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Abstract: Hyperspectral data processing technique has gained increasing interests in the field
of chemical and biomedical analysis. However, appropriate approaches to fusing features of
hyperspectral data-cube are still lacking. In this paper, a new data fusion approach was proposed and
applied to discriminate Rhizoma Atractylodis Macrocephalae (RAM) slices from different geographical
origins using hyperspectral imaging. Spectral and image features were extracted from hyperspectral
data in visible and near-infrared (VNIR, 435–1042 nm) and short-wave infrared (SWIR, 898–1751 nm)
ranges, respectively. Effective wavelengths were extracted from pre-processed spectral data by
successive projection algorithm (SPA). Meanwhile, gray-level co-occurrence matrix (GLCM) and
gray-level run-length matrix (GLRLM) were employed to extract textural variables. The fusion of
spectrum-image in VNIR and SWIR ranges (VNIR-SWIR-FuSI) was implemented to integrate those
features on three fusion dimensions, i.e., VNIR and SWIR fusion, spectrum and image fusion, and all
data fusion. Based on data fusion, partial least squares-discriminant analysis (PLS-DA) and support
vector machine (SVM) were utilized to establish calibration models. The results demonstrated that
VNIR-SWIR-FuSI could achieve the best accuracies on both full bands (97.3%) and SPA bands (93.2%).
In particular, VNIR-SWIR-FuSI on SPA bands achieved a classification accuracy of 93.2% with only
23 bands, which was significantly better than those based on spectra (80.9%) or images (79.7%).
Thus it is more rapid and possible for industry applications. The current study demonstrated that
hyperspectral imaging technique with data fusion holds the potential for rapid and nondestructive
sorting of traditional Chinese medicines (TCMs).

Keywords: hyperspectral imaging; data fusion; traditional Chinese medicine; Rhizoma Atractylodis
Macrocephalae; geographical origin classification

1. Introduction

Hyperspectral imaging (HSI) is an analytical tool merging conventional imaging and spectroscopy
to simultaneously provide physical features and internal chemical composition of the detected object [1].
Conventional multispectral imaging, such as RGB imaging, obtains information in certain distinct
wavelengths. In contrast, HSI collects data over a continuous spectral range in hundreds of wavelengths.
The hyperspectral data-cube has a shape X × Y × λ, with X (width) and Y (height) representing two
coordinates of spatial images and λ representing spectral wavelengths [2]. Although HSI provides
both spectral and image information, most classification applications use only the former. Recently,
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several discrimination methods based on spectrum and image integration have been reported, such as
land cover analysis in remote sensing [3,4], variety distinction of rice [5] and corn seed [6], geographical
origin identification of Jatropha curcas L. seeds [7]. However, these studies focus on HSI systems within
the visible and near-infrared (VNIR, about 400–1000 nm) range, or the short-wave near-infrared (SWIR,
about 900–1700 nm) range. Moreover, there have been few HSI studies on comparing the classification
performance of spectrum and image fusion with VNIR and SWIR range combined, especially in the
realm of traditional Chinese medicine (TCM) due to lack of appropriate methodology [8–10].

Rhizoma Atractylodis Macrocephalae (RAM) is one of the most commonly used herbal medicines
in China. It has shown various pharmacological activities including immunomodulatory [11],
anti-oxidant [12], anti-inflammatory [13], and gastro-protective [14] effects. It is worth noting that the
contents of bioactive compounds of RAM are affected by geographical origins [15–17], which may
impair therapeutic consistency. Therefore, identification of geographical origins is highly critical to
ensure quality and clinical efficacy of RAM. RAM is mainly cultivated in Zhejiang, Anhui, and Hebei
Province of China [18], and those produced in Zhejiang are considered to be of better quality. As RAM
slices from different origins can be mingled in commodity circulation, an effective and reliable approach
is urgently needed to trace the origins.

Traditionally, the origins of TCMs are identified based on physical characteristics in macroscopical
and microcosmic morphology, as well as color, odor, taste, weight, and density. These methods
are direct, but subjective and inaccurate. Modern analytical methods including high-performance
liquid chromatography (HPLC) [19], gas chromatography-mass spectrometry (GC-MS) [20], and liquid
chromatography-mass spectrometry (LC-MS) [21], have also been increasingly employed for origin
identification using marker compounds quantification and/or fingerprinting analysis. Although these
methods are reliable and accurate, the analytical cost is high, and the analytical procedure is generally
labor-intensive with inevitable sample consumption. More recently, several rapid spectroscopic
technologies, such as near-infrared spectroscopy (NIRS), have been gradually introduced into the
classification of TCM origins [22,23]. However, most of these methods still need powdered samples for
detection, which leads to the loss of external spatial information, as well as sample destruction.

HSI system in this study employs both VNIR and SWIR ranges. Hyperspectral data-cube in each
range contains both spectral and image information. Therefore, it is feasible to integrate data from
spectral and image in different ranges, thus improving the classification performance while reducing
the environmental sensitivity (temperature, humidity) of spectroscopy to some extent.

The main purpose of this paper was to develop an effective and reliable HSI method to classify
geographical origins of RAM slices. Firstly, hyperspectral data of the samples were acquired in both
VNIR (435–1042 nm) and SWIR (898–1751 nm) ranges. The regions of interest (ROIs) in both ranges
were identified respectively. Then, the spectral features corresponding to ROIs were pre-processed
by five pre-processing algorithms. Next, successive projections algorithm (SPA) was applied to gain
effective wavelengths. In the same ROIs, texture features were extracted by gray-level co-occurrence
matrix (GLCM) and gray-level run-length matrix (GLRLM). After all features were acquired, the fusion
of spectrum-image in VNIR and SWIR ranges (VNIR-SWIR-FuSI) was performed, in three different
ways: (1) VNIR and SWIR fusion, (2) spectrum and image fusion, and (3) all data fusion. Finally,
Partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) were used as
classification models. The enhancement of VNIR-SWIR-FuSI was discussed in two parts: full bands,
SPA bands. In addition, classification maps were used to visualize different RAM slice origins based
on data fusion.

2. Materials and Methods

2.1. Hyperspectral Imaging System

An HSI system combining VNIR (435–1042 nm) and SWIR (898–1751 nm) spectral ranges in
reflection mode was used in the study (Figure 1). The system consisted of an imaging module, two 150W
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halogen lamps (3900ER, Illumination Technologies Inc., Boxborough, MA, USA), a horizontal mobile
platform (ETH14, TOYO, Foshan, China), and a default image acquisition software (Spectral Image,
Isuzu Optics, Xinzhu, China). The imaging module comprised a visible spectral camera (Zyla-4.2-Plus,
Andor, Abingdon, Oxon, UK), an adjustable visible focal lens (OLE23, Schneider, Luemerson, Paris,
France), a near-infrared spectral camera (OWL-640-mini, Raptor, Belfast, Northern Ireland, UK),
an adjustable near-infrared focal lens (OLES23, Specim, Oulu, Finland), and an imaging spectrograph
(ImSpector-V10E, Specim, Oulu, Finland).
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Figure 1. The hyperspectral imaging (HSI) system in reflection mode (VNIR: the visible and short-wave
near-infrared, SWIR: long-wave near-infrared).

The operation parameters in the VNIR range were set as follows: speed of the mobile platform
13 mm/s, distance between the lens and the sample 25 cm, exposure time 17 ms. Hyperspectral
data-cubes were obtained with 512 pixels wide, 1200 pixels long, and 237 wavelengths ranging from
435 to 1042 nm at intervals of 2.60 nm. The pixel size was 0.16 mm × 0.16 mm. The parameters in the
SWIR range were set as follows: speed of the mobile platform 4.5 mm/s, distance between the lens
and the sample 25 cm, exposure time 42 ms. Hyperspectral data-cubes were obtained with 640 pixels
wide, 1500 pixels long, and 512 wavelengths ranging from 898 nm to 1751 nm at intervals of 1.67 nm.
The pixel size was 0.23 mm × 0.23 mm. In fact, for either of two ranges, the length of the distance that
mobile platform moved varied among samples even if the start and end point were fixed. Therefore,
the lengths of data-cubes were padding to 1200 and 1500 for VNIR and SWIR ranges, respectively,
for consistency.

2.2. Sample Preparation

Rhizoma Atractylodis macrocephalaes (the rhizoma of Atractylodes macrocephala Koidz, also known
as white atractylodes) from Anhui, of China were provided by Jiuzhou Fangyuan (Hefei, China).
All the RAMs were fully washed, cut into slices and sun-dried. The samples were placed in plastic
bags and stored at room temperature before use. There were 16 batches, six batches and six batches
from Anhui, Zhejiang, and Hebei respectively. A total of 224 RAM slices (8 RAM slices for every batch)
were randomly picked. Samples from each geographical origin were randomly divided into a training
set and testing set by a ratio of 2:1. Finally, 149 RAM slices and 75 RAM slices were used for calibration
and prediction, respectively. Figure 2 presents the flow chart of the experimental procedure.
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Figure 2. Flow chart of the experimental procedure used to classify different geographical origins of RAM
slices. (ROI: region of interest, SPA: successive projections algorithm, GLCM: gray-level co-occurrence
matrix, GLRLM: gray-level run-length matrix analysis, PLS-DA: partial least square-discriminant
analysis, SVM: support vector machine).
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2.3. Image Preprocessing

2.3.1. Image Calibration

The acquired reflectance images were affected by an illumination source, the dark current of
the charge coupled device (CCD) cameras, as well as the differences in the physical configuration of
the hyperspectral imaging system. Therefore, the images were calibrated with the white and dark
reference images as follows:

Rc =
Rraw−Rdark

Rwhite−Rdark
(1)

where Rc is the calibrated reflectance image, Rraw is the raw reflectance image, Rwhite is the white
reference image, and Rdark is the dark reference image. The white reference image was acquired using
a Teflon whiteboard with nearly 100% reflectivity. The dark reference image was acquired by covering
the lens with cap.

2.3.2. ROIs Identification

After the calibration of images, the ROI of each RAM slice was identified automatically in Spyder
(Python 3.6). In this study, the processes of ROI identification included background segmentation,
transferring to binary-level images, and sequential ROI extraction of each RAM slice. In order to
maximize the contrast of relative reflectance intensity between background and samples, new gray-level
images were generated by subtracting the images with lowest intensity from those with highest intensity.
Then binary threshold segmentation was applied to new gray-level images to remove background and
gain binary-level images. Corresponding ROIs of RAM slices in binary-level images were extracted by
the built-in function “findContours” of Spyder (Python 3.6).

2.4. Extraction of Spectral Features

In this study, two steps were used for the extraction of spectral features. Firstly, spectra were
pre-processed by five pre-processing methods. Then effective wavelengths were selected by SPA.

2.4.1. Spectral Pre-Processing

Spectra in 898–1042 nm of the VNIR range and in 1601–1751 nm of the SWIR range were not
included due to low signal-to-noise ratios. Besides, a few pixel values of gray-level images at 898 nm
of the SWIR range were nonnumeric. Thus, the reserved spectral ranges were 435–898 nm with 182
wavelength bands, 900–1601 nm with 421 wavelength bands for VNIR and SWIR, respectively.

Due to the noises from electromagnetic radiation of cameras and uneven surface of samples,
spectra in VNIR and SWIR ranges were significantly influenced by scatter effects which led to baseline
shift and non-linearity [24]. Suitable pre-processing methods can largely eliminate such effects,
thus improving the subsequent classification models. The most common pre-processing methods
can be divided into two categories: scatter-correction and derivatives. Scatter-correction methods
include smoothing [25], standard normal variate transformation (SNV) [26], and multiplicative scatter
correction (MSC) [27]. Derivatives methods include first derivative [19] and second derivative [28].
All the pre-processing technologies mentioned above were evaluated in this study. Smoothing methods
were Savitzky-Golay (SG) smoothing with polynomial order three of 9-point, 13-point, 17-point, and
21-point respectively. And the best smoothing filter (17-point) was also implemented before the first
and second derivative operation.

2.4.2. Effective Wavelength Selection

In order to reduce computation load and eliminate redundant information of hyperspectral data,
effective wavelengths were chosen. SPA has been regarded as a powerful waveband selection method,
which can minimize the multi-collinearity among variables [29]. Therefore, SPA was used herein for



Sensors 2019, 19, 2045 6 of 18

optimal wavelength selection to improve prediction accuracy and calculation speed of classification
models. This procedure was carried out in MATLAB (The Mathworks, Inc., Natick, MA, USA).

2.5. Extraction of Image Features

Textural features extracted by GLCM and GLRLM were employed for geographical origin
identification. GLCM is a classic method for extracting textural properties, which can describe
intensity change in the local spatial domain [30]. GLCM textures include the contrast, dissimilarity,
homogeneity, energy, and correlation extracted from four directions (0◦, 45◦, 90◦, 135◦) by Spyder
(Python 3.6). Twenty parameters could be obtained from GLCM. GLRLM is another texture analysis
technique, which provides several state-of-the-art high-order statistics [31,32]. In this approach,
the information on the run of the same gray-level value in a specific direction is contained in a GLRLM.
The length of the run is the number of pixels in the run. Coarse texture features are dominated by
long runs, while fine texture features are populated by short runs. From GLRLM, a set of seven scalar
texture measures was computed, which includes short run emphasis, long run emphasis, gray-level
non-uniformity, run percentage, run length non-uniformity, low gray level run emphasis and high
gray level run emphasis.

In most cases, GLCM and GLRLM are used for extracting textural features from mono-spectral
images. However, hyperspectral images have hundreds of bands. If GLCM and GLRLM textures are
calculated for all gray-level images corresponding to their bands, there will be a mass of redundant
information, which will increase the computing complexity. Therefore, only texture information in the
gray-level image in each effective wavelength was extracted in this study.

2.6. The Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI)

Data fusion has gained rising interest due to the boost it gives to multiple analysis tasks. The fusion
of data from various sources can provide complementary information and increase the robustness and
accuracy of the built models [33]. In this study, a novel method called VNIR-SWIR-FuSI was developed
to fuse hyperspectral data in three dimensions: VNIR and SWIR fusion, spectrum and image fusion,
and all data fusion. VNIR and SWIR fusion was implemented to improve classification performance
by combining spectral and image features in the VNIR or SWIR range only. Spectrum and image
fusion was used for promoting classification models through integrating spectral and image features
in both VNIR and SWIR ranges. All data fusion referred to the integration of spectra and images
in both VNIR and SWIR ranges. Besides, the results of hyperspectral data in effective wavelengths
using VNIR-SWIR-FuSI were also compared with those in full wavelengths. The VNIR-SWIR-FuSI
approach had a clear promotion in the classification performance in both all wavelengths and effective
wavelengths, and the enhancement of the latter was more significant than the former.

2.7. Classification Models

In this work, supervised pattern recognition models were adopted for the origin identification of
RAM slices. There have been a variety of models available for classification, including partial least
square-discriminant analysis (PLS-DA) [34,35], linear discriminate analysis (LDA) [36], support vector
machine (SVM) [8] and back propagation neural network (BPNN) [5]. PLS-DA and SVM were
selected herein.

PLS-DA is an adaptation of PLS regression to the problem of supervised classification. PLS-DA is
performed in order to sharpen boundaries among classes of observations by projecting the input
features to the most discriminative directions [37]. SVM is a classical machine learning method used
for classification, regression and outlier detection. The main processes of SVM include mapping
input vector to a high-dimensional feature space and then using an optimal hyper-plane to perform
separation [38]. For PLS-DA, the number of latent variables was chosen from all integers under 10.
For SVM with RBF kernel function, the penalty parameter C and kernel coefficient g were both set to a
series of discrete values in the interval from 0.001 to 10. Auto-scaling (unit variance scaling combined
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with mean centering) [33] was selected as the default data processing method for both classification
models to eliminate the influence of variable dimension. All algorithms were implemented using
programs developed in Spyder (Python 3.6). In order to generalize the model, ten-time five-fold
cross-validation was applied.

2.8. Evaluation of Classification Models

Classification accuracy is widely used to evaluate model performance, while it has some limitations
in practical applications, especially for class distribution imbalance problem and unequal classification
error costs [39]. Therefore, in addition to classification accuracy, this work employed a receiver
operating characteristics (ROC) [40] as an extension of metrics to visualize and select classification
models based on their performance. ROC curves are two-dimensional graphs, which plot true positives
rate (tp rate) on the vertical Y-axis against false positives rate (fp rate) on the horizontal X-axis. The area
under the curve (AUC) is the shadow area shown in Figure 3. The performance of classifiers was
positively correlated with the value of AUC.
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2.9. Visualization of RAM Geographical Origins

It is obvious that the geographical origins of RAM slices are difficult to be identified by the naked
eye. Classification map [26] can be used to visualize each pixel of hyperspectral images to recognize
different origins, which is considered to be superior to conventional spectroscopy methods. In the
present work, hyperspectral images were reconstructed for visualization by compressing pixel blocks
to pixel points. In order to get the same resolution for VNIR and SWIR ranges, the value of new pixel
points was set to the average of 4 × 4 and 5 × 5 pixel blocks respectively. Then the PLS-DA calibration
models on full bands were used to produce classification maps in these two ranges. The classification
maps were displayed in three primary colors (red representing Anhui, green representing Zhejiang,
and blue representing Hebei). In this way, people can easily differentiate the origins of RAM slices
by the color variation in the generated maps. All steps involved were implemented using programs
developed in Spyder (Python 3.6).
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3. Results and Discussion

3.1. Representative RGB Images and Raw Spectra of RAMs

The representative RGB images of RAMs from three different geographical origins are shown in
Figure 4a. RAMs from different origins can hardly be distinguished by their appearance characteristics.
The comparison results of the three spectral curves between three origins show certain differences.
For example, the RAMs from Zhejiang exhibited lowest reflection intensities both in VNIR and SWIR
ranges, which significantly varied from those of Anhui and Hebei. Spectral curves corresponding
to Anhui and Hebei had similar trends. Spectral curves of Anhui and Hebei can be separated at
wavelengths from 435 nm to 747 nm in the VNIR range, but nearly overlapped in the range of
747–898 nm (Figure 4b). Moreover, these two curves can be separated in the range of 900–1130 nm
and 1225–1310 nm, but with little difference in the remaining spectral range (Figure 4c). The spectral
diversity in VNIR and SWIR ranges was possibly due to the difference in contents of phytochemicals
(atractylenolide I, II, III [41], atractylon [42], polysaccharide [43] and so on) and physical factors (e.g.,
uniformity, density) [6,38] of the RAM samples.
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3.2. Selection of Pre-Processing Methods

Pre-processing of spectral data is a crucial step prior to chemometrics modeling. Table 1 shows
the prediction accuracies corresponding to pairwise combinations of five pre-processing algorithms
(SNV, MSC, SG smoothing, first derivative, and second derivative) and classification models including
PLS-DA and SVM, which were calculated in both VNIR and SWIR ranges.
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Table 1. The classification accuracies (%) of pairwise combinations of pre-processing algorithms and
classification models in both VNIR and SWIR ranges.

Pre-Processing
Algorithms

Models
VNIR SWIR

Calibration Prediction Calibration Prediction

SNV
PLS-DA 81.7 82.4 91.3 87.8

SVM 84.3 77.3 87.7 84.7

MSC
PLS-DA 81.7 83.8 86.8 86.5

SVM 83.9 78.9 89.1 82.7

SG (9-point) PLS-DA 78.1 78.4 77.4 81.1
SVM 75.7 78.5 78.9 78.6

SG (13-point) PLS-DA 80.1 79.7 75.7 82.4
SVM 75.4 84.7 77.9 79.9

SG (17-point) PLS-DA 80.6 79.7 76.7 83.8
SVM 75.8 84.1 78.9 79.6

SG (21-point) PLS-DA 79.8 79.7 77.2 81.1
SVM 75.3 83.6 76.9 79.5

First Derivative
PLS-DA 82.0 83.8 92.9 93.2

SVM 85.6 83.2 90.4 92.0

Second
Derivative

PLS-DA 86.8 86.5 93.5 93.2
SVM 85.7 84.6 92.3 93.1

As shown in Table 1, the overall performance of spectra pre-processed by derivatives was better
than that of other methods. In more detail, the result of second derivative was slightly better than the
result of first derivative. Therefore, second derivative was selected as the pre-processing method.

3.3. Wavelength Selection

In order to minimize redundant information of hyperspectral data, effective wavelengths were
selected by SPA. This approach has been used as an effective variable selection algorithm to solve the
collinearity problem of hyperspectral data. The selection of effective wavebands is shown in Figure 4.

The interpretation of selected wavelengths referred to the work of Workman et al. [44]. Figure 5a
shows that there were eight effective wavelengths (442, 504, 664, 715, 739, 780, 843, 856 nm) obtained in
the VNIR range (435–898 nm). The wavelengths at 442, 504, 664, 715 and 739 nm demonstrated that
geographical origins of RAM slices can be to some extent differentiated in visible range. Wavelengths
at 780 nm corresponded to N-H stretching (third overtone) of amino acids, and wavelengths at 843
and 856 nm corresponded to absorption of ArC-H (third overtone) in resins as well as absorption
of methyl (third overtone). Figure 5b shows that there were fifteen effective wavelengths (900, 930,
1078, 1097, 1153, 1215, 1342, 1375, 1409, 1477, 1484, 1546, 1564, 1576, 1597 nm) obtained in the SWIR
range (900–1601 nm). The wavelengths at 900, 930 nm corresponded to C-H stretching (third overtone),
O-H stretching (third overtone) of polysaccharides and resins. The wavelengths at 1078, 1097, 1153
and 1215 nm corresponded to C-H stretching (second overtone). The wavelengths at 1342, 1375 and
1409 nm corresponded to C-H stretching (first overtone combinations), O-H stretching (1st overtone)
of H2O, polysaccharides, and resins. The wavelengths at 1477, 1484, 1546 and 1564 nm corresponded
to N-H stretching (first overtone) of amino acids and O-H stretching (first overtone) of polysaccharides.
The wavelengths at 1576, 1597 nm corresponded to O-H stretching (first overtone) of resins.
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3.4. Full Bands Based Classification

In this section, VNIR-SWIR-FuSI was used for classification purpose in full bands. The classification
performance using VNIR and SWIR fusion, spectrum and image fusion, and all data fusion was
compared to that based solely on spectral or textural features, respectively. Table 2 summarized that:
(1) VNIR and SWIR fusion showed no effect on classification performance, (2) spectrum and image
fusion improved the prediction performance in the VNIR range, and (3) all data fusion got the best
correct rate of 97.3%, which was superior to those based on spectra (93.2%) or textures (79.7%) only.
The results of ROCs are consistent with those of classification accuracies, and all data fusion got the best
AUC value of 0.995, which was also better than those based on spectra (0.987) or textures (0.941) only.

3.4.1. Classification with VNIR and SWIR Fusion

The effect of VNIR and SWIR fusion was evaluated in two parts: spectra (A), and images (B).
Table 2 (A) shows that better performance of PLS-DA can be achieved when the fusion method was
adopted. The highest accuracy of PLS-DA was 94.6%. However, spectral range fusion failed to improve
SVM performance, the accuracy of which (92.4%) was slightly lower than that in the SWIR range
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only. Table 2 (B) shows that the fusion method seemed useless on neither GLCM textures nor GLRLM
textures for both models. Both Table 2 (A) and Table 2 (B) shows that the fusion method could not
improve the discrimination result. A probable explanation was that spectral and textural features
under both VNIR and SWIR ranges were similar and could not work complementarily to improve
classification performance.

Table 2. The classification accuracies (%) in full bands with partial least squares-discriminant analysis
(PLS-DA) and support vector machine (SVM) models (Cal and Pre are the abbreviations of calibration
dataset and prediction dataset).

Spectral Type Models

(A) Spectra (B) Images (C) Spectrum and Image
Fusion

Full Bands GLCM GLRLM Full Bands
+GLCM

Full Bands
+GLRLM

Cal Pre Cal Pre Cal Pre Cal Pre Cal Pre

(I) VNIR PLS-DA 86.8 86.5 78.3 77.0 77.3 79.7 84.8 85.1 86.9 90.5
SVM 85.7 84.6 76.5 70.1 79.9 76.6 85.2 88.8 86.5 89.7

(II) SWIR PLS-DA 93.5 93.2 75.5 78.4 74.9 74.3 94.5 91.9 96.5 93.2
SVM 92.3 93.1 68.4 72.3 76.0 75.9 92.9 89.6 94.1 92.4

(III) VNIR and
SWIR Fusion

PLS-DA 93.5 94.6 79.0 77.0 78.1 78.4 92.9 91.9 94.6 97.3
SVM 93.1 92.4 73.6 71.1 81.5 79.5 92.7 88.2 93.8 96.2

3.4.2. Classification with Spectrum and Image Fusion

The texture features were acquired from hyperspectral images using GLCM and GLRLM.
The fusion effects of spectra in tandem with GLCM or GLRLM textures were evaluated separately
in two parts: VNIR (I), and SWIR (II). For the GLCMs in Table 2 (I), the fusion method increased the
accuracy of SVM, while Table 2 (II) shows the fusion method did not work. Thus, spectra combined with
GLCMs seemed to have limited effects. For the GLRLMs in Table 2 (I), the accuracies corresponding
to PLS-DA and SVM were 86.5%, 84.6% before fusion, and 90.5%, 89.7% after fusion respectively.
However, there was no significant difference before and after fusion, as shown in Table 2 (II). Thus,
spectra combined with GLRLMs could enhance the classification performance in the VNIR range,
but not in the SWIR range.

3.4.3. Classification with All Data Fusion

The all data fusion method integrated spectral and textural variables in both VNIR and SWIR
ranges. Fusion effects could be discussed in two parts due to two different series of textural features.
The results were presented where Table 2 (III) and Table 2 (C) overlapped. The overlap shows that the
fusion method was not effective to improve the results of spectra combined with GLCMs. However,
the fusion method improved the results by the integration of spectra and GLRLMs. After the fusion
with GLRLMs, the global optimal accuracies of 97.3% and 96.2% were achieved by PLS-DA and SVM
respectively. The result shown in Sections 3.4.2 and 3.4.3 indicate that the texture features extracted by
GLRLM were more suitable for data fusion than those extracted by GLCM.

3.4.4. ROC Curves of Three Fusion Methods

Besides classification accuracies, ROC curves were used to evaluate the fusion methods.
ROC curves were plotted based on PLS-DA classifier due to its better performance, simple calculation
and highly interpretability. As GLRLMs were turned out to be superior to GLCMs above, the image
features referred in particular to GLRLMs only. Figure 6 shows that the three fusion methods achieved
better AUCs than those of spectra or images in one spectral range, and all data fusion method obtained
the optimal AUC value of 0.995. The conclusion of ROC curves was consistent with that of classification
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accuracies with one difference: classification accuracies showed that all data fusion method was
effective to the SWIR range, but the other two fusion methods made no difference, while ROC analysis
indicated that all the three fusion methods were effective. One explanation was that ROC curves
revealed better performance hidden in the fusion methods. Moreover, by summarizing the results of
classification accuracies and ROC curves, the spectral features in the SWIR range were more efficient
than those in the VNIR range for classification. In contrast, features in VNIR were more efficient in the
GLRLM textures. All data fusion method included the two efficient feature parts, thereby showing
superior performance to other fusion methods.
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3.5. SPA Bands Based Classification

VNIR-SWIR-FuSI was also used to discriminate origins in SPA bands. As shown in Table 3,
when only spectral features were used, the classification results of SPA bands were weaker than those
of full bands, and these results were consistent with the empirical results of others [9,10]. This could be
attributed to the loss of partial information after SPA features extraction. It can be concluded from
Table 3 that: (1) VNIR and SWIR fusion could not improve classification performance, (2) spectrum
and image fusion in the VNIR range increased the prediction accuracies, and the improvement of
GLRLM textures was better than that of CLCM textures, (3) all data fusion got the best accuracy of
93.2%, and the best AUC value of 0.980 which shows a similar trend to those of full bands. However,
SPA used only 23 bands far less than 422 bands of the latter, thus reducing the computation load and
eliminating redundant information.

Table 3. The classification accuracies (%) in SPA bands with PLS-DA and SVM models (Cal and Pre are
the abbreviations of calibration dataset and prediction dataset).

Spectral Type Models

(A) Spectra (B) Images (C) Spectrum and Image
Fusion

SPA Bands GLCM GLRLM SPA Bands
+GLCM

SPA Bands
+GLRLM

Cal Pre Cal Pre Cal Pre Cal Pre Cal Pre

(I) VNIR PLS-DA 78.1 75.7 78.3 77.0 77.3 79.7 81.9 86.5 84.7 86.5
SVM 78.7 80.8 76.5 70.1 79.9 76.6 80.1 81.9 83.3 83.1

(II) SWIR PLS-DA 82.2 79.7 75.5 78.4 74.9 74.3 87.0 86.5 85.4 83.8
SVM 86.8 80.9 68.4 72.3 76.0 75.9 81.9 82.3 87.5 88.4

(III) VNIR and
SWIR Fusion

PLS-DA 86.5 83.8 79.0 77.0 78.1 78.4 89.1 89.2 89.0 93.2
SVM 92.0 88.4 73.6 71.1 81.5 79.5 82.0 82.2 88.2 89.6

3.5.1. Classification with VNIR and SWIR Fusion

This section was divided into two parts: spectra (A), images (B). Table 3 (A) shows that fusion
methods could always achieve better performance, with a maximum 7.5% increase. However, ROC
analysis revealed that VNIR and SWIR fusion had no benefit to the classification performance of
spectra. Table 3 (B) was identical to Table 2 (B), which shows VNIR and SWIR fusion could not benefit
images on SPA bands.

3.5.2. Classification with Spectrum and Image Fusion

As shown in Table 3 (I) and (II), spectra in tandem with image features always improved
classification accuracies, regardless of GLCMs or GLRLMs. However, the results based on GLRLM
were superior to those of GLCM.

An overview of Tables 2 and 3 indicates that classification based on image features fared much
worse than spectral features. This can be attributed to two possible reasons. The first one is that the
appearance of RAM slices from different origins has high similarities [45,46]. The second one could
be that the resolution of CCD cameras was not enough to extract more image features. To fetch up
these shortages, some state-of-art image processing algorithms can be introduced in further study.
For example, convolutional neural network (CNN) [47,48] is a branch of deep learning algorithms
in image processing field, which can take original images as input and learn the abstract features
automatically. Moreover, CNN can improve the accuracy with the increase of image input. Besides,
as an unsupervised learning method, variational auto-encoder (VAE) [49] has a better representation
of features with adequate data available, which are more efficient compared with its counterparts,
such as GLCM and GLRLM.
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3.5.3. Classification with All Data Fusion

As shown in Table 3, the integration of spectra with either GLCM or GLRLM textures could
improve performance. However, the details of GLCM and GLRLM were different. For GLCM,
the enhancement of results had little to do with the addition of image features, but mainly due to the
spectral fusion as depicted in Section 3.5.1. For GLRLM, the spectral and image features were of equal
importance. The highest accuracy of all data fusion was 4.8% better than that of simple spectra fusion.
In this section, the same conclusion could be drawn that GLRLMs were of better quality compared
to GLCMs.

3.5.4. ROC Curves of Three Fusion Methods

The classifier and image features chosen by ROC curves were the same as Section 3.4.4.
Classification accuracies suggested that all three fusion methods improved the performance. However,
the results of ROC curves (Figure 7) were not entirely the same as those of classification accuracies.
For VNIR and SWIR fusion, the AUC value of the fusion method seemed to take an average between
those of spectra in VNIR and SWIR ranges. Thus this fusion method was of little use for SPA bands.
Spectrum and image fusion could increase the AUC value of the VNIR range, but not in the SWIR
range. All data fusion method showed the best performance, which was similar to the classification
accuracy result. It could be seen that spectrum and image fusion in the VNIR range, and all data fusion
worked well using either classification accuracies or ROC analysis.

3.6. Visualization of RAM Geographical Origins

Figure 8 visualizes the difference of RAM slices from different geographical origins based on
the HSI data, which were marked in three primary colors. It can be observed that RAM slices were
represented by a mixture of different colors and had a non-uniform distribution. The result indicates
that the HSI imaging system could accurately distinguish RAM slices from different origins in a rapid
and nondestructive manner.
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Figure 8. Classification maps by PLS-DA models in the VNIR range (435–898 nm) (a) and the SWIR
range (900–1601 nm) (b) based on the prediction set. The red, green and blue represent Anhui, Zhejiang,
and Hebei, respectively. The non-uniform distribution resulted from the categories of pixels not being
completely consistent.
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4. Conclusions

The geographical origins of RAM slices were classified by the HSI system using VNIR-SWIR-FuSI
approach. The results show that data fusion on three dimensions of VNIR-SWIR-FuSI generally had
a positive effect on classification performance. The highest classification accuracy of 97.30% was
achieved by the PLS-DA model using all data fusion, which was better than those using spectra
(93.2%) or textures (79.7%) in one spectral range solely. Although the classification performance of
spectra selected by SPA was not so satisfactory (highest 80.9%), the result in SPA bands employing
VNIR-SWIR-FuSI could still be fairly good, with highest accuracy of 93.2%. ROC curves also illustrated
the reliability of VNIR-SWIR-FuSI in which all data fusion had the greatest AUC values. The optimal
result of SPA was almost the same as the result of SWIR spectra. However, as SPA selected only
23 bands which were much less than 422 bands of SWIR spectra, it is possible to develop an online and
real-time multi-spectral system for TCMs sorting in further studies.
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