reporting on the performance of mobile apps generated using
cross-platform development approaches and frameworks. However, few of these studies focus on
aspects related to user experience. A recent study by Willocx et al. [20] assesses the device impact of
cross-platform apps, measuring metrics including CPU, memory (RAM), disk space and time-to-task
completion (e.g., launch time and elapsed navigation time) in the context of hardware utilization
in different states, including background versus foreground consumption, consumption at launch,
and more. We extend their experiment by introducing additional measurement parameters, and
by targeting the user interface context rather than performance testing of apps in different states
(e.g., foreground and background). Their results illustrate a performance penalty introduced when
making use of cross-platform frameworks.

A variety of these metrics are also found included in research of similar nature, such as in
Dalmasso et al.’s [21] study evaluating cross-platform frameworks such metrics as CPU, RAM usage
and power consumption. Their research is frequently cited in newer studies, possibly due to their
empirical approach to evaluation of four technical implementations. The authors find that the Hybrid
approach and the PhoneGap development framework performs better in terms of hardware utilization
when compared to the Titanium framework of the Interpreted approach. No native implementations
were part of the research design. Additionally, the authors provide a set of guidelines for deciding on
the suitability of cross-platform approach and framework, in which they express their thoughts on the
importance of a native user experience.

In [16], Ciman and Gaggi deviate from the trend of drawing conclusions based on CPU
and memory consumption, focusing instead on device energy consumption while executing and
performing a variety of tasks involving the use of hardware features. Similar to most research on
cross-platform development, also this study can report of a performance penalty introduced by the
use of cross-platform frameworks. While we do not extend their work in the direction of investigating
power consumption, we do draw on ideas and findings presented throughout their study. An example
of this is their finding related to the battery-oriented expense of updating an app’s user interface, which
they identify to be the main cause of an increase in energy consumption. Thus, the research they present
is of great importance to understand the consequences of unoptimized animations and transitions, as
these actions are after all major causes to rapid re-drawing and updating of the user interface.

One study covering the possibilities of animations in cross-platform apps has been identified, being
that of Ciman et al. [22]. They investigate the availability of animation API support in cross-platform

Sensors 2019, 19, 2081 4 of 21

frameworks, specifically MoSync (https://github.com/MoSync/MoSync), Titanium (https://www.
appcelerator.com/), jQuery (https://jquery.com/) and PhoneGap (https://phonegap.com). In addition,
the authors report on meta information such as tool licensing, surrounding developer community, and
development IDE support. Our study continues where the authors left off, as no empirical results were
provided in terms of app and device performance. Additionally, where our study experiment with user
interfaces traditionally encountered in regular apps, the artifact developed and evaluated in [22] is in
the form of a game, thus inherently requiring animation fluency and API support on a different level
than what is required in our implementations and context.

The shortage of studies on cross-platform user experience perspectives is the motivation for de
Andrade Cardieri and Zaina’s [23] recent study. They invite end-users and an HCI specialist in an effort
to uncover differences in interaction enjoyment between three cross-platform development approaches:
Progressive Web Apps, regular mobile websites, and native mobile applications. To the best of
our knowledge, this is the first study measuring perception of user interfaces in PWAs compared
to native applications. Emotion-based data along with open-ended questions are analyzed and
presented. Their findings indicate that participants did not favour the user experience of a specific
development approach. This contrasts certain previous studies, including Dalmasso et al.’s comparison
of cross-platform tools from 2013, in which the authors describe the quality of user experience in
cross-platform apps to be lower than mobile websites and native applications [21]. Cardieri and
Zaina’s study could thus indicate that in the years between the studies, user experience in applications
developed using cross-platform tools has improved.

However, the user’s perspective of cross-platform approaches is also assessed in a study from
2016 by Mercado et al. [24], in which n = 787, 228 app user reviews have been classified using Natural
Language Processing (NLP). While de Andrade Cardieri and Zaina’s study [23] is of a qualitative
and controlled nature, Mercado et al. study the perspectives of performance, reliability, usability
and security based on submitted feedback from users in Google’s Play Store and Apple’s App Store.
Their results indicate a discrepancy between the iOS and Android platforms, as Android users’
perception of performance, reliability and usability is more negative towards Hybrid applications than
native applications. On iOS, Hybrid apps score better on all these concerns, with the exception of
performance, i.e., iOS users report of fewer usability-related concerns in Hybrid apps than in Native
apps, although this specific Cohen’s k model had a relatively low precision compared to the other
quality concern models.

Having traversed performance- and user experience-oriented literature, we notice the emergence
of certain patterns. In studies scrutinizing the performance of cross-platform generated apps,
experiments tend to focus on testing and measuring device and platform features, and their effect on
hardware and device performance. Examples of such features typically include those of device camera,
user’s calendar and contact list, and geolocation and accelerometer [25]. While studies including
those discussed throughout this section are of utmost importance to our understanding of limitations,
constraints and possibilities posed by cross-platform frameworks, we simultaneously identify a lack of
experiments focusing on performance testing graphical user interfaces (GUIs). We find mentions of the
importance of user experience and native-like user interfaces to flourish in the literature (e.g., [5,7,26]).
While others have focused on the perception of user interfaces, usability and user experience, including
Mercado et al. [24] and de Andrade Cardieri and Zaina [23], we target the performance of animated
user interfaces on mobile devices, leaving the potential correlation of hardware performance and user
perception as a suggestion for further research. According to Noei et al. [27], device attributes including
CPU, display and operating system have a significant relationship on user-perceived quality. Drawing
from the findings we present in this study, we suggest continuing the examination of user-perceived
quality of animations in cross-platform mobile apps, and the correlation with such devices attributes
as suggested in [27].

https://github.com/MoSync/MoSync
https://www.appcelerator.com/
https://www.appcelerator.com/
https://jquery.com/
https://phonegap.com

Sensors 2019, 19, 2081 5 of 21

3. Research Method

This section is dedicated to presenting our research questions and the research methods employed,
thereby the cross-platform frameworks scrutinized, laboratory equipment utilized, and an overview
of performance metrics and tools used for measuring and data gathering. We employ a systematic
approach for conducting the experiments and gathering data on the performance of the technical
artifacts. To ensure verification of results and possibility of re-using the technical artifacts in future
research, all developed artifacts have been open sourced and deposited to a Github repository (https:
//github.com/andreasbhansen/sensors_journal_animations_performance).

3.1. Research Questions

Based on our assessment of existing research on performance and user experience in
cross-platform development, as presented in Section 2, one overarching objective along with three
research questions have been formed. These cover the suitability of metrics included, limitations
imposed by profiling tools, and differences in performance between the mobile platforms. We answer
the research questions as part of our discussion in Section 6, where each question is re-iterated and
answered in a condensed fashion throughout the section’s subsections.

• Objective: To investigate the performance of animations and transitions in mobile user interfaces
developed using native and cross-platform technologies.

• Research questions:

– RQ1: Do the included performance metrics fulfil their purpose in researching animated user
interfaces in mobile apps?

– RQ2: How well do the official performance insight tools cater to the profiling of animation
and transition performance in the cross-platform apps developed?

– RQ3: Which of the platforms, iOS or Android, required the least amount of device- and
hardware resources in order to execute and run performant animations and transitions?

3.2. Technologies

To answer our research questions as previously presented, a comprehensive performance scrutiny
has been conducted. The outcome of the artifact development is a total of eight mobile apps. The native
Android and iOS apps account for two of these, while the three cross-platform frameworks each
generate two apps, one for Android and one for iOS, making up for the remaining six apps.

Each framework or technology is also associated with a development approach, as presented in
Table 1. Included in the study are three cross-platform approaches, specifically Interpreted, Hybrid
and Cross-Compiled. Characteristics of the approaches were previously introduced in Section 1.

The cross-platform frameworks assessed throughout this study were included due to prevalence
in either- or both of academia and industry. We find that Xamarin Forms is the most frequently
included and scrutinized framework of the Cross-Compiled approach category [28]. Whereas Xamarin
has previously seen much scrutiny, React Native and Ionic has not to the same degree enjoyed the
focus of researchers. Both these frameworks were included for assessment due to popularity among
developers, as reported by the State of JavaScript 2017 survey, exceeding 28,000 responses. The survey
illustrate that React Native and Ionic are both popular and well-adopted frameworks within their
development approaches [29], respectively Interpreted and Hybrid. While the main survey results
do not include any frameworks of the Cross-Compiled approach, we find Xamarin ranking high on a
subpage listing “other top mentions” [30], i.e., frameworks that are indeed adopted and in use, but not
by enough of the respondents to be placed on the main results page.

https://github.com/andreasbhansen/sensors_journal_animations_performance
https://github.com/andreasbhansen/sensors_journal_animations_performance

Sensors 2019, 19, 2081 6 of 21

Table 1. Frameworks and Technologies Scrutinized.

Technology Version # Approach Language IDE

Native Android 26 (SDK) Native Kotlin Android Studio
Native iOS Xcode 9 Native Swift Xcode

React Native 0.49.5 Interpreted JavaScript Text editor
Ionic Framework 3.15.2 Hybrid JavaScript Text editor
Xamarin Forms 2.4.0.38779 Cross-Compiled C# Xamarin Studio

The two native apps developed helps us in gathering baseline performance results to accurately
understand and measure how the cross-platform apps perform in comparison. Doing any performance-
oriented comparisons without the presence of baseline performance results would be inherently
challenging. The use of native baselines is also found in other studies, such as in both Ciman and
Gaggi’s [16] energy consumption analysis study, and in Willocx et al.’s performance study [20].

It is important to note that no optimization has been done to any of the implementations or code
bases. While one could do extensive work in order to optimize performance in all frameworks and
technologies included in this experiment, such work is beyond the scope of the study. We are only
interested in the performance delivered out of the box, as this is what developers can expect to work
with immediately after initializing a new project.

3.3. Experimental Setup

The tests were conducted using the mobile devices listed in Table 2. At the time of the experiment,
both devices ran the latest operating system updates available. During the tests, both devices were set
to maximum screen brightness, had mobile data, GPS and Bluetooth turned off, and did not have any
other apps running in the background simultaneously. Each of the apps were restarted prior to each
experiment and task, this to help us generate results unaffected by previous experiments.

Table 2. List of Mobile Devices Included.

Manufacturer Model Released OS (Version) Memory (RAM) Processor (CPU)

LG Nexus 5X 2015 Android (8.0) 2GB Snapdragon 808
Apple iPhone 6 2014 iOS (11.1.1) 1GB Apple A8

3.4. Metrics and Data Gathering Tools

The following list of metrics have been recorded in this study, deemed of importance to
properly scrutinize the performance and possible penalties introduced with the use of cross-platform
development frameworks.

3.4.1. Metrics

• Frames per second (FPS): Perceived as an important metric for measuring fluidness of movement
in graphical user interfaces [31]. Animations and transitions that are not displayed in a constant
close-to-60 FPS can be perceived as “janky" according to some studies (e.g., [32]), a term used
to describe partially unresponsive interfaces, or interfaces that underperform. Contrastingly, at
60 FPS, an interface and its animated elements is fluently displayed [32]. We test this hypothesis
and the importance of measuring FPS throughout our study. During our experiments, we run each
animation/transition twice and use the data from the second run, this due to some constraints
we found in some frameworks where loading the Lottie animation file contributed to some
perceivable lag.

• CPU usage: Apps generated in a cross-platform fashion have been reported to differ in terms of
CPU usage between the various development frameworks [16,20]. We extend such previous work,

Sensors 2019, 19, 2081 7 of 21

and apply methods for measuring CPU usage specifically in the context of animations. We are
interested in extending our insight and knowledge in terms of user experience of cross-platform
generated apps, and the frequently encountered inclusion of CPU as a mean for measurement
makes it ideal to include it here as well, also to discuss the suitability of it in Section 6.

• Device memory (RAM) usage: Mobile devices are greatly and inherently constrained by the
performance of the hardware they rely on. Especially the availability of memory can hamper the
user experience, thus we include a measurement of RAM usage in the tests conducted. We also
account for the Lottie animation file (JSON format), which weigh 33KB.

• GPU memory usage: We extracted data on GPU memory usage on Android only. We found that
on iOS devices, GPU and CPU seem to share the same memory [33], alas, we were unable to
identify a method for proper extraction of GPU-only memory usage. As such, Tables 3 and 4 do
not present GPU memory extraction tool or extracted consumption for the iOS platform.

3.4.2. Tools Overview

A handful of tools were selected to measure the four performance-oriented metrics listed
previously. The selected tools are listed in Table 3 along with the metrics they assist in extracting.
We found that for measuring iOS performance, all but one metric could be measured using Instruments,
the official profiling tool from Apple. The one metric we could not measure using Instruments was GPU
memory usage, as briefly explained in the last section of Section 3.4.1. Measuring Android performance
involved the use of both command-line interfaces (CLIs) and a graphical profiling tool, the former
being adb (Android Debug Bridge) and the latter being Android Studio, the official development
IDE by Google. Android Studio had previously been equipped with a GPU Monitor as part of its array
of profiling tools, but it was deprecated and removed from the latest version of the IDE [34]. Thus the
need for the CLIs to gather additional insights not provided by Android Studio.

Table 3. Tools Associated with Metrics.

Platforms Metrics Tools

Android FPS adb systrace
RAM Android Studio Profiler

CPU % Android Studio Profiler
GPU RAM adb dumpsys

iOS FPS Instruments: Core Animation
RAM Instruments: VM Tracker

CPU % Instruments: Time Profiler
GPU RAM -

Sensors 2019, 19, 2081 8 of 21

Table 4. Results from Performance Tests.

Technology
FPS

CountDur.

(jank)
CPU Peak

Memory
Peak (MB)

(pre) during (post)

GPU
Memory

(Android)

Lottie Star Animation Performance
Nexus 5X (Android)
Native 60 (16) 25.58% (62.34) 68.49 (64.14) 2.33 MB
React Native 60 (18) 21.62% (73.47) 93.72 (∼90) 3.45 MB
Ionic Framework 59 (26) 29.93% (93.39) 124.27 (∼116) 4.55 MB
Xamarin Forms 60 (37) 19.95% (116.7) 125.34 (117.08) 6.47 MB

iPhone 6 (iOS)
Native 30-23 40% (49.08) 49.08 (49.08) -
React Native 46-5 100% (51.96) 53.56 (53.56) -
Ionic Framework 17-23 30% (67.75) 67.75 (67.90) -
Xamarin Forms 48-5 70% (91.67) 91.67 (101.95) -

Navigation Transition Performance
Nexus 5X (Android)
Native 5328ms (3) 29.34% (49.46) 73.5 (59.06) 2.36MB
React Native 18340ms (2) 22.82% (68.84) 82.04 (80.40) 1.08 MB
Ionic Framework 21482ms (14) 21.78% (91.45) 132.76 (104.75) 4.55 MB
Xamarin Forms 18377ms (9) 20% (105.78) 108.71 (107.21) 6.48 MB

iPhone 6 (iOS)
Native 18200ms 100% (49.80) 49.80 (49.80) -
React Native 28250ms* 100% (52.14) 53.38 (53.38) -
Ionic Framework 36500ms* 50% (66.65) 66.65 (66.65) -
Xamarin Forms 23-6586ms 100% (103.23) 103.23 (103.23) -

Side Menu Performance
Nexus 5X (Android)
Native 27443ms (1) 7.93% (64.53) 64.92 (64.67) 2.29 MB
React Native 35573ms (0) 11.73% (69.20) 69.70 (69.60) 1.0 8MB
Ionic Framework 32617ms (8) 21.97% (93.79) 114.79 (109.84) 4.55 MB
Xamarin Forms 28458ms (0) 13.86% (103.55) ∼87 (84) 6.36 MB

iPhone 6 (iOS)
Native 30-350ms 67% (37.63) 41.13 (41.13) -
React Native 6-4200ms* 70% (76.70) 76.70 (76.70) -
Ionic Framework 14-8280ms* 60% (67.14) 67.14 (67.14) -
Xamarin Forms 7-3300ms* 75% (102.45) 102.45 (102.45) -

4. Artifact Design and Development

This section is dedicated to presenting the three animations/transitions implemented as parts of
the artifacts, and an overview of the artifacts’ visual design baseline. To increase the ease of verification
of results, we strive to present each animation and transition implementation in a level of detail
enabling reproducibility of the artifacts.

4.1. Lottie Star Animation

Lottie is a library developed by the engineering team at Airbnb for rendering of JSON-defined
animations exported from Adobe After Effects. The library is cross-platform compatible, and can
display animations in both native Android and iOS apps, as well as in Ionic (https://github.com/
chenqingspring/ng-lottie), React Native (https://github.com/airbnb/lottie-react-native), Xamarin
(https://github.com/martijn00/LottieXamarin) and more. We identified an animation by Michael

https://github.com/chenqingspring/ng-lottie
https://github.com/chenqingspring/ng-lottie
https://github.com/airbnb/lottie-react-native
https://github.com/martijn00/LottieXamarin

Sensors 2019, 19, 2081 9 of 21

Harvey on Lottiefiles.com (https://www.lottiefiles.com/72-favourite-app-icon) as the most popular
open-source Lottie animation, containing multiple stages and elements, as depicted in Figure 1. The
animation involves both movement, appearing and disappearing elements, and is of a fast-paced
nature. We deemed this animation interesting for scrutiny purposes due to the variety of elements and
its identified popularity as previously mentioned.

Stage 1 Stage 2 Stage 3

Figure 1. Three primary stages of the Lottie animation.

4.2. Navigation Transition

When navigating between pages and views in mobile apps, transition animations are executed
to provide visual indication of an ongoing page (or context) switch. Such transitions vary between
platforms and the type of navigation executed, being a modal pop-up, a page switch adding to the
navigation stack, a replacement of the current view, and so on. In this paper, we focus on performance
testing the transition animation going from one page to another. Inherently, the result from this is
coloured by the actual navigation event’s potential performance hit.

The frameworks and native technologies included in this study, as listed in Table 1, did for the
most part integrate navigation functionality. Only React Native required a third-party navigation
library, and there were several open source alternatives to choose from. While both React Navigation
(https://reactnavigation.org/) and React Native Navigation (https://github.com/wix/react-native-
navigation) provided easy navigation APIs, the latter was the only library exposing actual native
navigation APIs and transitions, not JavaScript-based native-like mimics.As such, to make a fair
comparison to the other frameworks tested, we opted for navigation using React Native Navigation.
For further research, it could be of interest to study the differences between JavaScript-based and
native transitions in the context of both device resource usage and user experience.

4.3. Side Menu Animation

The opening of the side menu and its associated opening animation are typically triggered
whenever a user presses the hamburger menu icon, i.e., the icon in the very left upper corner in Figure 2,
consisting of three stacked horizontal lines. This is a commonly implemented navigation pattern in
mobile apps [35].

Menu Side menu

Figure 2. Example of a side-menu drawer opening sequence.

Achieving the intended behaviour using the frameworks at hand resulted in a variety of
implementations, each one seemingly unique to the respective framework, as reported in the following list.

• Xamarin: We downloaded an official example code base (https://developer.xamarin.com/
samples/xamarin-forms/Navigation/MasterDetailPage/) for implementation of side menus,

https://www.lottiefiles.com/72-favourite-app-icon
https://reactnavigation.org/
https://github.com/wix/react-native-navigation
https://github.com/wix/react-native-navigation
https://developer.xamarin.com/samples/xamarin-forms/Navigation/MasterDetailPage/
https://developer.xamarin.com/samples/xamarin-forms/Navigation/MasterDetailPage/

Sensors 2019, 19, 2081 10 of 21

created by David Britch at Xamarin. Our side menu implementation in Xamarin is based on
Britch’s code, with modifications were needed.

• React Native: As previously mentioned, we used the React Native Navigation third-party library
to enable efficient view navigation. A side menu implementation was also available in the library,
thus we decided on using it as the foundation for our implementation.

• Ionic: Upon starting a new Ionic project, their CLI prompts with the possibility of scaffolding a
side menu-based project, which adds some required and related boilerplate code. We chose this
over implementing the same behaviour manually.

• Native Android: We found that a side menu-enabled template was available upon project
initialization in the Android Studio IDE.

• Native iOS: The side menu navigation pattern is not native to the iOS platform, thus no such
component existed in the Xcode development environment by default. To compensate for the lack
of the component, we found a third-party library which adds an easy-to-use API for providing
side menus in Swift iOS, called SideMenu (https://github.com/jonkykong/SideMenu) written
by developer Jon Kent.

4.4. A Visual Overview

Each of the applications developed inherit the same user interface layout and visual design.
In Figure 3, the React Native application running on the Android platform is depicted to illustrate the
visuals of the finished artifacts. At the top, a navigation bar including an “hamburger menu button”
displays the title of the current view. Not depicted is the side menu drawer which will open upon
pressing the hamburger menu button, but an example of this is illustrated in Figure 2. Below the
navigation bar, following in a vertical stack-wise layout are the animation view (yellow star), a button
to execute a play-through of the animation, and at the end a button to navigate to another page.

Figure 3. Cropped example of a developed artifact.

5. Results

The findings from our experiments have been condensed into Table 4, with additional notes
on the findings located below the table. For the tasks where the task’s running time could not
programmatically be calculated, such as the opening time of the React Native side menu on iOS, we
looked to the frameworks’ source code to extract the defined transition or animation duration. We have
carefully marked these extracts using an asterisk (*) in the FPS column in Table 4. An example of this is
the Side Menu animation on iPhone 6 using React Native, where we had to look to the framework’s
source code to find that 250ms was the implemented duration of the animation.

https://github.com/jonkykong/SideMenu

Sensors 2019, 19, 2081 11 of 21

A challenge encountered during the data gathering phase, was the differences in the apps’
performance before conducting the tests. An example of this from Table 4 is the performance of the
native Android app, which prior to starting the Lottie animation reported of a memory consumption
of 62.34 MB, while the reported consumption was 49.46 MB prior to the navigation transition test.
While the differences between these numbers are not massive, they should still be accounted for in
research of this nature.

Explanations of the header row and contents of Table 4 follows:

• FPS: “CountDur. (jank)” refers to the overall reported count of frames rendered, the duration of the
animation reported in milliseconds in those cases where duration was less than a full second, and
the number of janky frames as reported by the Android profiler tool. Take the following example:
18340 ms (2), short for 18 FPS rendered in a 340 ms time period, with two frames reported janky.
For some of the iOS measurements, we use the hyphen (-) character to report of cross-second FPS
results. This is for situations where the iOS Instruments tool’s bar chart visualization of FPS did
not report of one single number, but rather two numbers due to spanning more than one second
in the visualization. This is further discussed in Section 6.2.2.

• CPU Peak: The results of this metric’s measurements are reported in percentage, as they are by
the profiling tools on both platforms.

• Memory Peak: We report on the performance prior to the animation running (pre), during the
animation, and after the animation is complete (post). In situations were we could only extract
approximate values from the profiling tools, we made use of the tilde ~ character. An example of
this is for the Lottie animation on Nexus 5X using React Native, where the post-animation memory
consumption was approximately 90MB.

5.1. Lottie Star Animation Performance

All implementations on Android, including native, reported of large numbers of janky frames
during the execution and play-through of the Lottie animation. The native implementation saw
the fewest janky frames rendered, used more CPU than React Native and Xamarin, but saw only a
minor increase in RAM consumption. For this task, the increase in RAM consumption through all
cross-platform frameworks illustrate the penalty introduced with using cross-platform technologies.
Ionic’s jump from 93.39 MB to 124.27 MB RAM consumption upon Lottie execution display that there
are very much trade-offs to be made when developing cross-platform applications. Another negative
aspect of the penalty is how the memory consumption after certain tasks do not decrease to its original
value. This is true for all the apps generated using cross-platform technologies.

While Xamarin on Android produced the highest amount of janky frames (more than half of the
rendered frames), it had the lowest consumption of CPU power, but consumed the most RAM. On
iOS, Xamarin and React Native rendered the highest count of frames. The Xamarin CPU consumption
was 30% less than what React Native required, although React Native consumed close to 40 MB
less memory.

5.2. Navigation Transition Performance

Please do note that we could not isolate the impact caused by the transition animation itself, thus
the reported performance is the entirety of the transition, involving the animation and the underlying
mechanics for conducting the actual page navigation.

For Android, it is interesting to note how the native app relies the heaviest on the CPU, in fact
consuming 9.35% more CPU than the lowest-consuming app being the Xamarin-based implementation,
although the latter having a much higher impact on RAM consumption at 108.71 MB versus 73.5 MB
for the native app. The highest-consuming implementation in terms of RAM on Android is the Ionic
app at 132.76 MB, seeing a major impact upon execution of the navigation transition task, increasing
RAM consumption by 41.31 MB. However, Ionic was also the framework to render the most frames

Sensors 2019, 19, 2081 12 of 21

of all the Android implementations, although with a high count of reportedly janky frames. It also
peaked at a lower CPU percentage than the native app, although 1.78% higher than the Xamarin app.

On the other hand, Ionic on iOS outperform both native and the other cross-platform frameworks
on the FPS and CPU usage metrics while consuming more RAM (at 66.65 MB) than native (49.80 mB)
and React Native (53.38 MB), but far less than that of the Xamarin implementation at 103.23 MB.
Although, one thing to note is how the native app conducts the navigation in 200 ms, whereas the
Ionic app to the best of our knowledge, based on Ionic’s source code, uses 500 ms on the same task.
Thus, the FPS count is higher for the native app due to the short play-through time, assuming that the
length of the navigation is correctly reported.

5.3. Side Menu Performance

Again we identify trade-offs in performance, and variations between the platforms. While the
Ionic Framework on iOS required the least amount of CPU activity, it rendered only half of the frames
compared to the native approach, which used 7% more CPU than Ionic. However, the native approach
consumed 26.01 MB less RAM than Ionic. Comparing Android to iOS on side menu navigation,
we see that the Ionic Framework consumed 114.79 MB RAM on Android, while 67.14 MB on iOS.
These deviations in performance between the platforms result in difficulties when deciding on a
specific framework. Another interesting discrepancy is that of native iOS versus native Android, in
terms of CPU consumption. In the most extreme case, at 7.94% CPU usage, Android consumed 59.07%
less CPU than its iOS counterpart. However, Android still consumed 23.79 MB more memory than
the iOS app. This could indicate that variations in performance between platforms is not necessarily
caused by cross-platform development frameworks, but are instead an inherent challenge that must be
accounted for regardless of development approach.

By comparing the performance of the cross-platform frameworks, we note that React Native on
Android rendered the most frames without any reported jank while using only marginally more CPU
than the native app and consuming only a few MB more RAM, and using the least amount of GPU
RAM. In fact, RAM consumption was only marginally impacted by the execution of the side menu task,
which is comparable to that of the native app’s performance. Alas, React Native on iOS did not render
an amount of frames comparable to the native app, although using the second most GPU and CPU.

We find that Xamarin on iOS, similar to React Native, render few frames, alas consume more
RAM and CPU than the other frameworks. On Android, Xamarin renders consistent frames without
jank, at a lower CPU and RAM usage than Ionic. Still, React Native on Android performs better at this
task than both Xamarin and Ionic. On iOS, Ionic was the most performant and hardware-consumption
friendly framework, rendering more frames than the other cross-platform frameworks, relying less on
CPU power than native, and consuming the least amount of RAM compared to the other frameworks.

5.4. Additional Observations

Another interesting difference between the platforms is how the performance penalties are clearly
observable in the Android sections of Table 4, in which the increase in memory consumption is noted
with ease. For the iOS apps, we recorded far fewer drastic increases in hardware penalties. In fact,
most of the iOS implementations did not report of any increases in consumption of any of the metrics.
This is in stark contrast to Android, where the most significant increase in hardware consumption
is that of the Ionic app during navigation transition. In one instance, RAM consumption decreased
upon execution of the task, being Xamarin during the side menu test, starting at 103.55 MB RAM
consumption, decreasing to 87 MB.

6. Discussion

Throughout this section, we discuss our findings in the context of the research questions
introduced in Section 3.1. Each of the following subsections individually represent one of the research

Sensors 2019, 19, 2081 13 of 21

question posed, with additional discussion related to the topic of the question. Also included is a
discussion on threats to the validity of our presented results.

6.1. Performance Metrics

• Research Question #1: Do the Included Performance Metrics Fulfil Their Purpose in Researching
Animated User Interfaces in Mobile Apps?

We did not find the FPS metric to provide much actionable or insightful information. While this
metric can be of great value for measuring interface fluidness in games or apps with long-running
animations, it did not provide the same value when measuring our fast-paced short-running
animations. The other metrics, including CPU, RAM and GPU RAM usage, are common in
performance-oriented research (e.g., [13,20,21]). Nevertheless, extraction of GPU memory statistics
from the iOS profiling tool was not found to be possible, rendering it less usable for a cross-platform
comparison. Also, we found that the GPU memory results generated per framework only had minor
to no variations between the test, e.g., Ionic which used 4.55 MB regardless of task, or React Native
outputting 3.45 MB during the Lottie animation, and otherwise 1.08 MB during the two other tasks.
We do not find the GPU memory metric to be of importance for comparative studies on cross-platform
development due to the lack of significant differences between the tasks. CPU and RAM metrics
were found to provide insightful information on potential performance penalties introduced by
cross-platform frameworks.

The difficulty of reasoning about user interface performance based on the FPS metric leads
us to believe that user-centric studies on performance and perceived performance is perhaps more
generalizable than pure technical empirical assessments. As an example to back this up, as displayed in
Table 4, the native Android app rendered only five frames during it’s 328 ms long navigation transition.
The reported jank could nevertheless be an indication of unoptimized frame rendering. Further
research is needed to find if one can find a correlation between FPS, reported jank and end-users’
performance perception, as our hypothesis is that even the Xamarin Lottie animation reporting 37 janky
frames could be difficult to distinguish from the other frameworks reporting of fewer unoptimized
frames. This is further elaborated upon in our suggestions for further work in Section 7.1.1.

6.2. Evaluation of Performance Profiling Tools

• Research Question #2: How Well do the Official Performance Insight Tools Cater to the Profiling
of Animation and Transition Performance in the Cross-Platform Apps Developed?

Both platforms provided their own tooling for performance profiling. We found that in the case of
Android profiling, we had to make use of three distinct tools, effectively increasing the overhead of the
task. Nevertheless, all the tools employed provided highly granular and understandable data. In the
case of the iOS apps, we found the data generated by the profiling tools to be less granular, and no GPU
RAM measuring tool was identified. Both platform providers could have created performance profiling
experiences requiring less overhead, while providing more data. The Android profiling experience,
while requiring several tools and the use of CLIs, outputted the most insightful and actionable data.
Below, we discuss in more detail the experiences of gathering data using the profiling tools provided
through Android Studio, adb and Xcode’s Instruments.

6.2.1. Android Data Gathering

We did attempt to use third-party programs to measure and gather data on the FPS performance
of our artifacts’ user interfaces. GameBench and FPS Meter were frequently mentioned in practitioners’
forums, however both were seemingly unable to properly report on the performance of the
implementations, both varying greatly from the results outputted by the official profiling tools, and
oftentimes not producing any output at all. Also, as both are apps that are supposed to run on the

Sensors 2019, 19, 2081 14 of 21

device in the background while measurements are recorded, we deemed them to have the possibility
of negatively impact the performance results.

To retrieve data from the metrics included, a combination of tools was required, as presented
previously in Table 3. During the initial data gathering phase, we experimented with a variety of
third-party profiling tool alternatives. Due to the experiences from using these tools, we overall
avoided the use of them for the data gathering. We found that the app’s performance was impacted
by the tools we experimented with. An example of such a tool is the built-in performance monitor
in React Native [36], which we found to increase the RAM consumption of the app. In our tests, the
initialization and continuous profiling of the React Native monitor increased the RAM consumption
from 80.23 MB to approximately 106 MB, with 110 MB at peak consumption during the initializing of
the monitor. Such knowledge is invaluable for conducting proper performance testing, as incorrectly
reported results could easily be introduced into the data sets if control measurements are ignored.

Another obstacle we encountered while performance testing the applications, specifically
measuring CPU usage, was Android 8 (Oreo)’s newly introduced security measures [37], disallowing
third-party applications to gain access to CPU data. This limited us to use the official Android
Studio system profiler in addition to adb systrace (see section 6.2.1) for data gathering from the
Android-based apps. Thus, we were unable to verify or double-check the results using any third-party
software. For the sake of security, this newly implemented measure might have a positive effect, but
for the sake of research and system performance insights, it severely limits the possibilities of results
verification and ease of access to third-party system monitoring.

On the positive side, we did find the Android Debugging Bridge (adb) to be able to generate highly
detailed performance reports using the following command (henceforth referred to as adb systrace):
$ systrace.py –time=5 -o trace_ionic.html sched gfx view -a app_package_name

Using the above command, a 5 second snapshot of the specified app’s performance is recorded
and outputted in HTML format, which can be opened in a browser and used to visually drill down
into single-frame performance issues. Figure 4 illustrates the part of the generated report displaying
data on FPS. For the record, every dot seen in the figure represent a single frame, where green ones
have been optimally rendered, while orange or red ones represent a frame that has been rendered in a
suboptimal fashion. This could be due to the rendering time exceeding 16.6ms per frame, the time
available to do any frame-specific calculations and rendering in order to keep a user interface at a
stable 60 FPS [38].

animator

Figure 4. Example of how FPS is reported using systrace for Android apps.

For animations and transitions lasting less than a second, being the menu opening animation
and the page navigation transition, we have included only the performance measurements reported
during that given sequence, and included the measured millisecond count in superscript. For the
Lottie animation lasting more than a second, we report on only the first 1000 ms of the animation,
being as close to one frame-second as possible.

In terms of retrieval of GPU memory usage statistics, we executed the following terminal
command tool: $ adb shell dumpsys gfxinfo app_package_name. The tool was executed directly
after each animation event was complete, as the tool outputted data limited to the last 128 rendered
frames (note that in periods without changes to the interface, no frames were logged by the tool).

6.2.2. iOS Data Gathering

For the iOS apps, using the official performance profiling tool developed by Apple, Xcode
Instruments, granted us access to all the data and metrics needed, with the exception of GPU memory

Sensors 2019, 19, 2081 15 of 21

usage. The Instruments tool implement several profiling instruments, several of which reported on
slightly similar metrics . We also drew from previous research by Willocx et al. [20] which listed the
types of instruments they included, and mapped them to certain metrics. We deviated from some of
their suggestions, such as by using the Time Profiler instruments rather than Activity Monitor for CPU
measurement, as the reported output rendered results that were easier to interpret. For measuring
device memory usage, we employed the VM Tracker Instruments-exposed memory metric Resident
Size, described to be the actual device memory consumed by the targeted application [39].

Lastly, to measure FPS, we used the Core Animation instrument. Alas, no instruments for
reporting on janky frames was identified, rendering investigation of frame-specific problems more
difficult than in Android profiling. This resulted in the absence of reporting on janky frames for the
iOS implementations. Due to the granularity level and lack of drilling capabilities of the profiling
data and instrument, we ended up reporting cross-second FPS counts. This is illustrated in Figure 5,
where each bar represents a second of on-screen activity, e.g., playing the Lottie animation. The
empty spaces between the bars represent time passed without any frame activity, i.e., no frames were
(re-)drawn during those seconds. If an animation is executed well into an already-begun second
(Instruments-wise), Instruments will start reporting performance during that second, and finish
sometime during the next second slot. Thus, this is the reason for cross-second FPS reporting, in
Table 4 illustrated with a dash between the reported FPS, e.g., “30-23” in the iOS native app FPS results
during a running Lottie animation.

Frames Per Second

Figure 5. Example of measuring FPS in Xcode’s Core Animations Instruments tool.

6.3. Platform Performance Deviations

• Research Question #3: Which of the Platforms, IOS or Android, Required the Least Amount
of Device- and Hardware Resources in order to Execute and Run Performant Animations
and Transitions?

The performance as reported by the profiling tools illustrate an interesting discrepancy, in that the
reported CPU usage on Android is consistently lower than that reported on iOS across all three tasks
and regardless of technical framework. In fact, CPU usage as reported during the navigation transition
task is at 100% on iOS for all but the Hybrid app, a finding correlating to previous research [13] also
stating that navigation transition is identified to be more performant in Hybrid apps than in e.g., native
due to browser navigation optimization. The only occurrence of both platforms performing similarly,
is in the case of the Ionic apps running the Lottie animation, where CPU is peaking at 29.93% on
Android, and 30% on iOS.

Nevertheless, it is also important to acknowledge the discrepancy between the native baseline
implementations, especially that of CPU consumption during the side menu task, 7.93% on Android
versus 67% on iOS. While we could speculate that this is the result of iOS’s lack of a native side menu
component (as mentioned, the implementation relied on a third-party component), we do note that
iOS in general reports of higher CPU usage, but lower RAM consumption.

To properly answer this section’s research question, one metric is missing from our data set, being
that of janky frames in the iOS implementations. We found no suggested approach to extracting this
metric from the Instruments profiling tool. Conducting a measurement-based comparison without the
presence of this metric is challenging. Nonetheless, we note that the iOS apps are more consistent in
the consumption of RAM, while on Android, the apps’ consumption tend to fluctuate.

While there are notable differences between the Android and iOS platforms, the same is also
true for the cross-platform frameworks scrutinized. In these last sections of the discussion, we revisit

Sensors 2019, 19, 2081 16 of 21

our overarching objective: to investigate the performance of animations and transitions in mobile
user interfaces developed using native and cross-platform technologies. While a specific framework
can be performant on Android, it is not necessarily the most optimal framework on iOS, and vice
versa. An example of this from our study is the cross-platform framework Ionic, which on Android
consumes the most RAM in two out of three tests (while also being close to consume the most also
in the third), while on iOS it varies between the second- to third most RAM-efficient framework.
From previous research, we find similar results in terms of the performance penalty introduced by the
WebView component in Hybrid-based apps [7]. Overall, the nature of these platform variations render
cross-platform development additionally difficult, as one framework can be most performant on iOS,
while on Android a disparate framework can be beneficial to make use of instead. This reaffirms the
findings presented by Mercado et al. [24] on differences in perceived performance on Android and
iOS. Also, specific product requirements may call for the need of a specific framework, e.g., if Lottie
animations are more important than side menu navigation, then one framework may cater better to
the requirements than the alternative technologies.

Nevertheless, on Android we deem the Interpreted-based React Native framework to be the
most performant cross-platform framework among those included in this experiment. The penalties
introduced in terms of hardware consumption are less severe than those caused by Ionic and Xamarin,
while also rendering at a higher FPS count than the other frameworks. Also on iOS do React Native
produce better results than the alternative frameworks in terms of RAM consumption, but varies
between the tasks on CPU usage and consistency of FPS rendered between. In fact, the Hybrid-based
Ionic Framework do overall consume between second- and third most RAM, but is the most CPU
efficient in two of the tasks, also more so than native, and it renders an FPS that, in two of the tasks,
are of an higher count than the other frameworks. The only exception is during the Lottie animation,
in which Ionic rendered 11-13 frames less than React Native and Xamarin respectively.

6.4. Limitations and Threats to Validity

Due to the vast fragmentation of mobile devices, device types, hardware performance and so
on, conducting an experiment of this kind, or verifying the results presented throughout this study,
using a different set of devices, could render different results than those we encountered. With more
than 24,000 distinct Android devices identified to roam the market [11], research on mobile computing
and its subtopics is inherently challenging, and the validity of the research may be limited to devices
and device types of similar kind to those included in the experiment. Nevertheless, this is a challenge
and practical implication both for research and practice, thus including devices of a certain popularity
could increase the validity of the results for the general population. We acknowledge that data from
our study is gathered from a limited number of devices n = 2. More conclusive results could be
gathered by reapplying our research design and re-use of our technical artifacts in a study with a
wider array of representative devices, also with multiple devices from the same manufacturer and of
the same model to account for any potential differences. Moreover, it could be argued that the FPS
metric is more usable when there are different animations running simultaneously or more complex
animations shown. Further research should explore the usefulness of FPS as a metric beyond this
baseline study.

Another threat to validity is our conscious decision not to conduct any code-wise optimization
of the apps to make the animations run smoother or achieve better performance than they
would otherwise. As such, artifact implementations developed by expert practitioners with deep
understanding and knowledge of platform and framework optimization should be expected to generate
different results than those we present. We encourage researchers and practitioners to extend the work
presented in this article, and through the optimization of code and architecture attempt to better the
performance of animations in cross-platform apps. Nevertheless, the results from our measurements
should be the expected performance of a newly initialized project in each of the technologies assessed,
executed on the set of devices included.

Sensors 2019, 19, 2081 17 of 21

Differences in feature implementation between the frameworks can also be considered a threat
to validity. An example of this is the duration of a transition or animation. For the side menu
and navigation transition tasks, each framework implemented the duration of these animations and
transitions differently, e.g., navigation in the native Android application had a duration of 328 ms,
while Ionic Framework’s duration for the same task was 482 ms. This makes for a difficult comparison
between the implementations, an implication worth noting for future studies. The technical artifacts
included in this experiment was also developed for the purpose of measuring and extracting data on
performance metrics. While a discussion can be had on how well this design may represent real-world
complexity, the sheer amount of mobile applications available and the differences between them in
terms of design, functionality and complexity would render an attempt to implement generalizable
real-world complexity an ambitious task at the very least, if even possible.

There is a continuous push towards improvement of frameworks and technologies by providers
of tools and platform. An implication of this is the long-term validity of results and technical artifacts.
While this is a threat to the validity of our results, and an inherent limitation to this type of research,
this is also equally challenging for practitioners in the industry. An example of this is a recent survey
of React Native cross-platform mobile developers, in which “upgrading to a newer version of the
framework” is the top-most voted challenge with close to 700 upvotes [40]. Thus, the practical
implications of rapid release cycles and continuous advancements in the field is challenging both for
industry and research.

7. Conclusions and Further Work

While there are manifold studies identified on assessing the performance of cross-platform
generated apps, we found a research gap in the lack of performance-oriented evaluations of user
interfaces in such apps. Thus, in this study we have focused on empirically scrutinizing the
performance of mobile apps developed using cross-platform development frameworks, evaluated
in the context of user interface animations and navigation transitions. The frameworks included
for assessment in the study is React Native, Ionic Framework and Xamarin Forms. In addition to
the cross-platform apps, one native app for each platform, iOS and Android respectively, were also
implemented for gathering baseline performance results for comparison purposes.

We also find that the amount of available performance measurement tools, both official and
third-party developed, lead to some confusion in terms of picking the right ones, especially as some
could, and inherently would, introduce additional overhead in terms of device resource consumption.

The key takeaway from this study is that there are numerous tradeoffs that must be accounted
for when choosing cross-platform over native development, especially in terms of memory
consumption and differences between the platforms in how performant the frameworks are, but
also non-performance benchmarks such as developer proficiency and time-to-market. Specifically,
findings from this study indicate that:

• Janky frames were especially prominent in the Lottie animation on Android, in which Xamarin
had the highest reported count at 37 sub-optimally rendered frames out of 60 FPS. Performance
of the navigation transition and side menu component did not experience suboptimal frame
rendering at the same level, although Ionic had the highest count of dropped frames in both tests.

• CPU consumption on iOS was consistently higher than on Android, with an eight-fold difference
in the most extreme case between native Android and native iOS in the side-menu test.
On iOS, results indicate that Ionic has consistently the lowest CPU consumption across the
implementations benchmarked, while it has the highest CPU consumption in two of three tests on
Android, specifically Lottie and the side menu tests;

• The impact on memory consumption pre-, during- and post-benchmark varies considerably,
especially so between the platforms. In only one case does an iOS implementation consume
more memory than it’s Android counterpart, being side menu performance on React Native.
Additionally, in only a handful of cases does the memory consumption of an iOS implementation

Sensors 2019, 19, 2081 18 of 21

increase during og post benchmark. On Android, we note several cases where the tests’ impact on
memory consumption could have practical implications, e.g., Ionic’s 41 MB increase on Android
during navigation transition, or native Android’s 24 MB increase during the Lottie animation.
Interestingly, in several cases we note that post-benchmark memory consumption does not
decrease back to pre-benchmark consumption, possibly indicating memory leaks, slow garbage
collection, or similar;

• The variation in GPU memory consumption on the Android platform was small, with React
Native and native reporting of the lowest consumptions;

• GPU memory consumption and janky frames could not be measured on iOS using the standard
Instruments tool to the best of our knowledge, limiting possibilities for insights and comparison
of frameworks and cross-platform approaches on this metric;

• Using FPS as an indication of rendering performance in short-lived animations and transitions
in mobile apps proved difficult due to differences between profiling tools on the two platforms.
We suggest that combining quantitative performance data, such as FPS, with qualitative data,
such as user testing of perceived performance (see Section 7.1.1), could be a more helpful
technique to understanding the performance of animations in mobile user interfaces. Nevertheless,
quantitative data can still help in identify computing-intensive points in time during the execution
of an animation.

There is no silver bullet for mobile app development, neither native nor a specific cross-platform
framework has been identified as the unanimously most optimal approach. There are tradeoffs in
terms of CPU consumption and memory consumption, where for instance Xamarin on Android has
the lowest CPU consumption in the Lottie test, while also consuming the most memory. Increasing the
CPU consumption by merely 1.08% will decrease memory consumption by more than 31 MB, which is
the case of React Native. Both native and cross-platform frameworks behave differently across the
two platforms, certainly so to a degree where choosing the optimal technology across animation tests
and metrics is challenging. Additional functional requirements are likely to assist in the decision of a
development approach, although this is more a suggestion for further investigation.

7.1. Further Work

Two main ideas and topics for further work are presented below, and we encourage researchers
to take part in the advancements of empirical knowledge through applied research on cross-platform
development, possibly building on the following suggestions.

7.1.1. Performance Versus Perception

While not a topic of direct relevance to the technical nature of this study, it is nevertheless
interesting how the author team was unable to distinguish between the Lottie animation running in
the native baseline app, versus the same animation running in the Ionic-based Hybrid app during the
artifact implementation, regardless of the performance reported in Table 4. Our observations begs the
question, how does a system-reported metric such as FPS correlate to an end-user’s actual perception
of animation performance? And are the profiling tools developed by the platform providers able to
report on issues relating to user perception? Our hypothesis for further work is that for certain types
of apps, including those using animations and transitions as means of improving visual aesthetics
and user experience rather than for intensive tasks such as device-demanding games, measuring FPS
alone is not enough to conclude a user’s experience of an animated interface. In future work, we
aim to conduct a study in which end-users are exposed to native and cross-platform apps including
animated user interfaces, in order to find if they are able to visually separate the measurement-wise
high-performing technologies from the less performing ones.

Sensors 2019, 19, 2081 19 of 21

7.1.2. Continuous Research

Due to the rapid pace at which cross-platform frameworks are released, updated and deprecated,
staying updated with the latest of development and technical advances is an inherent challenge to
academic research. Nevertheless, new frameworks promise to solve existing challenges, and should
thus be assessed and scrutinized accordingly. We suggest to extend this study through inclusion of
additional technical frameworks and commercial cross-platform tools, additional to a wider array
of test devices, metrics and types of visual animations. The pool of included frameworks could be
extended to include such as Fusetools, Flutter and Tabris.js. Also, with the introduction of the Ionic
Capacitor tool, enabling the possibility to use any web framework for developing Hybrid apps [41],
a new generation of such apps might soon find its way to research and app stores. For web frameworks
targeting animation performance as a core focus, perhaps Hybrid apps in the near future will perform
even better than the results gathered from our experiments using the Ionic 3 framework. As an
extension of our work, custom animations, i.e., no Lottie dependency, could help better communicate
the state of the underlying graphic engines provided by each framework. We also encourage future
studies to include the frameworks assessed throughout this current experiment, as also they see
frequent updates thus possible advances in terms of animation performance.

Author Contributions: Conceptualization, A.B.-H., T.-M.G. and G.G.; Methodology, A.B.-H., T.-M.G. and G.G.;
Software, A.B.-H.; Investigation, A.B.-H., T.-M.G. and G.G.; Writing, original draft, A.B.-H., T.-M.G. and G.G.;
Supervision, T.-M.G. and G.G.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FPS Frames per second
CPU Central Processing Unit
RAM Random Access Memory
GPU Graphics Processing Unit
CLI Command-Line Interface
GUI Graphical User Interface
IDE Integrated Developer Environment
API Application Programming Interface
SDK Software Development Kit
GPS Global Positioning System
JSON JavaScript Object Notation
ADB Android Debug Bridge
HCI Human-Computer Interaction
NLP Natural Language Processing

References

1. Trapp, M.; Yasmin, R. Addressing Animated Transitions already in Mobile App Storyboards. In Design,
User Experience, and Usability. Web, Mobile, and Product Design; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 723–732.

2. Huhtala, J.; Sarjanoja, A.H.; Mäntyjärvi, J.; Isomursu, M.; Häkkilä, J. Animated UI Transitions and Perception
of Time: A User Study on Animated Effects on a Mobile Screen. In Proceedings of the 28th SIGCHI
Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April 2010; ACM: New
York, NY, USA, 2010; pp. 1339–1342.

3. Apple Inc. Animation—Visual Design. Available online: https://developer.apple.com/ios/human-
interface-guidelines/visual-design/animation/ (accessed on 23 Janunary 2018).

https://developer.apple.com/ios/human-interface-guidelines/visual-design/animation/
https://developer.apple.com/ios/human-interface-guidelines/visual-design/animation/

Sensors 2019, 19, 2081 20 of 21

4. Mao, X.; Xin, J. Developing Cross-platform Mobile and Web Apps. In Proceedings of the 12th World
Conference on Computers in Agriculture and Natural Resources, San Jose, Costa Rica, 27–30 July 2014.

5. Heitkötter, H.; Hanschke, S.; Majchrzak, T.A. Comparing Cross-platform Development Approaches for
Mobile Applications. In Proceedings of the 8th International Conference on Web Information Systems and
Technologies, Porto, Portugal, 18–21 April 2012; pp. 299–311.

6. Shafirov, M. Kotlin on Android. Now official. Available online: https://blog.jetbrains.com/kotlin/2017/05/
kotlin-on-android-now-official/ (accessed on 9 June 2017).

7. Latif, M.; Lakhrissi, Y.; Nfaoui, E.H.; Es-Sbai, N. Cross platform approach for mobile application
development: A survey. In Proceedings of the 2016 International Conference on Information Technology for
Organizations Development (IT4OD), Fez, Morocco, 30 March–1 April 2016; pp. 1–5.

8. Global Smartphone Revenue 2011–2018|Statistic. Available online: https://www.statista.com/statistics/
687476/global-smartphone-revenues/ (accessed on 18 March 2019).

9. Charland, A.; LeRoux, B. Mobile Application Development: Web vs. Native. Queueing Syst. 2011, 9, 20.
[CrossRef]

10. Ahmad, A.; Li, K.; Feng, C.; Asim, S.M.; Yousif, A.; Ge, S. An Empirical Study of Investigating Mobile
Applications Development Challenges. IEEE Access 2018, 6, 17711–17728. [CrossRef]

11. Android Fragmentation Visualized. Available online: https://www.opensignal.com/sites/opensignal-com/
files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf (accessed on 18 March 2019).

12. Android OS Smartphone Sales Share Worldwide 2009–2017|Statistic. Available online: https://www.
statista.com/statistics/216420/global-market-share-forecast-of-smartphone-operating-systems/ (accessed
on 18 March 2019).

13. Willocx, M.; Vossaert, J.; Naessens, V. Comparing Performance Parameters of Mobile App Development
Strategies. In Proceedings of the 2016 IEEE/ACM International Conference on Mobile Software Engineering
and Systems (MOBILESoft), Austin, TX, USA, 16–17 May 2016; pp. 38–47.

14. Xanthopoulos, S.; Xinogalos, S. A Comparative Analysis of Cross-platform Development Approaches for
Mobile Applications. In Proceedings of the 6th Balkan Conference in Informatics, Thessaloniki, Greece,
19–21 September 2013; pp. 213–220.

15. Biørn-Hansen, A.; Majchrzak, T.A.; Grønli, T.M. Progressive Web Apps: The Possible Web-native Unifier for
Mobile Development. In Proceedings of the 13th International Conference on Web Information Systems and
Technologies, Porto, Portugal, 25–27 April 2017; pp. 344–351.

16. Ciman, M.; Gaggi, O. An empirical analysis of energy consumption of cross-platform frameworks for mobile
development. Pervasive Mob. Comput. 2016, 39, 214–230. [CrossRef]

17. El-Kassas, W.S.; Abdullah, B.A.; Yousef, A.H.; Wahba, A.M. Taxonomy of Cross-Platform Mobile Applications
Development Approaches. Ain Shams Eng. J. 2017, 8, 163–190. [CrossRef]

18. Biørn-Hansen, A.; Grønli, T.M.; Ghinea, G. A Survey and Taxonomy of Core Concepts and Research
Challenges in Cross-Platform Mobile Development. ACM Comput. Surv. 2018, 51, 108. [CrossRef]

19. Biørn-Hansen, A.; Grønli, T.M.; Ghinea, G.; Alouneh, S. An Empirical Study of Cross-Platform Mobile
Development in Industry. Wirel. Commun. Mob. Comput. 2019, 2019, 1–12. [CrossRef]

20. Willocx, M.; Vossaert, J.; Naessens, V.A Quantitative Assessment of Performance in Mobile App Development
Tools. In Proceedings of the 2015 IEEE International Conference on Mobile Service, New York, NY, USA,
27 June–2 July 2015; pp. 454–461.

21. Dalmasso, I.; Datta, S.K.; Bonnet, C.; Nikaein, N. Survey, comparison and evaluation of cross platform mobile
application development tools. In Proceedings of the 2013 9th International Wireless Communications and
Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 323–328.

22. Ciman, M.; Gaggi, O.; Gonzo, N. Cross-platform mobile development: A study on apps with animations. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March
2014; pp. 757–759.

23. De Andrade Cardieri, G.; Zaina, L.M. Analyzing User Experience in Mobile Web, Native and Progressive
Web Applications: A User and HCI Specialist Perspectives. In Proceedings of the 17th Brazilian Symposium
on Human Factors in Computing Systems, Belem, Brazil, 22–26 October 2018; ACM: New York, NY, USA,
2018; p. 9.

https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://www.statista.com/statistics/687476/global-smartphone-revenues/
https://www.statista.com/statistics/687476/global-smartphone-revenues/
http://dx.doi.org/10.1145/1941487.1941504
http://dx.doi.org/10.1109/ACCESS.2018.2818724
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.statista.com/statistics/216420/global-market-share-forecast-of-smartphone-operating-systems/
https://www.statista.com/statistics/216420/global-market-share-forecast-of-smartphone-operating-systems/
http://dx.doi.org/10.1016/j.pmcj.2016.10.004
http://dx.doi.org/10.1016/j.asej.2015.08.004
http://dx.doi.org/10.1145/3241739
http://dx.doi.org/10.1155/2019/5743892

Sensors 2019, 19, 2081 21 of 21

24. Mercado, I.T.; Munaiah, N.; Meneely, A. The Impact of Cross-platform Development Approaches for Mobile
Applications from the User’s Perspective. In Proceedings of the International Workshop on App Market
Analytics, Seattle, WA, USA, 14 November 2016; ACM: New York, NY, USA, 2016; pp. 43–49.

25. Pawar, A.P.; Jagtap, V.S.; Bhamare, M.S. Survey on Techniques for Cross Platform Mobile Application
Development. Int. J. Adv. Res. Comput. Eng. Technol. 2014, 3, 3551–3558.

26. Lachgar, M.; Abdali, A. Decision Framework for Mobile Development Methods. Int. J. Adv. Comput. Sci.
Appl. 2017, 8, 110–118.

27. Noei, E.; Syer, M.D.; Zou, Y.; Hassan, A.E.; Keivanloo, I. A study of the relation of mobile device attributes
with the user-perceived quality of Android apps. Empir. Softw. Eng. 2017, 22, 3088–3116. [CrossRef]

28. Biørn-Hansen, A.; Grønli, T.M.; Ghinea, G. Baseline Requirements for Comparative Research on
Cross-Platform Mobile Development: A Literature Survey. In Proceedings of the 30th Norwegian Informatics
Conference, Oslo, Norway, 27–29 November 2017.

29. Greif, S.; Benitte, R.; Rambeau, M. Mobile & Desktop Frameworks. 2017. Available online: https:
//stateofjs.com/2017/mobile/results/ (accessed on 1 March 2018).

30. Greif, S.; Benitte, R.; Rambeau, M. Other Mobile & Desktop Frameworks. 2017. Available online: https:
//2017.stateofjs.com/2017/mobile/other/ (accessed on 1 March 2018).

31. Basques, K. Get Started With Analyzing Runtime Performance. Available online: https://developers.google.
com/web/tools/chrome-devtools/evaluate-performance/ (accessed on 12 March 2018).

32. Lewis, P. Rendering Performance. Available online: https://developers.google.com/web/fundamentals/
performance/rendering/ (accessed on 3 Novermber 2017).

33. Unity—Manual: iOS Hardware Guide. Available online: https://docs.unity3d.com/Manual/iphone-
Hardware.html (accessed on 17 Novermber 2017).

34. GPU Monitor. Available online: https://developer.android.com/studio/profile/am-gpu.html (accessed on
25 February 2018).

35. Majchrzak, T.; Biørn-Hansen, A.; Grønli, T.M. Comprehensive Analysis of Innovative Cross-Platform App
Development Frameworks. In Proceedings of the 50th Hawaii International Conference on System Sciences,
Waikoloa, HI, USA, 4–7 January 2017; pp. 6162–6171.

36. Ramos, H.; Lemos, B. React Native Performance. Available online: https://facebook.github.io/react-native/
docs/performance.html (accessed on 23 Janunary 2018).

37. Google Issue Tracker: Android O Prevents Access to /proc/stat. 2017. Available online: https://issuetracker.
google.com/issues/37140047 (accessed on 23 Janunary 2018).

38. Maust, S. What the Jank? Available online: https://afasterweb.com/2015/08/29/what-the-jank/ (accessed
on 27 February 2018).

39. What Is Resident and Dirty Memory of iOS? Available online: https://stackoverflow.com/a/19238896/
1028722 (accessed on 17 November 2017).

40. What Do You Dislike about React Native? Available online: https://github.com/react-native-community/
discussions-and-proposals/issues/64 (accessed on 17 November 2017).

41. Installing Capacitor. Available online: https://capacitor.ionicframework.com/docs/getting-started/
(accessed on 26 February 2018).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10664-017-9507-3
https://stateofjs.com/2017/mobile/results/
https://stateofjs.com/2017/mobile/results/
https://2017.stateofjs.com/2017/mobile/other/
https://2017.stateofjs.com/2017/mobile/other/
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/
https://developers.google.com/web/fundamentals/performance/rendering/
https://developers.google.com/web/fundamentals/performance/rendering/
https://docs.unity3d.com/Manual/iphone-Hardware.html
https://docs.unity3d.com/Manual/iphone-Hardware.html
https://developer.android.com/studio/profile/am-gpu.html
https://facebook.github.io/react-native/docs/performance.html
https://facebook.github.io/react-native/docs/performance.html
https://issuetracker.google.com/issues/37140047
https://issuetracker.google.com/issues/37140047
https://afasterweb.com/2015/08/29/what-the-jank/
https://stackoverflow.com/a/19238896/1028722
https://stackoverflow.com/a/19238896/1028722
https://github.com/react-native-community/discussions-and-proposals/issues/64
https://github.com/react-native-community/discussions-and-proposals/issues/64
https://capacitor.ionicframework.com/docs/getting-started/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Research Method
	Research Questions
	Technologies
	Experimental Setup
	Metrics and Data Gathering Tools
	Metrics
	Tools Overview

	Artifact Design and Development
	Lottie Star Animation
	Navigation Transition
	Side Menu Animation
	A Visual Overview

	Results
	Lottie Star Animation Performance
	Navigation Transition Performance
	Side Menu Performance
	Additional Observations

	Discussion
	Performance Metrics
	Evaluation of Performance Profiling Tools
	Android Data Gathering
	iOS Data Gathering

	Platform Performance Deviations
	Limitations and Threats to Validity

	Conclusions and Further Work
	Further Work
	Performance Versus Perception
	Continuous Research

	References

