
sensors

Article

An End-to-End Deep Neural Network for
Autonomous Driving Designed for Embedded
Automotive Platforms

Jelena Kocić * , Nenad Jovičić and Vujo Drndarević

School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia; nenad@etf.rs (N.J.);
vujo@etf.rs (V.D.)
* Correspondence: cvetakg@gmail.com; Tel.: +381-64-9258-651

Received: 15 March 2019; Accepted: 30 April 2019; Published: 3 May 2019
����������
�������

Abstract: In this paper, one solution for an end-to-end deep neural network for autonomous driving
is presented. The main objective of our work was to achieve autonomous driving with a light deep
neural network suitable for deployment on embedded automotive platforms. There are several
end-to-end deep neural networks used for autonomous driving, where the input to the machine
learning algorithm are camera images and the output is the steering angle prediction, but those
convolutional neural networks are significantly more complex than the network architecture we
are proposing. The network architecture, computational complexity, and performance evaluation
during autonomous driving using our network are compared with two other convolutional neural
networks that we re-implemented with the aim to have an objective evaluation of the proposed
network. The trained model of the proposed network is four times smaller than the PilotNet model
and about 250 times smaller than AlexNet model. While complexity and size of the novel network are
reduced in comparison to other models, which leads to lower latency and higher frame rate during
inference, our network maintained the performance, achieving successful autonomous driving with
similar efficiency compared to autonomous driving using two other models. Moreover, the proposed
deep neural network downsized the needs for real-time inference hardware in terms of computational
power, cost, and size.

Keywords: autonomous driving; camera; convolutional neural network; deep neural network;
embedded systems; end-to-end learning; machine learning

1. Introduction

Research and development in the field of machine learning and more precisely deep learning
lead to many discoveries and practical applications in different domains. The domain where machine
learning has a huge impact is the automotive industry and the development of fully autonomous
vehicles. Machine learning solutions are used in several autonomous vehicle subsystems, as the
perception, sensor fusion, simultaneous localization and mapping, and path planning. In parallel with
work on full autonomy of commercial vehicles, the development of various automotive platforms is
the current trend. For example, delivery vehicles or various different robots and robot-cars are used
in warehouses. The main idea of our work was to develop a solution for autonomous driving for a
light automotive platform that has limited hardware resources, processor power, and memory size.
Having those hardware restrictions in mind, we are aiming to design a light deep neural network
(DNN), an end-to-end neural network that will be able to perform the task of autonomous driving on
the representative track, while the developed networks’ model used for inference is possible to deploy
on a the low-performance hardware platform.

Sensors 2019, 19, 2064; doi:10.3390/s19092064 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6229-5823
https://orcid.org/0000-0001-6437-5408
http://www.mdpi.com/1424-8220/19/9/2064?type=check_update&version=1
http://dx.doi.org/10.3390/s19092064
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2064 2 of 26

The autonomous driving system can be generally divided into four blocks: sensors, perception
subsystem, planning subsystem, and control of the vehicle, Figure 1. The vehicle is sensing the world
using many different sensors mounted on the vehicle. The information from the sensors is processed in
a perception block, whose components combine sensor data into meaningful information. The planning
subsystem uses the output from the perception block for behavior planning and for both short- and
long-range path planning. The control module ensures that the vehicle follows the path provided by
the planning subsystem and sends control commands to the vehicle.

Sensors 2018, 18, x FOR PEER REVIEW 2 of 27

The autonomous driving system can be generally divided into four blocks: sensors, perception
subsystem, planning subsystem, and control of the vehicle, Figure 1. The vehicle is sensing the world
using many different sensors mounted on the vehicle. The information from the sensors is processed
in a perception block, whose components combine sensor data into meaningful information. The
planning subsystem uses the output from the perception block for behavior planning and for both
short- and long-range path planning. The control module ensures that the vehicle follows the path
provided by the planning subsystem and sends control commands to the vehicle.

Figure 1. Autonomous vehicle system block diagram.

An end-to-end deep neural network we designed for autonomous driving uses camera images
as an input, which is a raw signal (i.e., pixel), and steering angle predictions as an output to control
the vehicle, Figure 2. End-to-end learning presents the training of neural networks from the
beginning to the end without human interaction or involvement in the training process. The purpose
of end-to-end learning is that the system automatically learns internal representations of the
necessary processing steps, such as detection of useful road characteristics, based only on the input
signal.

Figure 2. Block diagram of an end-to-end autonomous driving system.

Nowadays the machine learning applications have been increasingly deployed to embedded
devices, mobile phones, and the Internet of Things (IoT) solutions. Deployment of machine learning
solutions to embedded hardware platforms leads to new developments in two directions:
development of novel hardware platforms able to process data needed for machine learning
inference, and development of novel light machine learning architectures and model
implementations suitable for low-performing hardware.

The known solutions for end-to-end learning for autonomous driving [1–5] are developed
mostly for the real vehicles, where the machine learning model used for inference is deployed on the
high-performance computer, which is usually located in the trunk of the vehicle, or those solutions
use very deep neural networks that are computationally expensive (e.g., using ResNet50 architecture
in) [3]. However, our idea was to develop a significantly smaller solution, a light deep neural
network, with similar performance during autonomous driving as known solutions, but using a
smaller computational cost that will enable deployment on an embedded platform. This lighter
solution will be used for robot-cars, embedded automotive platforms able to carry the goods or
perform some similar tasks among relatively known trajectories.

Figure 1. Autonomous vehicle system block diagram.

An end-to-end deep neural network we designed for autonomous driving uses camera images as
an input, which is a raw signal (i.e., pixel), and steering angle predictions as an output to control the
vehicle, Figure 2. End-to-end learning presents the training of neural networks from the beginning to
the end without human interaction or involvement in the training process. The purpose of end-to-end
learning is that the system automatically learns internal representations of the necessary processing
steps, such as detection of useful road characteristics, based only on the input signal.

Sensors 2018, 18, x FOR PEER REVIEW 2 of 27

The autonomous driving system can be generally divided into four blocks: sensors, perception
subsystem, planning subsystem, and control of the vehicle, Figure 1. The vehicle is sensing the world
using many different sensors mounted on the vehicle. The information from the sensors is processed
in a perception block, whose components combine sensor data into meaningful information. The
planning subsystem uses the output from the perception block for behavior planning and for both
short- and long-range path planning. The control module ensures that the vehicle follows the path
provided by the planning subsystem and sends control commands to the vehicle.

Figure 1. Autonomous vehicle system block diagram.

An end-to-end deep neural network we designed for autonomous driving uses camera images
as an input, which is a raw signal (i.e., pixel), and steering angle predictions as an output to control
the vehicle, Figure 2. End-to-end learning presents the training of neural networks from the
beginning to the end without human interaction or involvement in the training process. The purpose
of end-to-end learning is that the system automatically learns internal representations of the
necessary processing steps, such as detection of useful road characteristics, based only on the input
signal.

Figure 2. Block diagram of an end-to-end autonomous driving system.

Nowadays the machine learning applications have been increasingly deployed to embedded
devices, mobile phones, and the Internet of Things (IoT) solutions. Deployment of machine learning
solutions to embedded hardware platforms leads to new developments in two directions:
development of novel hardware platforms able to process data needed for machine learning
inference, and development of novel light machine learning architectures and model
implementations suitable for low-performing hardware.

The known solutions for end-to-end learning for autonomous driving [1–5] are developed
mostly for the real vehicles, where the machine learning model used for inference is deployed on the
high-performance computer, which is usually located in the trunk of the vehicle, or those solutions
use very deep neural networks that are computationally expensive (e.g., using ResNet50 architecture
in) [3]. However, our idea was to develop a significantly smaller solution, a light deep neural
network, with similar performance during autonomous driving as known solutions, but using a
smaller computational cost that will enable deployment on an embedded platform. This lighter
solution will be used for robot-cars, embedded automotive platforms able to carry the goods or
perform some similar tasks among relatively known trajectories.

Figure 2. Block diagram of an end-to-end autonomous driving system.

Nowadays the machine learning applications have been increasingly deployed to embedded
devices, mobile phones, and the Internet of Things (IoT) solutions. Deployment of machine
learning solutions to embedded hardware platforms leads to new developments in two directions:
development of novel hardware platforms able to process data needed for machine learning inference,
and development of novel light machine learning architectures and model implementations suitable
for low-performing hardware.

The known solutions for end-to-end learning for autonomous driving [1–5] are developed
mostly for the real vehicles, where the machine learning model used for inference is deployed on the
high-performance computer, which is usually located in the trunk of the vehicle, or those solutions
use very deep neural networks that are computationally expensive (e.g., using ResNet50 architecture
in) [3]. However, our idea was to develop a significantly smaller solution, a light deep neural
network, with similar performance during autonomous driving as known solutions, but using a smaller
computational cost that will enable deployment on an embedded platform. This lighter solution will be
used for robot-cars, embedded automotive platforms able to carry the goods or perform some similar
tasks among relatively known trajectories.

Sensors 2019, 19, 2064 3 of 26

In this paper, we present a novel deep neural network developed for the purpose of end-to-end
learning for autonomous driving, called J-Net, which is designed for embedded automotive platforms.
In addition to this, for the purpose of objective evaluation of J-Net, we discuss results of our
re-implementations of PilotNet [1,2] and AlexNet [6]. AlexNet is originally developed for object
classification, but after our modifications, the new AlexNet-like model is suitable for autonomous
driving. Firstly, the novel deep neural network architecture J-Net is developed, the model is trained
and used for inference during autonomous driving. Secondly, we have compared architectures of three
network architectures, J-Net, PitotNet, and AlexNet, and discuss computational complexity. This is done
from the reason to have an objective assessment of our network architecture. Next, the implemented
models have been trained with the same dataset that we collected. The data collection and inference
are done in the self-driving car simulator designed in Unity environment by Udacity, Inc. [7].
Finally, the trained models have been used for the real-time autonomous driving in a simulator
environment. The results of autonomous driving using each of these three deep neural network
models have been presented and compared. Results of the autonomous driving are given as video
recordings of the autonomous driving in a representative track in a simulator environment, in addition
to the qualitative and quantitative performance evaluation of autonomous driving parameters
during inference.

The results show that while the complexity and size of novel network are smaller in comparison
with other models, the J-Net maintained the performance, achieving similar efficiency in autonomous
driving. Aiming for implementation on the embedded automotive platform amplifies the importance
of a computationally light solution for the DNN used for autonomous driving, since embedded
systems may suffer from hardware limitations for onboard computers that are not capable of running
state-of-the-art deep learning models.

In the next section, we will present the related work. The autonomous driving system used for
data collection and autonomous driving is described in section III. Dataset and data collection strategy
are given in section IV. Proposed approach, architecture, and implementation details of J-Net are given
in section V. The implementation of models, comparison of network architectures and parameters,
and the training strategy for all three solutions are presented in section VI. Results and discussion of
the implementation of all three neural networks and inference during autonomous driving are given
in section VII. The conclusion is given in the last section.

2. Related Work

Deep learning is a machine learning paradigm, a part of a broader family of machine learning
methods based on learning data representations [8–11]. Representations in one layer of a deep
neural network are expressed in terms of other, simpler representations from previous layers of the
deep neural network. The core gradient of deep neural networks are convolutional networks [12].
Convolutional neural networks (CNN) are a specialized kind of neural network for processing data
that has a known grid-like topology. CNNs combine three architectural ideas: local representative
fields, shared weights, and spatial or temporal sub-sampling, which leads to some degree of shift, scale,
and distortion invariance. Convolutional neural networks are designed to process data with multiple
arrays (e.g., color image, language, audio spectrogram, and video), and benefit from the properties of
such signals: local connections, shared weights, pooling, and the use of many layers. For that reason,
CNNs are most commonly applied to analyzing visual imagery.

Deep learning for computer vision has significant usage in various commercial and industrial
systems and products, as automotive, security and surveillance, augmented reality, smart home
applications, retail automation, healthcare, and the game industry; Figure 3. Convolutional neural
networks were some of the first deep models to perform well and were some of the first networks
to solve important commercial applications. One of the first examples of convolutional neural
network practical application was in the 1990s by research group at AT&T, Inc. that uses CNN for
optical character recognition and reading checks [13]. Later, several optical character recognition

Sensors 2019, 19, 2064 4 of 26

and handwriting recognition solutions were developed based on convolutional neural networks [14],
while the newest applications of CNNs for computer vision are endless [15–18].Sensors 2018, 18, x FOR PEER REVIEW 4 of 27

Figure 3. General deep learning development flow. Training—once the convolutional neural network
model is developed it is trained with the appropriate dataset. Inference—the trained model is
deployed at the end product and used for inference with real-time input data.

Significant contribution to the development of convolution neural networks and deep learning
architectures is given by ImageNet Large Scale Visual Recognition Challenge [19]. Over several years,
the architectures that won this competition represent the state-of-the-art of neural networks and deep
learning, becoming a building block and inspiration for new solutions. Some of the most known
architectures are AlexNet designed by the SuperVision group from University of Toronto [6]; VGG-
16 model designed by VGG (Visual Geometry Group) from University of Oxford [20]; GoogLeNet
designed by researches from Google, Inc. [21] that introduced inception modules; Residual Neural
Network (ResNet) designed by researchers from Microsoft Research [22], with the depth of even 152
layers; and ReNet designed by researches from Politecnico di Milano and University of Montreal [23].
Some of the novel breakthroughs in deep learning are automated machine learning [24], training
deep networks with synthetic data [25], video-to-video synthesis [26], playing the game of Go [27,28],
and end-to-end learning [29–31].

The first successful attempts of the development of autonomous vehicles started in the 1950s.
The first fully autonomous vehicles were developed in 1984 [32,33], and in 1987 [34]. Significant
breakthrough in the field of autonomous vehicles is done during the Defense Advanced Research
Projects Agency’s (DARPA) challenge, Grand Challenge events in 2004 and 2005 [35,36], and Urban
Challenge in 2007 [37], where it was demonstrated that machines could independently perform the
complex human task of driving.

Although there are the prototypes of autonomous vehicles currently tested on the regular streets,
some of the challenges for the autonomous driving are not completely solved yet. Current challenges
in autonomous vehicles development are sensor fusion [38–41], higher-level planning decisions [42–
46], an end-to-end learning for autonomous driving [1–5,47–49], reinforcement learning for
autonomous driving [5,50–53], and human machine interaction [54,55]. A systematic comparison of
deep learning architectures used for autonomous vehicles is given in [56], a short overview of sensors
and sensor fusion in autonomous vehicles is presented in [57].

The aim of our work was to achieve an end-to-end learning using only camera images as an
input. Although there are many sensors used for autonomous vehicles, such as lidar, radar, sonar, a
global positioning system, an inertial measurement unit, and wheel odometry, the camera is an
indispensable sensor in autonomous driving, which enables an autonomous vehicle to visualize its
surroundings. Cameras are very efficient at the classification of texture interpretation, widely
available, and more affordable than other sensors used for detection, such as radar or lidar. The
limitation of the camera is the computational power needed for processing the data.

In this paper, we present a novel network for simplified solution of an end-to-end learning for
autonomous driving. The input in our autonomous driving system is only the camera image, the raw
pixel. Output is steering angle prediction. The aim is to achieve the computationally light model that

Figure 3. General deep learning development flow. Training—once the convolutional neural network
model is developed it is trained with the appropriate dataset. Inference—the trained model is deployed
at the end product and used for inference with real-time input data.

Significant contribution to the development of convolution neural networks and deep learning
architectures is given by ImageNet Large Scale Visual Recognition Challenge [19]. Over several
years, the architectures that won this competition represent the state-of-the-art of neural networks
and deep learning, becoming a building block and inspiration for new solutions. Some of the most
known architectures are AlexNet designed by the SuperVision group from University of Toronto [6];
VGG-16 model designed by VGG (Visual Geometry Group) from University of Oxford [20]; GoogLeNet
designed by researches from Google, Inc. [21] that introduced inception modules; Residual Neural
Network (ResNet) designed by researchers from Microsoft Research [22], with the depth of even 152
layers; and ReNet designed by researches from Politecnico di Milano and University of Montreal [23].
Some of the novel breakthroughs in deep learning are automated machine learning [24], training
deep networks with synthetic data [25], video-to-video synthesis [26], playing the game of Go [27,28],
and end-to-end learning [29–31].

The first successful attempts of the development of autonomous vehicles started in the 1950s.
The first fully autonomous vehicles were developed in 1984 [32,33], and in 1987 [34]. Significant
breakthrough in the field of autonomous vehicles is done during the Defense Advanced Research
Projects Agency’s (DARPA) challenge, Grand Challenge events in 2004 and 2005 [35,36], and Urban
Challenge in 2007 [37], where it was demonstrated that machines could independently perform the
complex human task of driving.

Although there are the prototypes of autonomous vehicles currently tested on the regular streets,
some of the challenges for the autonomous driving are not completely solved yet. Current challenges in
autonomous vehicles development are sensor fusion [38–41], higher-level planning decisions [42–46],
an end-to-end learning for autonomous driving [1–5,47–49], reinforcement learning for autonomous
driving [5,50–53], and human machine interaction [54,55]. A systematic comparison of deep learning
architectures used for autonomous vehicles is given in [56], a short overview of sensors and sensor
fusion in autonomous vehicles is presented in [57].

The aim of our work was to achieve an end-to-end learning using only camera images as an input.
Although there are many sensors used for autonomous vehicles, such as lidar, radar, sonar, a global
positioning system, an inertial measurement unit, and wheel odometry, the camera is an indispensable
sensor in autonomous driving, which enables an autonomous vehicle to visualize its surroundings.
Cameras are very efficient at the classification of texture interpretation, widely available, and more

Sensors 2019, 19, 2064 5 of 26

affordable than other sensors used for detection, such as radar or lidar. The limitation of the camera is
the computational power needed for processing the data.

In this paper, we present a novel network for simplified solution of an end-to-end learning for
autonomous driving. The input in our autonomous driving system is only the camera image, the raw
pixel. Output is steering angle prediction. The aim is to achieve the computationally light model
that can be deployed to an embedded automotive platform for real-time inference. Developing a
non-expensive machine learning solution in terms of computational power and memory resources is
not easy to achieve [58–62]. The techniques that enable efficient processing of deep neural networks
to improve energy efficiency and throughput without sacrificing application accuracy or increasing
hardware cost are critical to the wide deployment of deep neural networks in artificial intelligence
systems [62].

The goal of machine learning algorithms is to solve the problem they are addressing with the highest
possible accuracy. It often leads to very complex and deep neural networks that are computationally
demanding [60,61]. This is especially the case for deep learning for computer vision-based applications.
For example, some of the well-known models that use a large number of layers in network architecture
are VGGNet (16 to 19 layers) [20], GoogLeNet (22-layerd inception architecture) [21], ResNet
(152 layers) [22], and similar network architectures based on those. Finally, the progress in convolutional
neural networks development and applications, and experimentation with more complex architectures
are a consequence of two factors, having a large amount of data and improved computational efficiency.

However, application on real-time embedded platforms with limited computational power and
memory spaces seeks for a different approach [62]. Since the execution of DNN depends heavily on
the weights, also called model parameters, the solution for deep neural network architecture suitable
for applications on embedded platforms is the smaller model that needs to communicate less data [58].
This is challenging to achieve, especially if the application is computer vision and that has, as an
input, a high-quality image. The reduction of the neural network depth and number of parameters
often leads to accuracy degradation. Hence, by developing deep neural networks for computer
vision for embedded platforms we are looking for a solution that will be good enough for both an
acceptable accuracy and the possibility for inference on hardware platforms with limited capabilities.
Therefore, our goal is to develop the right deep neural network architecture that can achieve acceptable
accuracy, the successful autonomous driving in a representative track, but which operates in real-time
within power and energy limitations of its target embedded automotive platform.

In order to achieve this, the approach we took was not to reduce the parameters of some of
the well-known neural networks that can be used for autonomous driving, but to start from scratch,
developing a network architecture layer by layer, until we found the satisfying solution. The general
workflow to find an appropriate model size is to start with relatively few layers and parameters, and to
increase the size of the layers or add new layers until returns diminish with regard to validation loss.

In summary, the contributions of the approach proposed in this paper are:

1. We modified the convolutional neural network for image classification, AlexNet, and used the
new AlexNet-like model for end-to-end learning for autonomous driving.

2. We proposed a novel deep neural network J-Net that, despite having a light architecture
in comparison with AlexNet and PilotNet, is able to successfully perform autonomous
driving. This recommends the J-Net model for deployment on low-performing embedded
automotive platforms.

3. We have demonstrated the suitability of a new proposed network J-Net for autonomous driving
for embedded automotive platforms by doing the performance evaluation of autonomous driving
in simulated environment, where the J-Net shows the best performance in terms of latency and
frame rate, among three implemented solutions.

Sensors 2019, 19, 2064 6 of 26

3. Autonomous Driving System

In our approach, we used end-to-end learning for an autonomous driving system. Input in our
autonomous driving system was the image, raw pixels, and the output was the control of the vehicle,
the steering angle. The end-to-end learning was applied whereby the network will learn how to control
a vehicle only based on an input signal from the camera during real-time inference, Figure 4.Sensors 2018, 18, x FOR PEER REVIEW 6 of 27

Figure 4. Real-time autonomous driving—the image acquired from the central camera is fed to the
trained deep neural network (DNN) model and the output of this model is the steering angle
prediction that controls the vehicle.

Firstly, in order to collect the data that would be used for training the end-to-end DNN model,
a human driver was driving the vehicle and simultaneously recording the images and steering
measurements. If the simulator environment for autonomous driving was used, the vehicle was
driven in manual (training) mode by a human driver using a keyboard, mouse, or joystick, and the
dataset was automatically collected. Data acquired during manual driving mode were camera images
and the steering angle values per each frame. The images were used as the feature set, and the steering
measurements as the label set. The speed of the vehicle was fixed due to simplicity. Data collected
using this approach were used for training the neural network that will learn to drive based only on
the input data, without any further human interaction. This technique is also known as behavior
cloning. Secondly, the deep neural network for autonomous driving was trained on this dataset to
predict the steering angle. Finally, the trained model was used for inference, a real-time autonomous
driving in the same simulator environment. The metrics of successful driving on the representative
track was that the vehicle remains on the track at all times during autonomous driving. A block
diagram of the autonomous driving framework that we used is presented in Figure 5.

Figure 5. Block diagram of the autonomous driving framework.

Figure 4. Real-time autonomous driving—the image acquired from the central camera is fed to the
trained deep neural network (DNN) model and the output of this model is the steering angle prediction
that controls the vehicle.

Firstly, in order to collect the data that would be used for training the end-to-end DNN model,
a human driver was driving the vehicle and simultaneously recording the images and steering
measurements. If the simulator environment for autonomous driving was used, the vehicle was driven
in manual (training) mode by a human driver using a keyboard, mouse, or joystick, and the dataset
was automatically collected. Data acquired during manual driving mode were camera images and
the steering angle values per each frame. The images were used as the feature set, and the steering
measurements as the label set. The speed of the vehicle was fixed due to simplicity. Data collected
using this approach were used for training the neural network that will learn to drive based only on the
input data, without any further human interaction. This technique is also known as behavior cloning.
Secondly, the deep neural network for autonomous driving was trained on this dataset to predict the
steering angle. Finally, the trained model was used for inference, a real-time autonomous driving in
the same simulator environment. The metrics of successful driving on the representative track was
that the vehicle remains on the track at all times during autonomous driving. A block diagram of the
autonomous driving framework that we used is presented in Figure 5.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 27

Figure 4. Real-time autonomous driving—the image acquired from the central camera is fed to the
trained deep neural network (DNN) model and the output of this model is the steering angle
prediction that controls the vehicle.

Firstly, in order to collect the data that would be used for training the end-to-end DNN model,
a human driver was driving the vehicle and simultaneously recording the images and steering
measurements. If the simulator environment for autonomous driving was used, the vehicle was
driven in manual (training) mode by a human driver using a keyboard, mouse, or joystick, and the
dataset was automatically collected. Data acquired during manual driving mode were camera images
and the steering angle values per each frame. The images were used as the feature set, and the steering
measurements as the label set. The speed of the vehicle was fixed due to simplicity. Data collected
using this approach were used for training the neural network that will learn to drive based only on
the input data, without any further human interaction. This technique is also known as behavior
cloning. Secondly, the deep neural network for autonomous driving was trained on this dataset to
predict the steering angle. Finally, the trained model was used for inference, a real-time autonomous
driving in the same simulator environment. The metrics of successful driving on the representative
track was that the vehicle remains on the track at all times during autonomous driving. A block
diagram of the autonomous driving framework that we used is presented in Figure 5.

Figure 5. Block diagram of the autonomous driving framework. Figure 5. Block diagram of the autonomous driving framework.

Sensors 2019, 19, 2064 7 of 26

Simulator Environment

The platform used for data collection and inference, evaluation of successful autonomous driving
was a self-driving car simulator [7]. The self-driving car simulator is built in the Unity game
development environment. Top view of the representative track used for autonomous driving is
presented in Figure 6.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 27

Simulator Environment

The platform used for data collection and inference, evaluation of successful autonomous
driving was a self-driving car simulator [7]. The self-driving car simulator is built in the Unity game
development environment. Top view of the representative track used for autonomous driving is
presented in Figure 6.

Figure 6. Top view of the scene in Unity editor for the self-driving car simulator [7].

The representative track for autonomous driving was used for data collection. While the car was
driving in manual mode, the images from the cameras mounted on top of the car were recorded
together with the steering angle for that frame, Figure 7. The data from the all three cameras mounted
on top of the vehicle were recorded and stored together with the information about steering angle for
the same frame. The same representative track was used for driving in the autonomous driving mode
where the decision about steering angle was made by a real-time image from the camera mounted
on the vehicle.

Figure 7. The vehicle in the simulator on the representative track, with three cameras on top of the
vehicle. In right bottom corner is the view from the central camera at this particular moment.

Different features of the representative track present challenges for training an end-to-end
autonomously driving model. For example, the model has to learn how to handle sharp turns,
different textures, and different borders of the road. The most challenging parts of the representative
track for autonomous driving were three right angle curves right after the bridge, as can be seen in

Figure 6. Top view of the scene in Unity editor for the self-driving car simulator [7].

The representative track for autonomous driving was used for data collection. While the car
was driving in manual mode, the images from the cameras mounted on top of the car were recorded
together with the steering angle for that frame, Figure 7. The data from the all three cameras mounted
on top of the vehicle were recorded and stored together with the information about steering angle for
the same frame. The same representative track was used for driving in the autonomous driving mode
where the decision about steering angle was made by a real-time image from the camera mounted on
the vehicle.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 27

Simulator Environment

The platform used for data collection and inference, evaluation of successful autonomous
driving was a self-driving car simulator [7]. The self-driving car simulator is built in the Unity game
development environment. Top view of the representative track used for autonomous driving is
presented in Figure 6.

Figure 6. Top view of the scene in Unity editor for the self-driving car simulator [7].

The representative track for autonomous driving was used for data collection. While the car was
driving in manual mode, the images from the cameras mounted on top of the car were recorded
together with the steering angle for that frame, Figure 7. The data from the all three cameras mounted
on top of the vehicle were recorded and stored together with the information about steering angle for
the same frame. The same representative track was used for driving in the autonomous driving mode
where the decision about steering angle was made by a real-time image from the camera mounted
on the vehicle.

Figure 7. The vehicle in the simulator on the representative track, with three cameras on top of the
vehicle. In right bottom corner is the view from the central camera at this particular moment.

Different features of the representative track present challenges for training an end-to-end
autonomously driving model. For example, the model has to learn how to handle sharp turns,
different textures, and different borders of the road. The most challenging parts of the representative
track for autonomous driving were three right angle curves right after the bridge, as can be seen in

Figure 7. The vehicle in the simulator on the representative track, with three cameras on top of the
vehicle. In right bottom corner is the view from the central camera at this particular moment.

Different features of the representative track present challenges for training an end-to-end
autonomously driving model. For example, the model has to learn how to handle sharp turns, different
textures, and different borders of the road. The most challenging parts of the representative track for
autonomous driving were three right angle curves right after the bridge, as can be seen in Figure 6.

Sensors 2019, 19, 2064 8 of 26

The track is defined with a red and white stripe, a shoulder, or just the dirt as a border between
track and rest of the simulator environment. Examples of images recorded with the central camera in
different frames, which present different road characteristics, are presented in Figure 8. The part of
the track defended with a red and white stripe is presented in Figure 8a. Different texture of the road
can be seen in Figure 8b, that presents the bridge on the lake. On the bridge, the road is tiled with
bricks, while on the other track parts it is mostly the paved road. Moreover, the border of this part
of the track is a low wall. The parts of the track defined with dirt (at one side) and the parts defined
with shoulders are presented in Figures 8c and 8d, respectively. These different features of the road in
a simulator environment aids better generalization of the model that led to successful autonomous
driving in different scenarios.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 27

Figure 6. The track is defined with a red and white stripe, a shoulder, or just the dirt as a border
between track and rest of the simulator environment. Examples of images recorded with the central
camera in different frames, which present different road characteristics, are presented in Figure 8.
The part of the track defended with a red and white stripe is presented in Figure 8a. Different texture
of the road can be seen in Figure 8b, that presents the bridge on the lake. On the bridge, the road is
tiled with bricks, while on the other track parts it is mostly the paved road. Moreover, the border of
this part of the track is a low wall. The parts of the track defined with dirt (at one side) and the parts
defined with shoulders are presented in Figure 8c and Figure 8d, respectively. These different
features of the road in a simulator environment aids better generalization of the model that led to
successful autonomous driving in different scenarios.

(a) (b) (c) (d)

Figure 8. Input data captured in different frames using the central camera. During the representative
track, the different road characteristics and the borders are presented. The four main track borders
and road characteristics are: (a) red and white stripe—mostly sharp curves; (b) a small wall—the
bridge with different road texture; (c) red and white stripe on one side and dirt on the other side—
curves; (d) shoulders—mostly straight road.

4. Dataset

4.1. Data Collection

Data collection was done while the vehicle was driving in manual mode on the representative
track. Image data were acquired from the three cameras mounted on the vehicle in the simulator
environment, as shown in Figure 7. At the end of the manual ride, the images were stored together
with the table containing information about image titles and steering angle values per each recorded
frame. An example of images recorded by all the three cameras in one frame is presented in Figure 9.
Three cameras were used for training purpose. During the data collection, in each frame, the images
from three cameras were captured with the same steering measurement value. The slight difference
in the field of view per each central, left, and right camera leads to a better generalization of the
model.

(a) (b) (c)

Figure 9. Example of data collection taken simultaneously using the three cameras mounted on the
vehicle: (a) left; (b) center; (c) right camera. This is an example of images captured in the very first
frame.

In order to have good quality samples, that will enable the model to learn the right features, the
vehicle should be driven in the manual mode the same way we expect it to autonomously drive
during inference. During the data collection, the aim was that the vehicle was driven in the center of
the road. Special attention was given during driving in the right-angle curves. It was very important
that our model learnt how to behave in the curves.

4.2. Data Augmentation

Figure 8. Input data captured in different frames using the central camera. During the representative
track, the different road characteristics and the borders are presented. The four main track borders and
road characteristics are: (a) red and white stripe—mostly sharp curves; (b) a small wall—the bridge
with different road texture; (c) red and white stripe on one side and dirt on the other side—curves;
(d) shoulders—mostly straight road.

4. Dataset

4.1. Data Collection

Data collection was done while the vehicle was driving in manual mode on the representative
track. Image data were acquired from the three cameras mounted on the vehicle in the simulator
environment, as shown in Figure 7. At the end of the manual ride, the images were stored together
with the table containing information about image titles and steering angle values per each recorded
frame. An example of images recorded by all the three cameras in one frame is presented in Figure 9.
Three cameras were used for training purpose. During the data collection, in each frame, the images
from three cameras were captured with the same steering measurement value. The slight difference in
the field of view per each central, left, and right camera leads to a better generalization of the model.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 27

Figure 6. The track is defined with a red and white stripe, a shoulder, or just the dirt as a border
between track and rest of the simulator environment. Examples of images recorded with the central
camera in different frames, which present different road characteristics, are presented in Figure 8.
The part of the track defended with a red and white stripe is presented in Figure 8a. Different texture
of the road can be seen in Figure 8b, that presents the bridge on the lake. On the bridge, the road is
tiled with bricks, while on the other track parts it is mostly the paved road. Moreover, the border of
this part of the track is a low wall. The parts of the track defined with dirt (at one side) and the parts
defined with shoulders are presented in Figure 8c and Figure 8d, respectively. These different
features of the road in a simulator environment aids better generalization of the model that led to
successful autonomous driving in different scenarios.

(a) (b) (c) (d)

Figure 8. Input data captured in different frames using the central camera. During the representative
track, the different road characteristics and the borders are presented. The four main track borders
and road characteristics are: (a) red and white stripe—mostly sharp curves; (b) a small wall—the
bridge with different road texture; (c) red and white stripe on one side and dirt on the other side—
curves; (d) shoulders—mostly straight road.

4. Dataset

4.1. Data Collection

Data collection was done while the vehicle was driving in manual mode on the representative
track. Image data were acquired from the three cameras mounted on the vehicle in the simulator
environment, as shown in Figure 7. At the end of the manual ride, the images were stored together
with the table containing information about image titles and steering angle values per each recorded
frame. An example of images recorded by all the three cameras in one frame is presented in Figure 9.
Three cameras were used for training purpose. During the data collection, in each frame, the images
from three cameras were captured with the same steering measurement value. The slight difference
in the field of view per each central, left, and right camera leads to a better generalization of the
model.

(a) (b) (c)

Figure 9. Example of data collection taken simultaneously using the three cameras mounted on the
vehicle: (a) left; (b) center; (c) right camera. This is an example of images captured in the very first
frame.

In order to have good quality samples, that will enable the model to learn the right features, the
vehicle should be driven in the manual mode the same way we expect it to autonomously drive
during inference. During the data collection, the aim was that the vehicle was driven in the center of
the road. Special attention was given during driving in the right-angle curves. It was very important
that our model learnt how to behave in the curves.

4.2. Data Augmentation

Figure 9. Example of data collection taken simultaneously using the three cameras mounted on the
vehicle: (a) left; (b) center; (c) right camera. This is an example of images captured in the very first frame.

In order to have good quality samples, that will enable the model to learn the right features,
the vehicle should be driven in the manual mode the same way we expect it to autonomously drive
during inference. During the data collection, the aim was that the vehicle was driven in the center of
the road. Special attention was given during driving in the right-angle curves. It was very important
that our model learnt how to behave in the curves.

Sensors 2019, 19, 2064 9 of 26

4.2. Data Augmentation

For the data acquisition, several laps were recorded while driving in the manual mode, where the
data from three cameras were collected. Even after several laps, the collected dataset was relatively
small. Therefore, we applied data augmentation techniques. One of the most important features that
our neural network had to learn was the curves. A simple method to double the dataset size and put
the focus on curves was data augmentation, where the images were flipped in vertical access and the
steering angle was multiplied with −1.

In addition to doubling the number of training data, the data augmentation by flipping images
provided additional value to the final model. Since the predefined track is a closed loop, there are more
curves in one direction than in the other. In our case, there were more curves on the left. If we would
use only the collected data without data augmentation using flipping images, the model would learn
to steer on the left even if the ground truth for that frame would be to stay straight. Data augmentation
by mirroring images using a horizontal flip, and inverting the steering angles, provided balanced
datasets where the model was thought to steer both clockwise as well as counter-clockwise.

4.3. Dataset

The total number of acquired samples was 34,288 images with a resolution of 320 × 160 × 3.
Each recorded image was 320 pixels high, 160 pixels wide, and three channels deep—a color RGB
image. The average memory size of one recorded image was about 13.5 kB. Each image was paired
with the corresponding steering angle value that was normalized in range between −1 and 1. After
applying data augmentation, the total number of samples in our dataset was 68,576. The data was split
into training and validation categories, where 80% of data was chosen for training, 54,861 samples,
and 20% of the data for the validation, 13,715 samples; Table 1.

Table 1. Dataset.

Training Validation Total

Number of Samples 54,861 13,715 68,576

Percentage of Total Dataset 80% 20% 100%

Testing was done in real-time during inference. Real-time acquired images from the central
camera were continuously sent to the trained machine learning model that was used for the control of
the vehicle steering angle. Evaluation of the successful model was done by observating if the vehicle
was able to drive autonomously during the entire predefined track. If the vehicle was off of the road,
it was considered as unsuccessful autonomous driving.

4.4. Data Preprocessing

For training the deep neural network, images acquired from all three cameras were used—central,
left, and right; Figure 9. Using three cameras for gathering data for training deep neural network
for autonomous drive was inspired by [1]. All of these images captured a similar scene but from
slightly different positions. Advantages of using three cameras instead of one central camera are three
times more data, and better performance for steering back to the center scenario when the vehicle
starts drifting off to the side. The steering angle was paired with three images from a particular frame
corresponding to the central camera, and the images from the left and right cameras had a field of
view shifted on the left or right side of the road, respectively, which means that the steering angle for
the left and right images is not correct. To overcome this, the correction factor for the steering angle
measurement had been added or subtracted from the left and right images, respectively. The correction
factor was one of the hyperparameters to be fine-tuned during the training process.

Cropping was used in order to remove the parts of the image that do not have valuable information
for autonomous driving, so as to remove the sky threes and hills on the top of image and the part of

Sensors 2019, 19, 2064 10 of 26

hood of the vehicle on the image bottom. An example of the image after cropping is presented on
Figure 10.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 27

the part of hood of the vehicle on the image bottom. An example of the image after cropping is
presented on Figure 10.

Figure 10. Input image after the cropping.

The images from dataset were normalized by dividing each pixel of the image by 255, which is
the maximum value of an image pixel. Once the image was normalized to a range between 0 and 1,
mean centering of the data was applied by subtracting 0.5 per each pixel:

 𝑥௡௢௥௠ = 𝑥255 − 0.5 (1)

that resulted with −0.5 < 𝑥௡௢௥௠< 0.5.

5. Proposed Approach

The leading idea during the design process was to achieve end-to-end autonomous driving
using the light model (computationally least expensive model), while simultaneously achieving the
best possible performance, in our case the autonomous driving on the representative path. The
computationally least expensive model is usually the model with the least number of parameters that
effects their memory footprint and computations. Therefore, the type and size of layers, kernel sizes,
and a number of feature maps have an influence on computational performance. The performance of
autonomous driving was examined in a self-driving car simulator.

The final architecture of the J-Net model was the result of experimenting with building blocks
of deep neural networks—different number of layers, kernel sizes for convolutional layers, number
of feature maps, placement of pooling layers, and, at the end, experimenting with the size and
number of the fully-connected layers. Block diagram of this experimental shallow CNN is presented
in Figure 11.

Figure 11. Architecture of experimental shallow deep neural network (DNN) with just one
convolutional layer with 32 feature maps, one flattened layer and, at the end, the fully connected
layer.

The first step in design of the novel solution was to use an extremely shallow CNN; we
performed a 2D convolution operation on the raw data of the input image:

 𝑆ሺ𝑖, 𝑗ሻ = ሺ𝐼 ∗ 𝐾ሻሺ𝑖, 𝑗ሻ = ෍ ෍ 𝐼ሺ𝑖 − 𝑚, 𝑗 − 𝑛ሻ𝐾ሺ𝑚, 𝑛ሻ௡௠ (2)

where the three-channel input image I had the dimensions 320 × 160, the used two-dimensional kernel
size was 2 × 2. The kernel was used to extract the patches of the image in convolutional operation.
The output of the convolution operation was S(i,j), the two-dimensional feature map tensor. The
weights, w, were shared across patches for a given layer in a CNN to detect the particular
representation regardless of where in the image it was located. The equation to calculate width and
height of the convolutional output layer is:

Figure 10. Input image after the cropping.

The images from dataset were normalized by dividing each pixel of the image by 255, which is
the maximum value of an image pixel. Once the image was normalized to a range between 0 and 1,
mean centering of the data was applied by subtracting 0.5 per each pixel:

xnorm =
x

255
− 0.5 (1)

that resulted with −0.5 < xnorm< 0.5.

5. Proposed Approach

The leading idea during the design process was to achieve end-to-end autonomous driving
using the light model (computationally least expensive model), while simultaneously achieving
the best possible performance, in our case the autonomous driving on the representative path.
The computationally least expensive model is usually the model with the least number of parameters
that effects their memory footprint and computations. Therefore, the type and size of layers, kernel
sizes, and a number of feature maps have an influence on computational performance. The performance
of autonomous driving was examined in a self-driving car simulator.

The final architecture of the J-Net model was the result of experimenting with building blocks of
deep neural networks—different number of layers, kernel sizes for convolutional layers, number of
feature maps, placement of pooling layers, and, at the end, experimenting with the size and number of
the fully-connected layers. Block diagram of this experimental shallow CNN is presented in Figure 11.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 27

the part of hood of the vehicle on the image bottom. An example of the image after cropping is
presented on Figure 10.

Figure 10. Input image after the cropping.

The images from dataset were normalized by dividing each pixel of the image by 255, which is
the maximum value of an image pixel. Once the image was normalized to a range between 0 and 1,
mean centering of the data was applied by subtracting 0.5 per each pixel:

 𝑥௡௢௥௠ = 𝑥255 − 0.5 (1)

that resulted with −0.5 < 𝑥௡௢௥௠< 0.5.

5. Proposed Approach

The leading idea during the design process was to achieve end-to-end autonomous driving
using the light model (computationally least expensive model), while simultaneously achieving the
best possible performance, in our case the autonomous driving on the representative path. The
computationally least expensive model is usually the model with the least number of parameters that
effects their memory footprint and computations. Therefore, the type and size of layers, kernel sizes,
and a number of feature maps have an influence on computational performance. The performance of
autonomous driving was examined in a self-driving car simulator.

The final architecture of the J-Net model was the result of experimenting with building blocks
of deep neural networks—different number of layers, kernel sizes for convolutional layers, number
of feature maps, placement of pooling layers, and, at the end, experimenting with the size and
number of the fully-connected layers. Block diagram of this experimental shallow CNN is presented
in Figure 11.

Figure 11. Architecture of experimental shallow deep neural network (DNN) with just one
convolutional layer with 32 feature maps, one flattened layer and, at the end, the fully connected
layer.

The first step in design of the novel solution was to use an extremely shallow CNN; we
performed a 2D convolution operation on the raw data of the input image:

 𝑆ሺ𝑖, 𝑗ሻ = ሺ𝐼 ∗ 𝐾ሻሺ𝑖, 𝑗ሻ = ෍ ෍ 𝐼ሺ𝑖 − 𝑚, 𝑗 − 𝑛ሻ𝐾ሺ𝑚, 𝑛ሻ௡௠ (2)

where the three-channel input image I had the dimensions 320 × 160, the used two-dimensional kernel
size was 2 × 2. The kernel was used to extract the patches of the image in convolutional operation.
The output of the convolution operation was S(i,j), the two-dimensional feature map tensor. The
weights, w, were shared across patches for a given layer in a CNN to detect the particular
representation regardless of where in the image it was located. The equation to calculate width and
height of the convolutional output layer is:

Figure 11. Architecture of experimental shallow deep neural network (DNN) with just one convolutional
layer with 32 feature maps, one flattened layer and, at the end, the fully connected layer.

The first step in design of the novel solution was to use an extremely shallow CNN; we performed
a 2D convolution operation on the raw data of the input image:

S(i, j) = (I ∗K)(i, j) =
∑

m

∑
n

I(i−m, j− n)K(m, n) (2)

where the three-channel input image I had the dimensions 320 × 160, the used two-dimensional
kernel size was 2 × 2. The kernel was used to extract the patches of the image in convolutional
operation. The output of the convolution operation was S(i,j), the two-dimensional feature map
tensor. The weights, w, were shared across patches for a given layer in a CNN to detect the particular

Sensors 2019, 19, 2064 11 of 26

representation regardless of where in the image it was located. The equation to calculate width and
height of the convolutional output layer is:

Wout =
W−F+2P

S + 1
Hout =

H−F+2P
S + 1

(3)

where W and H are width and height of input layer, F is filter (kernel) size, S is stride, P is padding,
and K is number of filters. In our first experiment, input image was 320 × 160, F = 2, stride is 1, and we
did not use padding, P = 0. This led to the size of output layers: Wout = 319, and Hout = 159. Output
depth was equal to the number of filters; Dout = 16 in this case. Output volume after convolutional
operation is:

Wout ∗Hout ∗Dout (4)

which was 811,536. After convolution, the ReLU activation function was applied:

ReLU(x) = max(0, x). (5)

ReLU activation function is the most commonly used activation in hidden layers of DNN. The main
advantage of ReLU over other activation functions, such as sigmoid or tanh, is that with ReLU there is
no problem with gradient vanishing [59].

This convolution was followed with the flattened layer, where the two-dimensional feature
map was converted into a single dimension vector. The flattened layer did not result with the new
trainable parameters, since the conversion of nodes from the previous layer into a single dimension.
Finally, at the end, when we had spatial features of an image as a result of convolution, we applied
fully-connected layer where the all nodes from the flattened layer were combined into the single output,
which directly predicted a steering angle values. Since there is single output node from the network,
this is a regression network.

The model was trained with the dataset previously collected, using mean squared error (MSE)
loose function and Adam optimizer, as described in Section 6.2. The results during real-time inference,
as expected, was not good, the car was not able to maintain course on the road. However, qualitative
performance evaluation showed that the model still learned some useful features. As it can be seen
from the video of autonomous driving in the simulator environment [63], the model learned to follow
the line, so the vehicle was driving by the edge of the lake, following the line between the ground and
the water. This little experiment showed that the chosen direction was appropriate, but the model
needed more features to be extracted in order to have successful autonomous driving.

As it can be seen from the first experimental results, even though the network we used was very
shallow, with only three layers, the number of nodes and weights and the trainable parameters was
quite high. The reason for this is that we used the entire input image for convolution, which produced a
high number of nodes in the output layer, and we did not use any operation for reduction of parameter
numbers, like the pooling operation. Insights from this experiment were valuable for the next phase of
development of the final solution for our light deep neural network for autonomous driving:

1. Do not use the entire input image size. Parts of the image as the sky or the lower part of the
image was not relevant for the autonomous driving. What is relevant is the road, the curves,
and the boundaries of the road, like a red stripe, shoulder, dust, bridge.

2. Do perform data normalization in order to have the same range of values for each of the inputs to
the model. This can guarantee stable convergence of weight and biases.

3. Use the pooling operation in order to lower the number of network nodes in the next layer,
and, consequently, the number of trainable parameters. A pooling layer is generally used to
decrease the size of the output and to prevent overfitting.

4. Use more convolutional layers, since convolutions are responsible for feature extractions. The first
experiment showed that the convolutional layer can extract some features needed for autonomous

Sensors 2019, 19, 2064 12 of 26

driving (e.g., one feature is a line to be followed by the autonomous vehicle), but one convolutional
layer was not good enough for our aim, more feature maps are needed.

The J-Net Architecture

Introducing more hidden layers to a deep neural network helps with parameters efficiency.
It is likely to get much more performance with pure parameters by going deeper rather than wider.
In addition to this, deep neural networks applied to images are very efficient, since images tend to
have a hierarchical structure that deep models naturally capture. The lower layers of deep neural
networks capture simple features like lines or edges. Further layers extract more complicated features
like geometric shapes, and the last layers are extracting objects. Since the aim of our work was to drive
a vehicle in a representative track, the features needed to be extracted were not objects, rather they
were the simple features or geometric shapes. For that reason, for our final model, we have chosen
three convolutional layers followed with one flattened layer and two fully connected layers, as will be
discussed in more detail in the further text.

For the reason of better features extraction, we have chosen three convolutional layers in
order to extend extracted features; Equation (2). We chose three convolutional layers with 16, 32,
and 64 feature maps, respectfully; Figure 12. On the input to the first convolution the size was
320 × 65 × 3, after normalization and cropping of the raw image, then we applied the kernel size of
5 × 5 with 16 feature maps. Based on Equations (3) and (4), the total number of trainable parameters
after the first convolutional layer was 1216.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 27

Introducing more hidden layers to a deep neural network helps with parameters efficiency. It is
likely to get much more performance with pure parameters by going deeper rather than wider. In
addition to this, deep neural networks applied to images are very efficient, since images tend to have
a hierarchical structure that deep models naturally capture. The lower layers of deep neural networks
capture simple features like lines or edges. Further layers extract more complicated features like
geometric shapes, and the last layers are extracting objects. Since the aim of our work was to drive a
vehicle in a representative track, the features needed to be extracted were not objects, rather they
were the simple features or geometric shapes. For that reason, for our final model, we have chosen
three convolutional layers followed with one flattened layer and two fully connected layers, as will
be discussed in more detail in the further text.

For the reason of better features extraction, we have chosen three convolutional layers in order
to extend extracted features; Equation (2). We chose three convolutional layers with 16, 32, and 64
feature maps, respectfully; Figure 12. On the input to the first convolution the size was 320 × 65 × 3,
after normalization and cropping of the raw image, then we applied the kernel size of 5 × 5 with 16
feature maps. Based on Equations (3) and (4), the total number of trainable parameters after the first
convolutional layer was 1216.

Figure 12. Architecture of proposed end-to-end deep neural network, J-Net, used for autonomous
driving. The network has three convolutional layers with 16, 32, and 64 feature maps, one flattened
layer, and two fully-connected (dense) layers. Max pooling is placed after every convolutional layer.

Since we wanted to achieve a light solution, and convolution is a very expensive operation that
adds a significant number of the network nodes, and the weights assigned to each of those nodes,
downsampling was needed. One solution for this problem would be using striding during
convolution, to shift the filters by a few pixels each time and reduce the feature map size. However,
this downsampling of an image may cause the loss of some important features since it removes a lot
of information. The second solution on downsampling an image is the pooling operation. Instead of
skipping one in every two convolutions, we used a small stride in combination with all the
convolutions in the neighborhood and combined them. In order to reduce size of the deep neural
network layers, we applied the max pooling operation after each convolutional layer. In max pooling
layer, every point of the feature map is compared with a small neighborhood around that point and
the maximum of all the responses around it is computed:

 𝑦 = 𝑚𝑎𝑥 ሺ𝑋௜ሻ (6)
where 𝑋௜ is the value of one input point.

The first advantage of using max pooling is that this operation is parameter free, it does not add
new parameters. This lowers the possibility of having increased overfitting. Second, max pooling
often yields a more accurate model. On the other side, since the convolutions that went below run at
the lower stride, the model becomes more expensive to compute. Additionally, introducing a new
layer as pooling adds more hyperparameters to tune, such as the pooling region size and the pooling
stride. The pooling layer operates independently on every depth slice of the input and resizes it
spatially. In our model we chose MaxPooling with size 2 × 2 that downsamples every depth slice in
the input by 2, along both width and height, discarding 75% of the activations. The depth dimension

Figure 12. Architecture of proposed end-to-end deep neural network, J-Net, used for autonomous
driving. The network has three convolutional layers with 16, 32, and 64 feature maps, one flattened
layer, and two fully-connected (dense) layers. Max pooling is placed after every convolutional layer.

Since we wanted to achieve a light solution, and convolution is a very expensive operation
that adds a significant number of the network nodes, and the weights assigned to each of those
nodes, downsampling was needed. One solution for this problem would be using striding during
convolution, to shift the filters by a few pixels each time and reduce the feature map size. However,
this downsampling of an image may cause the loss of some important features since it removes a lot of
information. The second solution on downsampling an image is the pooling operation. Instead of
skipping one in every two convolutions, we used a small stride in combination with all the convolutions
in the neighborhood and combined them. In order to reduce size of the deep neural network layers,
we applied the max pooling operation after each convolutional layer. In max pooling layer, every point
of the feature map is compared with a small neighborhood around that point and the maximum of all
the responses around it is computed:

y = max(Xi) (6)

where Xi is the value of one input point.
The first advantage of using max pooling is that this operation is parameter free, it does not add

new parameters. This lowers the possibility of having increased overfitting. Second, max pooling often
yields a more accurate model. On the other side, since the convolutions that went below run at the

Sensors 2019, 19, 2064 13 of 26

lower stride, the model becomes more expensive to compute. Additionally, introducing a new layer as
pooling adds more hyperparameters to tune, such as the pooling region size and the pooling stride.
The pooling layer operates independently on every depth slice of the input and resizes it spatially.
In our model we chose MaxPooling with size 2 × 2 that downsamples every depth slice in the input by
2, along both width and height, discarding 75% of the activations. The depth dimension remained
unchanged. In this case, we reduced the number of trainable network parameters, while the feature
map was not degraded much.

After applying the MaxPooling layer after the first convolution, the input size of the second
convolutional layer was 158 × 30 × 16, and the second kernel size was 5 × 5 with 32 feature maps, which,
after calculating number of trainable parameters using Equations (3) and (4), led to 12,832 trainable
parameters for the second convolution. After this convolution layer, the same MaxPooling as after the
first convolution was applied. The third kernel size was 5 × 5 with 64 features map, which led to the
total number of trainable parameters of 18,496, after the third convolution.

The final solution for J-Net had three convolutional layers, each followed by the ReLU activation
function described in the previous subsection, followed with the MaxPooling layer size of 2 × 2.
Applying convolution and MaxPooling operations led to 32,544 trainable parameters after the last
convolutions. Since we were developing the representative learning network, those nodes had to be
connected to the one final node. After the last convolutional layer, the flattenedlayer was added to get
a one-dimensional vector of parameters. The flattened layer did not add new parameters, but, rather,
only rearranged the existing in one dimension. Finally, the last layers of the developed DNN were
two fully connected layers, the first with ten output nodes and the second with just one output node
for the steering angle prediction. The final number of trainable parameters for this architecture and for
the input size of 320 × 160 × 3 pixels was 150,965. The network architecture is presented in Figure 12.

6. Implementation

In order to make an objective performance evaluation of our network, we re-implemented three
neural network models: LeNet-5 [13], AlexNet [6], and PilotNet [1], with small modifications in order
to be able to aid end-to-end learning for autonomous driving. The idea was to have an objective
evaluation of our model, J-Net, in comparison with known network architectures. For that reason,
all implemented models were trained with the very same dataset we created, which is described in
Section 4, and tested in the simulator using the same conditions. Unfortunately, autonomous driving
using the LeNet-5 model was not successful, the vehicle was not able to remain on the track, so this
model was excluded from further examination. Inference using AlexNet and PilotNet was successful
in autonomous driving during the whole track.

As the J-Net architecture is described in previous chapter, here we will discuss implementation
details of AlexNet and PilotNet re-implementations. The network architecture comparison of J-Net
and AlexNet and PilotNet is shown in Figure 13.

6.1. Design Details for AlexNet and PilotNet Re-Implementations

In our work, the AlexNet architecture [6] was re-implemented and adapted for the purpose of
end-to-end learning for autonomous driving. In the original architecture of the AlexNet, there are two
parallel pipelines of processing. This is from the historical reasons, the original AlexNet was trained
using two graphics processing units (GPUs), and that is the reason why they split convolutions in two
parallel branches. Since we had enough hardware resources to train AlexNet using one GPU, in our
implementation of AlexNet we simplified the architecture and used one stream of convolutions, using
a combined number of filters proposed by the original solution. The other differences between the
original architecture and our implementation of that architecture was the size of the input information,
for AlexNet it was 224 × 224 pixels, for our case the input image was 320 × 160 pixels, and after
cropping, which was needed to dismiss unneeded information contained in edge pixels, the image size
that our implementations were dealing with was 320 × 65 pixels. Difference in input layers influenced

Sensors 2019, 19, 2064 14 of 26

that in our reimplementation of AlexNet, so that we omitted two pooling layers. The introduction of all
three pooling layers would significantly reduce the number of pixels available for the next convolutions,
and since we had a smaller input image in one dimension, there would not be enough pixels for all
convolutional layers with usage of original kernels. In order to simplify and modify the network for
our purposes, we omitted the first two pooling layers from the original network, and had one max
pooling layer after the forth convolutional layer, with 384 features, and before the last convolutional
layer, with 256 features.Sensors 2018, 18, x FOR PEER REVIEW 14 of 27

Figure 13. Comparison of deep neural network architectures that we implemented and used for end-
to-end autonomous driving: (a) AlexNet; (b) PilotNet; (c) J-Net.

6.1. Design Details for AlexNet and PilotNet Re-Implementations

In our work, the AlexNet architecture [6] was re-implemented and adapted for the purpose of
end-to-end learning for autonomous driving. In the original architecture of the AlexNet, there are
two parallel pipelines of processing. This is from the historical reasons, the original AlexNet was
trained using two graphics processing units (GPUs), and that is the reason why they split
convolutions in two parallel branches. Since we had enough hardware resources to train AlexNet
using one GPU, in our implementation of AlexNet we simplified the architecture and used one stream
of convolutions, using a combined number of filters proposed by the original solution. The other
differences between the original architecture and our implementation of that architecture was the
size of the input information, for AlexNet it was 224 × 224 pixels, for our case the input image was
320 × 160 pixels, and after cropping, which was needed to dismiss unneeded information contained
in edge pixels, the image size that our implementations were dealing with was 320 × 65 pixels.
Difference in input layers influenced that in our reimplementation of AlexNet, so that we omitted
two pooling layers. The introduction of all three pooling layers would significantly reduce the
number of pixels available for the next convolutions, and since we had a smaller input image in one
dimension, there would not be enough pixels for all convolutional layers with usage of original
kernels. In order to simplify and modify the network for our purposes, we omitted the first two
pooling layers from the original network, and had one max pooling layer after the forth convolutional
layer, with 384 features, and before the last convolutional layer, with 256 features.

Difference in input images, between original architecture and our re-implementation, influenced
the total number of parameters. In our case we had a lower number of trainable parameters than was
in the original architecture. The original AlexNet has over 63 million trainable parameters, while our
re-implementation of AlexNet had over 42 million trainable parameters. The last difference between
original architecture and our implementation of AlexNet is the last layer. In the original AlexNet
there were 1000 nodes as the output layer, since on ImageNet competition there was 1000 classes. In
our application, just one output node was needed: steering angle prediction for the vehicle control.

Figure 13. Comparison of deep neural network architectures that we implemented and used for
end-to-end autonomous driving: (a) AlexNet; (b) PilotNet; (c) J-Net.

Difference in input images, between original architecture and our re-implementation, influenced
the total number of parameters. In our case we had a lower number of trainable parameters than was
in the original architecture. The original AlexNet has over 63 million trainable parameters, while our
re-implementation of AlexNet had over 42 million trainable parameters. The last difference between
original architecture and our implementation of AlexNet is the last layer. In the original AlexNet there
were 1000 nodes as the output layer, since on ImageNet competition there was 1000 classes. In our
application, just one output node was needed: steering angle prediction for the vehicle control.

PilotNet, also called NVIDIA CNN that is designed by researchers from NVIDIA Corporation,
is the deep neural network for end-to-end autonomous driving, created with the motivation to
improve the DARPA Autonomous Vehicle (DAVE) system for autonomous driving [1,2]. PilotNet
has a normalization layer, followed with five convolutional layers, followed by four fully connected
layers. Difference between original PilotNet architecture and our PilotNet implementation is the
input of the network, which led to the slight difference is size of the layers and number of trainable
parameters. In the original PilotNet the input plane is 200 × 66 pixels, while in our case the input
was 320 × 160 pixels, and after cropping it was 320 × 65 pixels. Order of the remaining convolutional,
flattened, and fully-connected layers was similar, with the same numbers of features maps for the
convolutional layers. Since the size of the original input to the PilotNet was not the same as our input

Sensors 2019, 19, 2064 15 of 26

size, there was a difference in the number of trainable parameters. For example, the flattened layer,
after the fifth convolutional layer, in the original PilotNet architecture has 1164 neurons, while in our
implementation of PilotNet there were 2112 neurons. Except this, our re-implementation of PilotNet
was following the original model.

6.2. Training Strategy and Hyper-Parameter Tuning

The three architectures J-Net, AlexNet, and PilotNet were implemented in Python using
Keras [64], a high-level deep neural network library, which is written on top of the TensorFlow
library. We implemented and trained all networks from scratch. The platform used for training and
interfacing was the PC with a 12-core processor on 3.2 GHz and the NVIDIA graphics processing unit
GeForce GTX 1070-Ti with 8GB GDDR5 and 8Gbps memory type-speed.

During training, the left and right camera images have been feed to the model as if they were
coming from the center camera; Figure 14. Using three cameras tripled the data collected and helped
the model to learn how to steer if the car drifts off to the left or the right. Images from the central
camera were taken without charges, while for the images from the left and right cameras, the correction
parameter was applied to the steering angle measurements, as described in Section 4.4. After fine
tuning, we chose the correction factor 0.22 to be added or subtracted from the left and right images,
respectively. In addition to this, data preprocessing that was applied here included cropping images,
data normalization, and mean centering the data, as explained in Section 4.4. For normalization,
we used the Lambda layer from the Keras library.Sensors 2018, 18, x FOR PEER REVIEW 16 of 27

Figure 14. Training flowchart. Data collection is done in manual driving mode by acquiring images
from three cameras mounted on the vehicle: central, left, and right in parallel with recording the
steering angle paired with each image. During the training process, the correction factor has been
added to the left and right images.

During the network training, the Adam optimizer [65] was applied for all three models. Adam
optimization is one of the most effective optimization algorithms for training deep neural networks.
Empirical results demonstrate that Adam works well in practice and compares favorably to other
stochastic optimization methods. Loss values during the different epochs during training of all three
models is shown in Figure 14.

Since we were using a relatively small dataset, there was a possibility that overfitting will occur.
Therefore, the early stopping regularization method was applied. Developed models of J-Net,
AlexNet, and PilotNet deep neural networks were trained with a different number of epochs. In the
beginning, the models were trained with 30 epochs, Figure 15a. However, only for the AlexNet, this
number of epochs gave a good result; the loss for validation was decreasing during the same time as
a loss for the training. AlexNet showed good performance in autonomous driving, by completely
finishing the task of end-to-end autonomous diving in the simulator. On the other hand, training of
PilotNet and J-Net with 30 epochs showed overfitting, the validation loss started to increase while
the training loss continued to go lower. Using this number of epochs for training PilotNet and J-Net,
the vehicle was autonomously driving successfully at one part of the road, but after the car got into
the curve, the vehicle went off the road. In order to prevent overfitting, firstly, we tried the dropout
method, applied after the first dense layer in network architectures. However, this only partly solved
the problem since the vehicle was not able to drive the full path.

(a) (b)

Figure 14. Training flowchart. Data collection is done in manual driving mode by acquiring images
from three cameras mounted on the vehicle: central, left, and right in parallel with recording the
steering angle paired with each image. During the training process, the correction factor has been
added to the left and right images.

Each of the designed models were trained separately using the dataset previously collected.
For the loss function, the mean squared error was used to minimize the error between the steering
prediction and the ground through steering measurements. MSE was chosen since it is an appropriate
loss function for the regression networks [8–10]. MSE takes the average of the square of the difference
between the original values and the predicted values. The advantage of MSE is an easier gradient

Sensors 2019, 19, 2064 16 of 26

computation. Computation of square of the error leads to the effect of larger errors becoming more
pronounced then smaller errors, hence the model is focused more on the larger errors:

MeanSquaredError =
1
N

N∑
j=1

(
y j − ŷ j

)2
(7)

where the ŷ j is the vector denoting values of N number of predictions. Additionally, y j is a vector
representing N number of true values.

During the network training, the Adam optimizer [65] was applied for all three models. Adam
optimization is one of the most effective optimization algorithms for training deep neural networks.
Empirical results demonstrate that Adam works well in practice and compares favorably to other
stochastic optimization methods. Loss values during the different epochs during training of all three
models is shown in Figure 14.

Since we were using a relatively small dataset, there was a possibility that overfitting will occur.
Therefore, the early stopping regularization method was applied. Developed models of J-Net, AlexNet,
and PilotNet deep neural networks were trained with a different number of epochs. In the beginning,
the models were trained with 30 epochs, Figure 15a. However, only for the AlexNet, this number of
epochs gave a good result; the loss for validation was decreasing during the same time as a loss for
the training. AlexNet showed good performance in autonomous driving, by completely finishing
the task of end-to-end autonomous diving in the simulator. On the other hand, training of PilotNet
and J-Net with 30 epochs showed overfitting, the validation loss started to increase while the training
loss continued to go lower. Using this number of epochs for training PilotNet and J-Net, the vehicle
was autonomously driving successfully at one part of the road, but after the car got into the curve,
the vehicle went off the road. In order to prevent overfitting, firstly, we tried the dropout method,
applied after the first dense layer in network architectures. However, this only partly solved the
problem since the vehicle was not able to drive the full path.

Sensors 2018, 18, x FOR PEER REVIEW 16 of 27

Figure 14. Training flowchart. Data collection is done in manual driving mode by acquiring images
from three cameras mounted on the vehicle: central, left, and right in parallel with recording the
steering angle paired with each image. During the training process, the correction factor has been
added to the left and right images.

During the network training, the Adam optimizer [65] was applied for all three models. Adam
optimization is one of the most effective optimization algorithms for training deep neural networks.
Empirical results demonstrate that Adam works well in practice and compares favorably to other
stochastic optimization methods. Loss values during the different epochs during training of all three
models is shown in Figure 14.

Since we were using a relatively small dataset, there was a possibility that overfitting will occur.
Therefore, the early stopping regularization method was applied. Developed models of J-Net,
AlexNet, and PilotNet deep neural networks were trained with a different number of epochs. In the
beginning, the models were trained with 30 epochs, Figure 15a. However, only for the AlexNet, this
number of epochs gave a good result; the loss for validation was decreasing during the same time as
a loss for the training. AlexNet showed good performance in autonomous driving, by completely
finishing the task of end-to-end autonomous diving in the simulator. On the other hand, training of
PilotNet and J-Net with 30 epochs showed overfitting, the validation loss started to increase while
the training loss continued to go lower. Using this number of epochs for training PilotNet and J-Net,
the vehicle was autonomously driving successfully at one part of the road, but after the car got into
the curve, the vehicle went off the road. In order to prevent overfitting, firstly, we tried the dropout
method, applied after the first dense layer in network architectures. However, this only partly solved
the problem since the vehicle was not able to drive the full path.

(a) (b)

Figure 15. Model loss for training and validation for AlexNet, PilotNet (i.e., NVIDIA
CNN—Convolutional Neural Network by NVIDIA Corporation), and J-Net (a) for training in 30 epochs;
(b) for training in 6 epochs.

In the final solution, an early stopping regularization method was applied. As it was expected,
the early stopping provided smaller validation loss values for J-Net and PilotNet models, while the
validation loss value for the AlexNet remained on a similar level. Since the used dataset for training was
the same for all models, the difference in ratio between testing and validation loss per model trained
with a different number of epochs was directly related to the network architecture itself. Both J-Net
and PilotNet models had a smaller number of trainable parameters than AlexNet. Therefore, for the
same dataset size, it was more likely that overfitting will occur for those two models. Once the early

Sensors 2019, 19, 2064 17 of 26

stopping regularization method for overfitting was applied, the J-Net and PilotNet models had an
expected reaction, reduction of overfitting, and smaller validation loss; Figure 15b.

In case of PilotNet, in both cases—30 epochs and 6 epochs—it can be seen from Figure 15a,b that
there was a peak of validation loss in the fifth epoch, a notable difference between validation and
training loss that indicated the need to apply an early stopping method and to choose four epochs
for training the PilotNet. Validation of the model during the autonomous driving confirmed this
conclusion, showing that the PilotNet provided the best driving performance when it was trained
with four epochs. On the other side, the choice of six epochs for the J-Net model training was the
more empirical choice. For training the J-Net model, the experiments showed that the validation
loss was gained with a smaller number of epochs, but that number could vary between four and
10 epochs with similar results. We chose six epochs, which provided successful autonomous driving
during the validation of the model. All applied hyperparameter tuning techniques led to finalizing
the implementation and training of the networks and to the successful completion of the task of
autonomous driving in the representative track in a simulator environment.

The trained model was saved and used later for inference for autonomous driving. As it
was expected, based on the total number of trainable parameters described in the previous section,
the lightest model was J-Net with only 1.8 MB. The model that required the most memory space was
AlexNet with 509.5 MB, with is in correspondence with its number of trainable parameters of the
untrained network, over 44 million parameters. The trained PilotNet model had a 4.2 MB memory size.

7. Results and Discussion

The proposed deep neural network J-Net was compared with AlexNet and PilotNet, which
we re-implemented in order to conduct an objective performance evaluation of the novel design.
The models of all three network architectures were implemented, trained with the same dataset,
and trained models were used for inference in the simulator for autonomous driving. The results were
compared in terms of performance, successfully driving on the representative track, and in terms of
complexity of the network, a number of trainable parameters, and the size of the trained model.

7.1. Computational Complexity

The execution of the deep neural network models depends heavily on a set of static constants,
weights, also called model parameters. The network architecture itself, the connections between nodes,
directly determines the computational cost of the network. One of the main differences between
conventional neural networks and conventional artificial neural networks is that the connections
between the neurons are not fully connected. Hereby, the particular organization of the deep neural
network and the precise characterization of the computations in filter elements determines the
network complexity.

In order to have a quantified measure of the computational demand of each trained network,
the complexity of the network, the numbers of trainable parameters were compared. The depth
of the network, number of layers, and the types of the layers, convolutions, pooling, and density
uniquely determine the number of network parameters. This applies to a design model that is not
yet trained. In Table 2, the layers and the number of the trainable parameters of the implemented
neural networks are presented. As it can be seen from the table, AlexNet had 42,452,305 trainable
parameters, PilotNet had 328,219 of trainable parameters, while J-Net had only 150,965 trainable
parameters. The network introduced in this paper, J-Net, had about half the trainable parameters than
PilotNet, and about 280 times less than AlexNet. In addition to this, during the training, we calculated
a number of floating-point operations for each model that were, as expected, proportional to the
number of parameters: 42.45 million multiplication and the same number of addition operations
for the AlexNet, 347.82 thousand operations for multiplication and for the addition for the PilotNet,
and about 150.84 thousand operations for the multiplication and for the addition for the J-Net; Table 2.

Sensors 2019, 19, 2064 18 of 26

Table 2. Layers and number of trainable parameters for J-Net, PilotNet, and AlexNet.

Layers and Parameters AlexNet PilotNet J-Net

Convolutional 5 5 3

Flatten 1 1 1

Dense (fully-connected) 3 4 2

Total number of trainable parameters * 42,452,305 348,219 150,965

Operations Multiplication 42.45 m 347.82 k 150.84 k

Addition 42.45 m 347.82 k 150.84 k

* Total number of trainable parameters is calculated based on input image size. After lambda normalization and
cropping, the size of input to the first convolutional layer is 65 × 320 × 3.

Additionally, we compared the size of the trained models: The AlexNet model had a memory
size of 509.5 MB, PilotNet 4.2 MB, and J-Net only 1.8 MB; Table 3. All models were trained with the
same dataset, loss function, and optimizer. The number of epochs used for the training of each model
was different due to the differences in model overfitting, which is indicated by the ratio of training
and validation loss gained during the model training. While the network architecture itself, network’s
layers type, size, and connections between layers, directly influence the computational cost, the size
of the trained model has influence in the inference due to the memory restrictions of the embedded
hardware platforms.

Table 3. Size of the trained models: J-Net, PilotNet, and AlexNet.

AlexNet PilotNet J-Net

Number of epochs used for training 30 4 6

Size of the trained model 509.5 MB 4.2 MB 1.8 MB

The new network we proposed in this paper, J-Net, had about 150 thousand trainable parameters,
which was half of our implementation of PilotNet, that had about 350 thousand trainable parameters,
and J-Net model had 280 times less parameters than the reimplementation of AlexNet, that had over
41 million trainable parameters, which means that we succeeded to deliver the least computationally
demanding solution. The size of the J-Net trained model was four times smaller than the PilotNet
model and about 250 times smaller than the AlexNet model. The smaller size of the network and
the number of trainable parameters led to improvement of real-time performance in terms of latency
reduction, and to the downsizing of the need for interfacing hardware in terms of computational
power, cost, and space.

Based on these results, we can say that our proposed network had less deep architecture than the
other solutions we compared it with, a smaller number of trainable parameters, and, consequently,
was the smaller trained model. This recommends the designed network for deployment on embedded
automotive platforms.

7.2. Performance Evaluation during Inference—Autonomous Driving

The verification of successful autonomous driving was done in the simulator on the representative
track. During autonomous driving mode, the signal from the central camera mounted on the vehicle
was continuously acquired and sent as an input to the trained machine learning model, which resulted
with the control of the steering angle. Autonomous driving using all three models was recorded and
given in the videos in [66–68] for AlexNet, PilotNet, and J-Net, respectively. As can be seen from
the given videos, the J-Net fulfilled the requirement for autonomous driving in a predefined path,
where the vehicle remained on the road for the full duration of the ride. The measurement of the
performance was a successful drive on the representative track, the behavior that the vehicle does not

Sensors 2019, 19, 2064 19 of 26

get off the track during the ride, which implies that the better performing solution was the one where
the vehicle was in the middle of the track for the full duration of the ride. The performance of the
J-Net model was satisfactory. The qualitative performance evaluation of autonomous driving using
implemented networks is given in Table 4.

Table 4. Qualitative performance evaluation of autonomous driving using AlexNet, PilotNet, and J-Net.

Autonomous Driving AlexNet PilotNet J-Net

Autonomous driving on representative track Successful Successful Successful

Handling the curves Good Medium Medium/Good

Keeping to the trajectory center Good Medium Medium

Driving on different surface textures Good Good Good

One of the metrics for performance evaluation was observation of the vehicle behavior in curves,
Table 4 second row. Among those three solutions, AlexNet performed best during the autonomous
driving. Using AlexNet for autonomous driving, the vehicle was in the middle of the road most of the
time, while during autonomous driving using PilotNet and J-Net, the vehicle was almost always in the
middle of the road, but in some curves it came close to the edge. However, all three implementations
of the autonomous driving succeeded to drive the vehicle on the road at all times, and did not go off

the path.
In addition to observing autonomous driving on a representative track, the steering angle

predictions used for autonomous driving were evaluated. As can be seen in Figure 16, the steering
angle predictions for all three models were relatively similar. The graphical presentation of steering
angle predictions used for real-time inference is given for one full lap of autonomous driving on the
representative track. Positive and negative steering angle values represent the left and right angle
of rotation. Since the representative track used for driving during inference was the same, and since
the speed of the vehicle had been fixed due to simplicity, the steering angles in Figure 16 shows the
steering angle predictions in similar frames. Steering angle predictions for the J-Net and PilotNet
model were similar; however, the J-Net had a bit higher values, in both directions, left and right.
The AlexNet model resulted with the mostly smooth steering predictions in the majority of the ride.
However, in some points, it had extreme values, for example, at about 2500 frames there is a spike in
the left direction, while the other two models did not have that sharp turn for that part of the road.Sensors 2018, 18, x FOR PEER REVIEW 20 of 27

Figure 16. Steering angle predictions used for autonomous driving, presented as normalized absolute
values of steering angle in degrees. J-Net has a blue plot, PilotNet orange, and AlexNet green.

As another measure of autonomous driving performance, we measured the impact of
autonomous driving using each neural network on the trajectory. The relative deviation from the
center of the trajectory per one full lap of autonomous driving is presented in Figure 17. The driving
track characteristics may be seen as four main categories: a mostly straight part of the road rounded
with shoulders, curves defined with red and white stripe, bridge, and parts of the road defined
without any marks but with dust. As it can be seen from Figure 17, driving using all three models
had similar patterns. The models show the car driving mostly without oscillations in straight parts of
the road. However, in the curves, the deviation from the center of the trajectory was the biggest (e.g.,
after the bridge—the part of the diagram in Figure 17 marked as (c), there are three sharp curves—
Figure 17d,b, while the third curve was the most challenging). Additionally, Figure 17 shows that all
three networks had the deviations in this part, where AlexNet had the biggest deviation, and J-Net
performed better than the other models. On the other hand, J-Net had more oscillations during the
full lap, while AlexNet had the best performance, being closest to the center of the trajectory for most
of the ride.

Figure 16. Steering angle predictions used for autonomous driving, presented as normalized absolute
values of steering angle in degrees. J-Net has a blue plot, PilotNet orange, and AlexNet green.

Sensors 2019, 19, 2064 20 of 26

As another measure of autonomous driving performance, we measured the impact of autonomous
driving using each neural network on the trajectory. The relative deviation from the center of the
trajectory per one full lap of autonomous driving is presented in Figure 17. The driving track
characteristics may be seen as four main categories: a mostly straight part of the road rounded with
shoulders, curves defined with red and white stripe, bridge, and parts of the road defined without
any marks but with dust. As it can be seen from Figure 17, driving using all three models had similar
patterns. The models show the car driving mostly without oscillations in straight parts of the road.
However, in the curves, the deviation from the center of the trajectory was the biggest (e.g., after the
bridge—the part of the diagram in Figure 17 marked as (c), there are three sharp curves—Figure 17d,b,
while the third curve was the most challenging). Additionally, Figure 17 shows that all three networks
had the deviations in this part, where AlexNet had the biggest deviation, and J-Net performed better
than the other models. On the other hand, J-Net had more oscillations during the full lap, while
AlexNet had the best performance, being closest to the center of the trajectory for most of the ride.Sensors 2018, 18, x FOR PEER REVIEW 21 of 27

(a) (b) (c) (d)

Figure 17. Relative deviation from the center of the trajectory per one full lap of autonomous driving.
The four main characteristics of the trajectory are parts of the track defined with: (a) shoulders—
regular, mostly straight road; (b) red and white stripe—mostly sharp curves; (c) a small wall—the
bridge; (d) red and white stripe and dirt—a sharp curve.

Statistical analysis of autonomous driving is also presented through the histograms. This
analysis is significant for long term tests. In order to examine oscillations, the histogram of the relative
deviations from the center of the trajectory per one full lap of autonomous driving is presented in
Figure 18. Histogram of J-Net driving is presented in Figure 18a, where it was shown that the J-Net
has the smallest deviation in the curves, while the oscillations for the center of the trajectory were the
biggest. For the Pilot Net, Figure 18b, the oscillations were medium in comparison with using the two
other networks for autonomous driving, but this model had significant oscillations in curves, both
left and right, as it can be seen from Figure 18b, where for both directions sporadic occurrences had
relative deviation from the center of the trajectory at almost 100%. Histogram of the relative deviation
from the center of the trajectory shows that using AlexNet for autonomous driving, Figure 18c, had
the most stable driving experience, with the smallest oscillations from the center of the trajectory. On
the other hand, there was an occurrence of sporadic high deviation from the center of trajectory in
one curve direction. However, this deviation was within the allowed limits, the car did not come out
of the road, which was the criteria that we defined for successful autonomous driving.

Figure 17. Relative deviation from the center of the trajectory per one full lap of autonomous driving.
The four main characteristics of the trajectory are parts of the track defined with: (a) shoulders—regular,
mostly straight road; (b) red and white stripe—mostly sharp curves; (c) a small wall—the bridge;
(d) red and white stripe and dirt—a sharp curve.

Sensors 2019, 19, 2064 21 of 26

Statistical analysis of autonomous driving is also presented through the histograms. This analysis
is significant for long term tests. In order to examine oscillations, the histogram of the relative deviations
from the center of the trajectory per one full lap of autonomous driving is presented in Figure 18.
Histogram of J-Net driving is presented in Figure 18a, where it was shown that the J-Net has the
smallest deviation in the curves, while the oscillations for the center of the trajectory were the biggest.
For the Pilot Net, Figure 18b, the oscillations were medium in comparison with using the two other
networks for autonomous driving, but this model had significant oscillations in curves, both left and
right, as it can be seen from Figure 18b, where for both directions sporadic occurrences had relative
deviation from the center of the trajectory at almost 100%. Histogram of the relative deviation from the
center of the trajectory shows that using AlexNet for autonomous driving, Figure 18c, had the most
stable driving experience, with the smallest oscillations from the center of the trajectory. On the other
hand, there was an occurrence of sporadic high deviation from the center of trajectory in one curve
direction. However, this deviation was within the allowed limits, the car did not come out of the road,
which was the criteria that we defined for successful autonomous driving.Sensors 2018, 18, x FOR PEER REVIEW 22 of 27

Figure 18. Histograms of deviation from the center of the trajectory per one full lap of autonomous
driving.

Finally, all models performed well, successfully finishing the lap of autonomous driving with
no significant deviation from the center of the trajectory. Differences between autonomous driving
using different models were notable, but not large.

Based on the computational complexity analysis, it was expected that J-Net would have the least
latency and the highest frame rate among the three evaluated solutions. Quantitative performance
evaluation verified this claim, as can be seen from Table 5. This evaluation was done on the PC
platform explained in Section 6.2, which is a high-performance platform used for a simulator
environment. The J-Net was able to successfully finish the task of autonomous driving on the
representative track. As the track is a closed loop, we measured the number of successful consecutive
laps for ten laps in total. All three models were able to successfully drive during the measured time.
For the latency measurement, we calculated the time between two consecutive predictions. This
number varies during the whole lap of autonomous driving, so for the latency, the mean value was
used. The frames per second were calculated by counting the number of predictions per acquired
frames in one second.

(a)

(b)

(c)

Figure 18. Histograms of deviation from the center of the trajectory per one full lap of autonomous
driving. (a) J-Net; (b) Pilot Net; (c) AlexNet.

Finally, all models performed well, successfully finishing the lap of autonomous driving with no
significant deviation from the center of the trajectory. Differences between autonomous driving using
different models were notable, but not large.

Based on the computational complexity analysis, it was expected that J-Net would have the least
latency and the highest frame rate among the three evaluated solutions. Quantitative performance
evaluation verified this claim, as can be seen from Table 5. This evaluation was done on the PC platform
explained in Section 6.2, which is a high-performance platform used for a simulator environment.

Sensors 2019, 19, 2064 22 of 26

The J-Net was able to successfully finish the task of autonomous driving on the representative track.
As the track is a closed loop, we measured the number of successful consecutive laps for ten laps in
total. All three models were able to successfully drive during the measured time. For the latency
measurement, we calculated the time between two consecutive predictions. This number varies during
the whole lap of autonomous driving, so for the latency, the mean value was used. The frames per
second were calculated by counting the number of predictions per acquired frames in one second.

Table 5. Quantitative performance evaluation of autonomous driving using AlexNet, PilotNet, and
J-Net on a high-performance platform used for the simulator environment.

Autonomous Driving AlexNet PilotNet J-Net

Number of successful laps * 10 10 10

Latency 26.0 ms 24.1 ms 23.8 ms

Frames per second 37 fps 42 fps 44 fps

* The autonomous driving is tested on 10 consecutive laps.

Observing the framerate measurements, using the J-Net model for the real-time inference was 30%
faster than when using the AlexNet model on the high-performance platform used for the simulator
environment. However, if we were using a scalar processor for the inference, the major differences
would be expected (e.g., using J-Net over AlexNet would be 280 times faster). In the experiment where
the simulator environment was used, the inferencing platform was a high-capacity computer with
GPU that provided data parallelization. Hence, those results were for the particular application where
the GPU was used. Here, since the neural network architectures were more different in their surface
area than depth, the majority of operations were able to be done in parallel, so the difference in frame
rate was the consequence of the sequencing in the algorithm execution, which was proportional to the
network depth.

The faithful demonstration of J-Net performance advantages is platform dependent. If we go
to another extreme, when the operations are only done on scalar processors, it is expected that the
execution rates would be much different, that is, comparable to the network capacity, the number
of parameters. Real implementations of the J-Net model are intended for the embedded platforms,
in which the degree of parallelization will be set so that the performance requirements in frame rate
are met.

8. Conclusions

The development of high-performing computers able to perform training and inference for
machine learning models leads to great advancement in novel approaches to known problems.
However, the industrial application often requires machine learning solutions that can be deployed on
computationally inexpensive and smaller memory demanding embedded platforms that have low
cost and size. Deploying machine learning models on a low-performing hardware platform implies
usage of an inexpensive models in terms of computational power and memory resources, which can be
achieved by careful design of the neural network model architecture. In parallel with advancement in
hardware development, in the development of novel processor units targeted for machine learning and,
more precisely, deep learning applications, there is a trend in the design of light network architectures
that can meet strict hardware requirements.

The deep neural network presented in this paper is one possible solution for end-to-end learning
for autonomous driving. The aim of our work was to achieve successful autonomous driving using a
light deep neural network that is suitable for inference and deployment on an embedded automotive
platform. Having this in mind, we designed and implemented J-Net, a deep convolutional neural
network able to successfully perform the task of autonomous driving in a representative track, with the
computational cost of using this network being the smallest among other known solutions that have

Sensors 2019, 19, 2064 23 of 26

been also explored in this paper. The main contribution of proposed work is the novel solution that
is computationally effective due to relatively light architecture. The complexity of an algorithm is
determined by the number of operations in one iteration, and our deep neural network has shown
similar qualitative results gained with much fewer operations in comparison with other neural networks
explored in this paper.

The possible limitation of J-Net could be the insufficient generalization for the more complex-use
case scenarios. In addition to this, our model is trained using raw camera images and steering angle
measurements per each frame, while the speed of the vehicle is taken as a constant due to the simplicity.
This causes the limitation during autonomous driving regarding the speed since the constant speed is
implied. However, it would be possible to train the J-Net to predict the speed of the vehicle. A similar
approach to predicting steering angle can be used, which may lead to making simultaneous predictions
for steering angle and speed based on the input camera image in real-time.

The future work will include the deployment of the presented network in an embedded automotive
platform with limited hardware resources, low processor power, and low memory size. The possible
final use cases for the presented end-to-end learning network are robot-cars in warehouses and delivery
vehicles. Usage of light DNN solution, like the one presented in this paper, enables deployment on
embedded automotive platforms with low-power hardware, low cost, and size, which is important for
practical industrial applications.

Author Contributions: Conceptualization, J.K. and N.J.; methodology, J.K. and N.J.; software, J.K.; validation,
J.K., N.J. and V.D.; writing—original draft preparation, J.K.; writing—review and editing, N.J. and V.D.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.; Monfort, M.; Muller, U.;
Zhang, J.; et al. End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316.

2. Bojarski, M.; Yeres, P.; Choromanska, A.; Choromanski, K.; Firner, B.; Jackel, L.; Muller, U. Explaining how a
deep neural network trained with end-to-end learning steers a car. arXiv 2017, arXiv:1704.07911.

3. Mehta, A.; Adithya, S.; Anbumani, S. Learning end-to-end autonomous driving using guided auxiliary
supervision. arXiv 2018, arXiv:1808.10393.

4. Chen, Y.; Wang, J.; Li, J.; Lu, C.; Luo, Z.; Xue, H.; Wang, C. LiDAR-Video Driving Dataset: Learning Driving
Policies Effectively. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5870–5878.

5. Ramezani Dooraki, A.; Lee, D.-J. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent
Capable of Autonomous Exploration in Unknown Environments. Sensors 2018, 18, 3575. [CrossRef]

6. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q.,
Eds.; Neural Information Processing Systems Foundation, Inc.: Vancouver, BC, Canada, 2012; pp. 1097–1105.

7. Udacity, Inc. Self-Driving Car Simulator. Available online: https://github.com/udacity/self-driving-car-sim
(accessed on 5 November 2018).

8. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2017; Available
online: https://www.deeplearningbook.org (accessed on 5 November 2018).

9. Aggarwal, C.C. Neural Networks and Deep Learning; Springer International Publishing: Cham, Switzerland,
2018; ISBN 978-3-319-94462-3.

10. Chollet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2018;
ISBN 9781617294433.

11. Sutton, R.S.; Barto, A.G. Reinforcement Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018; p. 552,
ISBN 9780262039246.

12. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation
applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

http://dx.doi.org/10.3390/s18103575
https://github.com/udacity/self-driving-car-sim
https://www.deeplearningbook.org
http://dx.doi.org/10.1162/neco.1989.1.4.541

Sensors 2019, 19, 2064 24 of 26

13. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition.
Available online: http://yann.lecun.org/exdb/publis/pdf/lecun-01a.pdf (accessed on 1 May 2019).

14. Simard, D.; Steinkraus, P.Y.; Platt, J.C. Best practices for convolutional neural networks applied to visual
document analysis. In Proceedings of the Seventh International Conference on Document Analysis and
Recognition, Edinburgh, UK, 6 August 2003; pp. 958–963.

15. Shin, H.; Roth, H.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R. Deep Convolutional
Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer
Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [CrossRef] [PubMed]

16. Pathak, D.; Krähenbühl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context Encoders: Feature Learning by
Inpainting. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.

17. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Li, F.-F. Large-Scale Video Classification with
Convolutional Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1725–1732.

18. Chi, J.; Kim, H.-C. Prediction of Arctic Sea Ice Concentration Using a Fully Data Driven Deep Neural Network.
Remote Sens. 2017, 9, 1305.

19. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Berg, A.C. Imagenet large scale visual
recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2004, arXiv:1409.1556.

21. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

23. Visin, F.; Kastner, K.; Cho, K.; Matteucci, M.; Courville, A.; Bengio, Y. Renet: A recurrent neural network
based alternative to convolutional networks. arXiv 2015, arXiv:1505.00393.

24. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image
Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.

25. Acuna, D.; Ling, H.; Kar, A.; Fidler, S. Efficient Interactive Annotation of Segmentation Datasets with
Polygon-RNN++. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 859–868.

26. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Liu, G.; Tao, A.; Kautz, J.; Catanzaro, B. Video-to-video synthesis.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal,
QC, Canada, 3–8 December 2018; pp. 1152–1164.

27. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, J.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A. Mastering the game of go without human knowledge. Nature 2017, 550, 354. [CrossRef]

28. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lillicrap, T. Mastering chess and
shogi by self-play with a general reinforcement learning algorithm. arXiv 2017, arXiv:1712.01815.

29. Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Case, C.; Chen, J. Deep speech 2:
End-to-end speech recognition in English and Mandarin. In Proceedings of the 33rd International Conference
on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 173–182.

30. Chen, Z.; Zhang, T.; Ouyang, C. End-to-End Airplane Detection Using Transfer Learning in Remote Sensing
Images. Remote Sens. 2018, 10, 139. [CrossRef]

31. Yao, Y.; Wang, H.; Li, S.; Liu, Z.; Gui, G.; Dan, Y.; Hu, J. End-To-End Convolutional Neural Network Model
for Gear Fault Diagnosis Based on Sound Signals. Appl. Sci. 2018, 8, 1584.

32. Kanade, T.; Thorpe, C.; Whittaker, W. Autonomous land vehicle project at CMU. In Proceedings of the 1986
ACM fourteenth annual conference on Computer science, Cincinnati, OH, USA, 4–6 February 1986.

33. Wallace, R. First results in robot road-following. In Proceedings of the 9th international joint conference on
Artificial intelligence, Los Angeles, CA, USA, 18–23 August 1985.

34. Dickmanns, E.D.; Zapp, A. Autonomous High Speed Road Vehicle Guidance by Computer Vision.
IFAC Proc. Vol. 1987, 20, 221–226. [CrossRef]

http://yann.lecun.org/exdb/publis/pdf/lecun-01a.pdf
http://dx.doi.org/10.1109/TMI.2016.2528162
http://www.ncbi.nlm.nih.gov/pubmed/26886976
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.3390/rs10010139
http://dx.doi.org/10.1016/S1474-6670(17)55320-3

Sensors 2019, 19, 2064 25 of 26

35. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.;
Hoffmann, G.; et al. Stanley: The Robot That Won the DARPA Grand Challenge. J. Field Robot. 2006, 23,
661–692. [CrossRef]

36. Montemerlo, M.; Thrun, S.; Dahlkamp, H.; Stavens, D.; Strohband, S. Winning the DARPA grand challenge
with an AI robot. In Proceedings of the 21st national conference on Artificial intelligence, Boston, MA, USA,
16–20 July 2006; pp. 982–987.

37. Buehler, M.; Iagnemma, K.; Singh, S. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic.
In Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2009.

38. Xu, D.; Jain, A.; Anguelov, D. PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018; pp. 244–253.

39. Oh, S.; Kang, H. Fast Occupancy Grid Filtering Using Grid Cell Clusters from LIDAR and Stereo Vision
Sensor Data. IEEE Sens. J. 2016, 16, 7258–7266. [CrossRef]

40. Chavez-Garcia, R.O.; Aycard, O. Multiple Sensor Fusion and Classification for Moving Object Detection and
Tracking. IEEE Trans. Intell. Transp. Syst. 2016, 17, 525–534. [CrossRef]

41. Cho, H.; Seo, Y.; Vijaya Kumar, B.V.K.; Rajkumar, R.R. A multi-sensor fusion system for moving object
detection and tracking in urban driving environments. In Proceedings of the 2014 IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1836–1843.

42. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.-C. Path Smoothing Techniques in Robot
Navigation: State-of-the-Art, Current and Future Challenges. Sensors 2018, 18, 3170. [CrossRef] [PubMed]

43. Wei, K.; Ren, B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle
Avoidance Based on an Improved RRT Algorithm. Sensors 2018, 18, 571. [CrossRef] [PubMed]

44. Cai, W.; Zhang, M.; Zheng, Y.R. Task Assignment and Path Planning for Multiple Autonomous Underwater
Vehicles Using 3D Dubins Curves. Sensors 2017, 17, 1607. [CrossRef]

45. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques
for Self-Driving Urban Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

46. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated
Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145. [CrossRef]

47. Sung, Y.; Jin, Y.; Kwak, J.; Lee, S.-G.; Cho, K. Advanced Camera Image Cropping Approach for CNN-Based
End-to-End Controls on Sustainable Computing. Sustainability 2018, 10, 816. [CrossRef]

48. Kocić, J.; Jovičić, N.; Drndarević, V. Driver behavioral cloning using deep learning. In Proceedings of the 17th
International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Republika Srpska, 21–23 March
2018; pp. 1–5.

49. Navarro, A.; Joerdening, J.; Khalil, R.; Brown, A.; Asher, Z. Development of an Autonomous Vehicle Control
Strategy Using a Single Camera and Deep Neural Networks; SAE Technical Paper No. 2018-01-0035; SAE:
Warrendale, PA, USA, 2018.

50. Riedmiller, M.; Montemerlo, M.; Dahlkamp, H. Learning to Drive a Real Car in 20 Minutes. In Proceedings
of the 2007 Frontiers in the Convergence of Bioscience and Information Technologies, Jeju City, Korea,
11–13 October 2007; pp. 645–650.

51. Wu, K.; Abolfazli Esfahani, M.; Yuan, S.; Wang, H. Learn to Steer through Deep Reinforcement Learning.
Sensors 2018, 18, 3650. [CrossRef]

52. Shalev-Shwartz, S.; Shammah, S.; Shashua, A. Safe, multi-agent, reinforcement learning for autonomous
driving. arXiv 2016, arXiv:1610.03295.

53. Fridman, L.; Jenik, B.; Terwilliger, J. Deeptraffic: Driving fast through dense traffic with deep reinforcement
learning. arXiv 2018, arXiv:1801.02805.

54. Lee, K.W.; Yoon, H.S.; Song, J.M.; Park, K.R. Convolutional Neural Network-Based Classification of Driver’s
Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Sensors 2018, 18, 957.
[CrossRef] [PubMed]

55. Fridman, L. Human-Centered Autonomous Vehicle Systems: Principles of Effective Shared Autonomy. arXiv
2018, arXiv:1810.01835.

56. Teti, M.; Barenholtz, E.; Martin, S.; Hahn, W. A Systematic Comparison of Deep Learning Architectures in an
Autonomous Vehicle. arXiv 2018, arXiv:1803.09386.

http://dx.doi.org/10.1002/rob.20147
http://dx.doi.org/10.1109/JSEN.2016.2598600
http://dx.doi.org/10.1109/TITS.2015.2479925
http://dx.doi.org/10.3390/s18093170
http://www.ncbi.nlm.nih.gov/pubmed/30235894
http://dx.doi.org/10.3390/s18020571
http://www.ncbi.nlm.nih.gov/pubmed/29438320
http://dx.doi.org/10.3390/s17071607
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.3390/su10030816
http://dx.doi.org/10.3390/s18113650
http://dx.doi.org/10.3390/s18040957
http://www.ncbi.nlm.nih.gov/pubmed/29570678

Sensors 2019, 19, 2064 26 of 26

57. Kocić, J.; Jovičić, N.; Drndarević, V. Sensors and Sensor Fusion in Autonomous Vehicles. In Proceedings of
the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 420–425.

58. Iandola, F.; Keutzer, K. Keynote: small neural nets are beautiful: enabling embedded systems with
small deep-neural-network architectures. In Proceedings of the 2017 International Conference on
Hardware/Software Codesign and System Synthesis, Seoul, Korea, 15–20 October 2017; pp. 1–10.

59. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010.

60. Orponen, P. Computational complexity of neural networks: A survey. Nord. J. Comput. 1994, 1994, 94–110.
61. Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; Sohl Dickstein, J. On the expressive power of deep neural

networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia,
6–11 August 2017; pp. 2847–2854.

62. Sze, V.; Chen, Y.; Yang, T.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey.
Proc. IEEE 2017, 105, 2295–2329. [CrossRef]

63. Kocić, J. Model Shallow. Available online: https://www.youtube.com/watch?v=w4UUz-gI7yw (accessed on
22 February 2019).

64. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing: Birmingham, UK, 2017.
65. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International

Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
66. Kocić, J. Model AlexNet. Available online: https://www.youtube.com/watch?v=ICxRQfm5a_4 (accessed on

5 November 2018).
67. Kocić, J. Model PilotNet (NVIDIA Net). Available online: https://www.youtube.com/watch?v=YPZRKh4xbm4

(accessed on 5 November 2018).
68. Kocić, J. Model J-Net. Available online: https://www.youtube.com/watch?v=BB-YljzloWI (accessed on

5 November 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JPROC.2017.2761740
https://www.youtube.com/watch?v=w4UUz-gI7yw
https://www.youtube.com/watch?v=ICxRQfm5a_4
https://www.youtube.com/watch?v=YPZRKh4xbm4
https://www.youtube.com/watch?v=BB-YljzloWI
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Autonomous Driving System
	Dataset
	Data Collection
	Data Augmentation
	Dataset
	Data Preprocessing

	Proposed Approach
	Implementation
	Design Details for AlexNet and PilotNet Re-Implementations
	Training Strategy and Hyper-Parameter Tuning

	Results and Discussion
	Computational Complexity
	Performance Evaluation during Inference—Autonomous Driving

	Conclusions
	References

