
  

Sensors 2019, 19, 2034; doi:10.3390/s19092034 www.mdpi.com/journal/sensors 

Article 

Bearing Fault Diagnosis with a Feature Fusion 
Method Based on an Ensemble Convolutional Neural 
Network and Deep Neural Network 
Hongmei Li 1, Jinying Huang 2,* and Shuwei Ji 1 

1 School of Computer and Engineering Control, North University of China, Taiyuan 030051, China;  
hongmeili@tyust.edu.cn (H.L.); lhmxiawa@163.com (S.J.) 

2 School of Mechanical Engineering, North University of China, Taiyuan 030051, China 
* Correspondence:  jyhuang@nuc.edu.cn 

Received: 28 March 2019; Accepted: 25 April 2019; Published: 30 April 2019 

Abstract: Rolling bearings are the core components of rotating machinery. Their health directly 
affects the performance, stability and life of rotating machinery. To prevent possible damage, it is 
necessary to detect the condition of rolling bearings for fault diagnosis. With the rapid development 
of intelligent fault diagnosis technology, various deep learning methods have been applied in fault 
diagnosis in recent years. Convolution neural networks (CNN) have shown high performance in 
feature extraction. However, the pooling operation of CNN can lead to the loss of much valuable 
information and the relationship between the whole and the part may be ignored. In this study, we 
proposed CNNEPDNN, a novel bearing fault diagnosis model based on ensemble deep neural 
network (DNN) and CNN. We firstly trained CNNEPDNN model. Each of its local networks was 
trained with different training datasets. The CNN used vibration sensor signals as the input, 
whereas the DNN used nine time-domain statistical features from bearing vibration sensor signals 
as the input. Each local network of CNNEPDNN extracted different features from its own trained 
dataset, thus we fused features with different discrimination for fault recognition. CNNEPDNN 
was tested under 10 fault conditions based on the bearing data from Bearing Data Center of Case 
Western Reserve University (CWRU). To evaluate the proposed model, four aspects were analyzed: 
convergence speed of training loss function, test accuracy, F-Score and the feature clustering result 
by t-distributed stochastic neighbor embedding (t-SNE) visualization. The training loss function of 
the proposed model converged more quickly than the local models under different loads. The test 
accuracy of the proposed model is better than that of CNN, DNN and BPNN. The F-Score value of 
the model is higher than that of CNN model, and the feature clustering effect of the proposed model 
was better than that of CNN. 

Keywords: bearing fault diagnosis; convolutional neural network; deep neural network; feature 
fusion; dynamic ensemble 

 

1. Introduction 

Rolling bearings have been widely applied in various rotating devices, which are used to 
support the rotating bodies and transmit torque and power in transmission systems [1,2]. A bearing 
failure can lead to unnecessary downtime, serious economic losses and even casualties [3]. Therefore, 
reliable bearing condition monitoring is required. 

Recently, deep learning has been widely applied in pattern recognition [4–6]. Deep learning is a 
new field of machine learning. It is a multi-level feature learning method which uses simple but non-
linear components to transform the features of each layer (from the original data) into more abstract 
higher-order hierarchical features [7]. Therefore, deep learning has a good feature learning ability. 
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DNN, deep belief network (DBN), CNN, and deep auto-encoder are the main models of deep 
learning. 

Among various deep-learning models, CNN [8] originally used in image recognition has been 
successfully applied in extracting feature. Their unique modeling characteristics can help to discover 
local structures or configurable relations in observations, thus CNN is now the main model in image 
analysis, video analysis, and speech recognition. CNN-based fault diagnosis methods have been 
investigated in recent years. Chen et al. [9] used CNN to identify and classify gearbox faults. Firstly, 
statistical measurements in time domain and frequency domain were extracted manually from 
vibration signals as CNN’s input. Then, CNN learned and extracted features automatically from 
these statistical measurements. Janssens et al. [10] used CNN model in bearing fault detection with 
vibration signals. CNN model worked on the frequency spectrum obtained from vibration data by 
Discrete Fourier Transform. Zhang et al. [11] converted the vibration signal into an image and used 
it as a CNN input for bearing fault diagnosis. Han et al. [12] proposed a dynamic ensemble 
convolutional neural network (DECNN) model based on CNN and wavelet transform to identify 
gearbox faults under variable speed. The DECNN model consists of several parallel CNNs and the 
model input is a multi-level wavelet coefficient matrix constructed by wavelet packet transform. To 
solve the non-stationary characteristics, Xie et al. [13] studied the feature extraction method of bearing 
based on empirical mode decomposition (EMD) and CNN. The effective intrinsic mode functions 
obtained by EMD are selected and reconstructed and the spatial information is extracted from 
frequency spectrum by CNN. Then, the features extracted from both methods are combined together 
to realize non-stationary signal feature extraction and fault diagnosis. Xia et al. [14] combined the 
rolling bearing vibration signals collected by multiple sensors as the input of CNN to achieve the 
higher and more robust diagnostic performance. Guo et al. [15] studied and improved the CNN 
structure and proposed a new hierarchical learning rate adaptive deep convolutional neural network, 
which can not only diagnose bearing failure but also determine its severity. Based on the different 
signal characteristics of bearing, Wang et al. [16] used particle swarm optimization algorithm to 
determine the main parameters of the CNN model. In the above studies, a two-dimensional 
convolution structure is used in image processing, thus the two-dimensional convolution structure 
is selected for mechanical fault diagnosis. One-dimensional (1D) CNN has been successfully applied 
in the classification of bearing fault detection since most of the measured data of mechanical faults 
are time-varying one-dimensional parameters. Turker et al. [17], Levent et al. [18] and Jing et al. [19] 
successfully used 1DCNN in the classification of bearing failure detection. 

Although CNN have made great achievements in fault diagnosis, CNN pays more attention to 
local features [20–22]. When data dimension is reduced, the pooling layer of CNN may lose a lot of 
valuable information and ignore the relationship between the whole signal and a part of the signal. 
For the same kind of failures with different degrees of severity, target descriptions based on details 
are ambiguous, thus affecting the accuracy of fault diagnosis. In previous studies on mechanical fault 
diagnosis based on CNN, mechanical vibration signals were converted into two-dimensional 
matrices or images, thus increasing the work load and leading to the wrong expression of 
information. 

Time domain statistical features can reflect the signal amplitude fluctuation, impact intervals 
and energy distribution law, and have been approved as simple and effective features for fault 
diagnosis [23–25]. For example, square root amplitude value and absolute mean amplitude value can 
measure the vibration amplitudes and energy of time domain signals. Peak-to-peak amplitude is the 
distance from the top of the positive peak to the bottom of the negative peak. Kurtosis reflects the 
degree to which the signal deviates from the normal distribution. Skewness and shape factor indicate 
the degree to which the center of the signal probability density function deviates from the normal 
distribution. With DNN, global features can be efficiently extracted from time-domain statistical 
features of signals. 

Since CNN shows defects in fault diagnosis, we attempted to integrate different deep learning 
models to improve the prediction accuracy. It is reported that integrating various models can increase 
the prediction accuracy [26–29]. We proposed a CNNPEDNN model for DNN parallel ensemble 
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CNN based on feature fusion. In CNNEPDNN model, a fusion layer is added to integrate DNN with 
CNN and the global features extracted by DNN from time-domain statistical features are combined 
with the local features extracted by CNN from vibration signals. These abstract features can further 
enhance the identification ability among different fault states. The proposed model was verified with 
the bearing data of Case Western Reserve University (CWRU) under different load conditions and 
compared against CNN. 

The rest of this paper is organized as follows. Section 2 elaborates the basic knowledge of DNN 
and CNN. Section 3 presents the proposed CNNEPDNN model with detailed description. Section 4 
describes the experimental setup and time-domain statistical features and presents the evaluation 
results on four sets of experiments. The advantages of the CNNEPDNN model were demonstrated. 
Finally, the conclusions are drawn in Section 5. 

2. Fundamental Theories 

2.1. DNN Model 

Similar to the shallow neural network layer, the neural network layer inside DNN is divided 
into three categories: input layer, hidden layer and output layer. DNN has a deep structure composed 
of a number of hidden layers. It is generally believed that a deep network contains at least three 
hidden layers, whereas a very deep network should contain at least 10 hidden layers [30]. Through 
multiple hidden layers, DNN can learn more complex functional relations. Goodfellow et al. [31] 
indicated that, in certain problems, the more hidden layers of the network there were, the higher the 
accuracy was. DNN structure is shown in Figure 1. The number of neurons in the input layer is 
determined by the characteristics of sample data. Each hidden layer contains multiple neurons and 
the number of neurons can be obtained from an empirical formula [31]. The output of each hidden 
layer is nonlinear transformed through an activation function and common nonlinear activation 
functions include sigmoid, Rectified Linear Unit (ReLU), etc. The number of neurons in the output 
layer is determined by the number of sample labels. The output layer and the last hidden layer are 
connected to logistic regression. 

 

Figure 1. Structure diagram of DNN. 

1 2, ,..., nx x x  and 1 2, , ..., co o o  represent the input and output of the network, respectively. The 
feature extraction operation of DNN is expressed as: 

( ) ( )L L
ijf x w x bϕ= +  (1) 
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where ijw  is the connection weight between the 1L−  hidden layer neural cell i  and the L  
hidden layer neural cell j ; 

Lb  is the bias of L hidden layer neurons; ϕ  is denoted as activation 
function; and ( )f x  is the output of the L  hidden layer neural cell j . 

2.2. CNN 

CNN has two network layers with a special structure, namely convolution layer and pooling 
layer. The convolution layer is so named because it uses convolution operation instead of matrix 
multiplication. Convolution layer and pooling layer are the core modules for realizing the CNN 
feature extraction function. In general, alternating connection means that a convolution layer is 
connected to a pooled layer and a pooled layer is then connected to a convolutional layer. Both 
convolutional layer and pooling layer are composed of multiple two-dimensional planes and each 
feature map is a plane. The numbers of convolutional layer and pooling layer can be determined 
according to actual demands. Generally, CNN is composed of input layer, convolution layer, pooling 
layer, fully connected layer and output layer. A typical CNN model is illustrated in Figure 2. 

 
Figure 2. A typical architecture of CNN. 

Each convolution layer contains multiple convolution kernels, which are weight matrices. 
Different convolution kernels have different weights. The convolutional layer extracts features 
through the convolution kernel, which slides on the feature map of the previous layer and performs 
convolution operation on the local region corresponding to the feature map. After the sliding is 
completed, the convolution transformation is carried out on the feature map from the previous layer 
and then the convolution result is nonlinearly changed to obtain the feature map of the convolution 
layer. Different convolution kernels correspond to different feature maps. A convolution layer has 
the characteristics of weight sharing and local connection and the convolution operation is defined 
as: 

1( )
j

L L L
k kk k kk M
x w x bϕ −

′ ′ ′∈
= ∗ +  (2) 

where 
1L

kx
−

 is defined as the output of the k  feature map at the 1L−  layer; w  is defined as the 

convolution kernel; 
l
kkw ′  is defined as the kernel from the k′  feature map at L  layer to the k  

feature map at 1L−  layer; ∗  is defined as the convolution operation; 
L
kb ′  is defined as the bias of the 

k′  at L  layer; ϕ  is defined as the nonlinear activation function; 
L
kx ′  is defined as the k′  feature 

map at L  layer; and jM  is defined as the number of input feature maps. 
The pooling layer is introduced to reduce the dimension of the feature map representation. In 

the pooling operation, a matrix window is used to scan the feature map and then a statistic is selected 
from the rectangular region as the output of the rectangular region to reduce the number of elements. 
The pooling operation is defined as: 
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1( )L L
k kx xφ −=  (3)  

where 
1L

kx
−

 is the k  feature map at 1L−  layer; φ  is pooling operation; and 
L
kx  is the k  feature 

map at L  layer. The pooling operations generally include maximum pooling and mean pooling. 
Maximum pooling looks for the maximum value in each matrix window and average pooling is to 
take the average value of each matrix window. Pooling operations are invariant under small shifts 
and distortions and can avoid overfitting. 

Convolution layers and pooling layer are often followed by several fully connected layers. The 
fully connected layers usually transform the output of two-dimensional feature map of convolution 
layer or pooling layer into one-dimensional vectors. All neurons of the fully connected layer are fully 
connected to neurons in the previous and subsequent layers, which can be regarded as the hidden 
layer in the DNN. 

2.3. Forward Transmission Process and Back Propagation of CNN and DNN 

In this study, the training methods of CNN and DNN are supervised training methods, which 
require training samples (i.e., known data and their corresponding labels) to obtain an optimal model. 
The forward transmission processes of CNN and DNN are to input samples into the network, process 
them through each network layers, and finally obtain the output. The output layer and the last hidden 
layer are connected through Softmax logical regression. In a C-class classification problem, as for the 

training set { , }ND X Y= , where N  is the number of the training sample; 1N LX × ×∈  is the input data; 
1NY ×∈  is the health condition label of the X ; and the forward transmission processes of CNN and 

DNN are denoted as: 

1 2 1 1 2 1( (... ( , ),( ) ), )t

L L

t t
L Lf f f xf x θ θ θ− − − −=      (4) 

1

(
exp ( , , )

max( ))
exp ( , , )

, t

L

t
L

C
t
L

j

L L

L

f x c
O soft f

f x j
x θ

θ

θ
=

= =


     

(5) 

where 1 2 1, ,..., ,t t t t
L Lθ θθ θ−  are defined as the learnable parameters of each L  network layer in the training 

t  stage, such as weight w  and biases b ; 1 2 1, ,..., ,L Lf ff f−  are operations at each network layer, such 
as convolution operation and pooling operation of CNN and dot product operation of DNN; x  is 

the sample data provided by the input layer; ( , )tLLf x θ  represents the output of L  network layer with 
parameters on input x ; and LO  is the classification result of the output layer. 

CNN and DNN fine-tune network parameters based on the loss function between the minimized 
network output and the expected output and cross entropy loss is widely used as the loss function of 
network. The error between the network output and the expected output is distributed to each layer 
by backpropagation on m batches of the dataset D . CNN and DNN optimization problems are 
expressed as: 

1

(
exp ( , , )

max( ))
exp ( , , )

, t

L

t
L

C
t
L

j

L L

L

f x c
O soft f

f x j
x θ

θ

θ
=

= =


     

(6) 
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The CNN and DNN continue to perform the processes of forward propagation and back 
propagation until the loss function converges or reaches the specified iterative termination condition, 
thus realizing the network supervision training. 

3. CNNEPDNN Model 

The architecture of the CNNEPDNN model is shown in Figure 3. DNN is connected with CNN 
through a fusion layer to construct a global model. The CNN consists of an input layer, two 
convolutional layers and two pooling layers and adopts 1D convolution structure with the vibration 
signal as the input. The DNN consists of an input layer and multiple hidden layers with the time 
domain statistical features of the vibration signal as the input. Then, the fusion layer is used to connect 
the two local networks together for feature fusion and Softmax logical regression is used for 
classification. To avoid overfitting, dropout [32] is used in the fusion layer. The detailed parameters 
of the network structure of model CNNEPDNN are shown in Table 1. 

Table 1. CNNEPDNN parameters. 

Layers CNN DNN Training Parameters 
1 Input layer  Input layer 9 Adam Batch size = 100 

Learning rate = 0.0015 
Epoch = 100 

(ks is kernel size; 
kn is kernel number; 

s is sub-sampling rate) 
Dropout = 0.5 

2 Convolution layer 1 Ks = 5 × 1, Kn = 20, Stride = 1 Hidden layer 1 20 
3 Pooling layer S = 2 Hidden layer 2 40 
4 Convolution layer 2 Ks = 5 × 1, Kn = 40, Stride = 1 Hidden layer 3 80 
5 Pooling layer S = 2 Hidden layer 3 160 
6 Fusion layer Relu activation function 
7 Softmax 10 outputs 

The CNNEPDNN model also iteratively implements forward propagation and back 
propagation, similar to other training methods of DNN and CNN. The fault diagnosis process of 
CNNEPDNN model is shown in Figure 4. The forward propagation of CNNEPDNN local network 
is the same as that of a single network model. It processes and extracts features successively from the 
input layer to the hidden layer, and then integrates the features extracted from the two local networks 
through a fully connected layer. Assuming that a training set { , , }D X X Y′=  has N samples, where N  
represents the training sample of vibration sensor signal; 1N KX × ×∈  represents the time-domain 
statistical feature training sample extracted from the vibration sensor signal X ; and 1NY ×∈  
represents the training sample labels. At iteration t, the forward propagation process of CNNEPDNN 
model can be defined as follows: 

1 , 2 ,1 ,1 , 2 ,1 ,1, 2 , 2 1( (... ( , ), (... ( , ),( , ) ), ), )t t

L c L c c d L d d

t t t
c L d L Lf f f x f f xf x x θ θ θ θ θ− − −− − −

′=′      (7)  

1

exp ( , , , )

exp ( , , , )

t
L

C
t
L

j

L L

L

O
f x x c

f x x j

θ

θ
=

=
′

′
     

(8)  

where 
,1 ,2 , 1, ,...,t

c

t t
c c Lθ θθ −

, 
,1 ,2 , 1, ,...,t

d

t t
d d Lθ θθ −

, and, respectively, represent the learnable parameters of the local 

networks and the fusion layer in the CNNEPDNN model; 
, 1c Lf −

 and 1L
df

−  are the operations at each 

network layer of CNN and DNN; x  and, respectively, represent the input samples of CNN and 
DNN; ( , , )tLLf x x θ′  represents the output of L network layer with parameters on input x  and x′ ; and 

LO  is the classification result of the output layer. 
For convenience, all network parameters of CNNEPDNN are defined as θ  and the loss of the 

CNNEPDNN model ( )f θ  on the data D  is denoted as ( ( , , ), )L f x x yθ′ . For the feature fusion, the 
global model sends the loss back to the local worker through the fusion layer, and then the parameters 
of the local models are broadcasted to each local network on m batches of the dataset D. 
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11
( ( , , ), ) ln ( , , , )

1 c

c
c

m

i
L f x x y y f x x c

m
θ θ

==

′ ′= −   (9)  
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Figure 3. Schematic diagram of the proposed model CNNEPDNN. 
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Figure 4. Fault diagnosis process of CNNEPDNN model. 

4. Fault Diagnosis Based on CNNEPDNN 

To verify the CNNEPDNN model in fault diagnosis, the proposed model was used to diagnose 
the health of rolling bearings. The experimental setup and process are described in the following 
sections. 

4.1. Experimental Setup 

The experiment was carried out with the rolling bearing data collected by the Bearing Data 
Center of CWRU [33]. As shown in Figure 5, the test platform was composed of 2-hp (1.5 kw) motor 
(1797–1722 rpm), torque sensor, accelerometer sensor, power tester, etc. The motor shaft was 
supported by 6205-2rs JEM SKF type bearings. In the experiment, the acceleration sensors were 
installed at 12 o’clock position above the motor drive end (DE) and fan end (FE) through a magnetic 
base. Motor bearings were artificially seeded with a single point fault, respectively, on the outer race 
(OR), the inner race (IR), and the ball by electric discharge machining (EDM). The fault diameters 
were 7, 14, and 21 mil and the depth was 11 mil. Vibration signals under four motor loads (0, 1, 2 and 
3 hp) were collected with a 16-channel DAT recorder and the sampling frequencies were 12 kHz. The 
vibration signals of ten conditions under 2-hp load from one sensor are shown in Figure 6. 
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Figure 5. Experimental platform for acquiring vibration signals from rolling bearings. 

 

Figure 6. Vibration signals of bearing under 2-hp loads from one sensor. (a), (b) and (c) are the 
bearing inner race fault signal under fault size of 7mils, 14mils and 21 mils, respectively. (b), (c) 

and (d) are the bearing outer race fault under fault size of 7 mils, the 14 mils and 21 mils, 
respectively. (g), (h) and (i) are the bearing ball fault under size of 7 mils, 14 mils and 21 mils, 

respectively. (j) the normal bearing signal. 

Vibration signal datasets collected under four loads (3, 2, 1 and 0 hp) are represented by A, B, C 
and D, respectively. Under each load, the fault conditions included normal, the inner race fault, the 
outer race fault and the ball fault, wherein the inner race, the outer race and the ball faults were 
further categorized by the fault size (7, 14, and 21 mils). Therefore, we had ten fault conditions for 
each load. For each pattern and load configuration, the collected signals were divided into segments; 
512 points were selected as a segment and one segment as a sample. There were 237 samples for each 
condition and 2370 samples in total for ten health conditions under one load. The specific 
experimental data are shown in Table 2. Next, Time domain statistical features of each sample were 
calculated. Generally, according to dimensional and non-dimensional features, time domain 
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statistical features were divided into two parts. Dimensional statistical parameters include maximum, 
minimum, peak-to-peak, mean, mean square and variance. Non-dimensional statistical parameters 
include waveform indicators, peak indicators, pulse indicators, margin indicators, kurtosis 
indicators, and skewness indicator. The selected nine time-domain statistical features of each sample 
were calculated according to the formulas in Table 3. In the experiments, we randomly selected 2000 
samples from 2370 original vibration signals and time domain feature samples as training sets and 
the remaining samples as test sets to validate the proposed model under four motor loads. To reduce 
the impact of randomness, 10 experiments were conducted on each dataset. 

Table 2. Bearing dataset descriptions. 

Fault Location None Inner Race Outer Race Ball 
Fault Diameter(mil) 0 7 14 21 7 14 21 7 14 21 

Class label 0 1 2 3 4 5 6 7 8 9 

Dataset A 
Train 200 200 200 200 200 200 200 200 200 200 
Test 37 37 37 37 37 37 37 37 37 37 

Dataset B Train 200 200 200 200 200 200 200 200 200 200 
Test 37 37 37 37 37 37 37 37 37 37 

Dataset C Train 200 200 200 200 200 200 200 200 200 200 
Test 37 37 37 37 37 37 37 37 37 37 

Dataset D Train 200 200 200 200 200 200 200 200 200 200 
Test 37 37 37 37 37 37 37 37 37 37 

Table 3. Features selected in the time domain. 

Max max max | |ix x=  
Kurtosis 

4

1

1 ( )
N

i
i

q x x
N =

= −  

Min min min | |ix x=  
Absolute mean 

1

1 | |
N

mean i
i

x x
N =

=   

Peak-Peak Value max minF Fx x x− = −  
Square root amplitude 2

1

1( | |)
N

t i
i

x x
N =

=   

Standard deviation 2

1

1 ( )
N

i
i
x x

N
σ

=

= −  
Shape factor 

2

1

1

1

1 | |

N

i
i

f N

i
i

x
NS

x
N

=

=

=



 

Skewness 
3

1

1 ( )
N

i
i

g x x
N =

= −  
  

Note: N  is the number of sampling points and ix  is the amplitude of the signal at each sampling point. 

4.2. Diagnostic Results and Analysis 

The proposed model was compared with CNN model in four aspects: convergence speed of 
training loss function, test accuracy, F-Score and feature learning ability. The simulations were 
implemented in 64-bit PyCharm with a computer with I7-8550U at 1.8 GHZ (4 cores) and 8-Gb 
memory. 

4.2.1. Convergence Speed of Training Loss Function 

The convergence curve of the training process in a certain experiment was randomly selected to 
analyze the convergence rate. As shown in Figure 7, the convergence of CNNEPDNN model was 
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achieved within 20 iterations and it was faster than CNN and DNN under different loads. In addition, 
the model is a parallel structure and the cross-entropy loss is convex, which ensured that the 
performance of the global model was better than that of the local models, and had no effect on the 
computational complexity [34]. Experimental results confirm that the one time of CNNEPDNN 
training (one forward propagation and one back propagation) was basically the same as the CNN 
network structure with an average time of 7–12 ms; the average training time of DNN was 3 ms. 

(a) Convergence curve of the Dataset A (b) Convergence curve of the Dataset B 

(c) Convergence curve of the Dataset C (d) Convergence curve of the Dataset D 

Figure 7. Comparison of loss function between CNN, DNN and CNNEPDNN. (a), (b), (c), (d) are 
the convergence curve of training loss function on dataset A, B, C and D, respectively. 

4.2.2. Test Accuracy 

To test the effectiveness and superiority of CNNEPDNN, CNN, DNN, and BPNN were selected 
to compare with the proposed model. Figure 8 presents the testing results of the ten trails of all 
comparative methods on four datasets. The average test accuracy and standard deviation of all 
comparison methods in the experiment are shown in Table 4. The results show that the proposed 
method could improve the accuracy and reliability of diagnosis results. 

Table 4. Average testing accuracy and standard deviation of comparative methods. 

Dataset 
CNNEPDNN  CNN DNN BPNN 

Average 
Accuracy 

Standard 
Deviation 

Average 
Accuracy 

Standard 
Deviation 

Average 
Accuracy 

Standard 
Deviation 

Average 
Accuracy 

Standard 
Deviation 

A 98.10 0.94 95.07 1.28 89.89 1.63 80.43 1.36 
B 97.62 0.42 97.11 0.74 89.46 1.32 83.07 1.43 
C 97.92 0.44 97.79 0.63 86.32 1.98 82.41 1.06 
D 95.76 0.70 93.40 1.15 83.07 1.43 79.40 1.40 
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Figure 8. Testing accuracy results of the proposed method and CNN, DNN, BPNN in 10 trials: (a), 
(b), (c) and (d) are the test accuracy of four methods on dataset A, B, C and D, respectively. 

4.2.3. F-Score 

In addition to accuracy analysis, two other useful indexes are precision and recall. On the one 
hand, it is not desirable to have too many false alarms (high recall rate, low precision) because this 
will increase the operating cost due to unnecessary downtime. On the other hand, if only real faults 
are marked and no false positive results are reported, the accuracy is high, but the recall rate is low. 
It takes much time to balance these two indicators comprehensively. F-Score [10] comprehensively 
considers the harmonic values of precision and recall so that the alarm will not be triggered until an 
actual fault occurs without any missing fault or false alarm. Precision, Recall and F-Score are defined 
as follows: 

Pr
TP

ecision
TP FP

=
+

     (10)  

Re
TP

call
TP FN

=
+

     (11)  

2 Pr Re
(1 )

Pr Re

ecision call
F Score

ecision call
β

×
− = +

+
     (12) 

where | |TP  is the true positive classification; TN  is the number of true negative classifications; 
| |FP  is the number of false positive classifications, such as false positive classification; and FN  is 

the number of false negative classifications, such as missed faults. When 1β = , F-Score combines 
precision and recall values so that the alarm will not be triggered until an actual fault occurs without 
any missing fault or false alarm. As shown in Table 5, precision, recall and F-Score of CNNEPDNN 
model are higher than those of CNN model under different loads. 
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Table 5. F-Score results obtained with CNN and CNNEPDNN. 

Metric 
Dataset A Dataset B Dataset C Dataset D 

CNNEPDNN CNN CNNEPDNN CNN CNNEPDNN CNN CNNEPDNN CNN 
Precision 0.99 0.97 0.98 0.98 0.99 0.98 0.99 0.97 

Recall 0.99 0.97 0.98 0.95 0.99 0.98 0.99 0.97 
F-Score 0.99 0.97 0.98 0.96 0.99 0.98 0.99 0.97 

To further evaluate the proposed model, the confusion matrices of the test dataset for one trial 
are shown in Figure 9. Each column of the confusion matrix represents the prediction category and 
each row represents the real category to which the data belongs. The green data in the last row 
indicates the precision of each fault state and the green data in the last column indicates the recall of 
each fault. We can see the diagnosis results of each condition from the confusion matrix. Figure 9(a1–
d1) shows the confusion matrix of CNN for fault identification of Datasets A–D and Figure 9(a2–d2) 
shows the confusion result of CNNEPDNN for fault identification of Datasets A–D. 

F-score can be calculated according to precision and recall of each fault condition, F-score value 
for ten fault condition in four datasets is shown in Figure 10. The F-Score values of the CNNEPDNN 
model were no less than those of the CNN model except the inner race faults with fault sizes of 21 
and 14 mils in Datasets C and D, and the ball faults with the fault size of 14 mils in Datasets B and D 
because the extracted features did not contain sufficient information for accurately distinguishing the 
same kind of the faults with different degrees of severity in rolling body and inner race. The signals 
of the same kind of faults with different degrees of severity were similar, thus it was more difficult 
to distinguish them than different kinds of faults. 

  

(a1) (a2) 
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Figure 9. Confusion matrix of the bearing fault classification with CNN and CNNEPDNN. (a1)-(d1) 
are the confusion matrix using CNN on dataset A,B,C and D, respectively.(a2)- (d2) are the 

confusion matrix of CNNEPDNN on dataset A,B,C and D, respectively. 
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Figure 10. F-Score value of ten condition fault in four dataset. 

4.2.4. Feature Learning Ability 

The influences of fusion features obtained by t-SNE visualization on classification results are 
shown in Figure 11. In the 2D embedding figure, every point represents a sample and the axis 
represents the t-SNE dimension [35]. Figure 11(a1–d1) shows that the features learned from Datasets 
A–D at CNN corresponded to ten conditions. In addition to the features under normal conditions, 
the features of several other conditions overlapped with each other. The feature results of 
CNNEPDNN’s feature fusion layer learned in Dataset A, B, C and D are, respectively, shown in 
Figure 11(a2–d2). As shown in Figure 11(a2–d2), fusion features could be clustered well into 
categories and easily recognized, thus further confirming that the proposed model could improve the 
classification accuracy. However, as shown in Figure 11(b2–d2), the features of the ball faults with 
the depths of 7, 14 and 21 mils overlapped with the features of the fault of the inner race with a depth 
of 14 mils. The features of the outer race faults with a depth of 7 and 14 mils overlapped with the 
features of the inner race fault with a depth of 21 mils. The overlapping phenomena may be related 
to the extracted features and these types of faults could not be effectively identified. 

(a1) (a2) 
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(b1) (b2) 

(c1) (c2) 

(d1) (d2) 

Figure 11. T-SNE visualization of features learned in the fully connected layer: (a1), (b1), (c1) and (d1) are the 

features of CNN learning from testing Dataset A, B, C and D, respectively. (a2), (b2), (c2) and (d2) are the features 

of CNNEPDNN learning from testing Dataset A, B, C and D, respectively. 

4.3. Discussion 

1. The experimental results show that the proposed model could effectively identify the same 
type of rolling bearing faults of different sizes. As shown in Figure 8 and Table 4, the proposed model 
and CNN have the best test accuracy and stability compared with DNN and BPNN under different 
motor loads. Experiments proved that CNN has the ability of automatic feature learning. The average 
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test accuracies of CNNEPDNN model on Datasets A–D were, respectively, 3.04%, 0.51%, 0.13% and 
2.36% higher than those of CNN model; and the standard deviations of CNNEPDNN model were, 
respectively, 0.34, 0.32, 0.19 and 0.45 lower than those of CNN model. We think that this result is 
significantly related to the structure of the proposed model. The proposed model integrated CNN 
and DNN in parallel. CNN extracts local features from the original vibration signal, DNN extracts 
waveform features from the time domain features, and further fuses these features to obtain the final 
result. 

2. Although we integrate DNN in parallel on CNN, the training time of the proposed model was 
similar to CNN model. Through ten trials, we calculated the average training time of CNN was 
between 7 and 12 ms, and the average training time of DNN was 3 ms. The proposed model has a 
parallel structure and two local networks were trained at the same time, thus the average training 
time of the proposed model was similar to CNN. The loss function of the proposed model is cross-
entropy, i.e., convex function. The model averages the output of the local model rather than the 
parameters, which guarantees the performance of the model. As shown in Figure 7, the proposed 
model converged more quickly than its local model. 

3. The accuracy and reliability of the proposed model and CNN in fault identification of rolling 
bearings were further compared through F-score. In the confusion matrix shown in Figure 9, we can 
see the identification results of each type of fault. As shown in Table 5 and Figure 10, The F-score 
value of CNNEPDNN model was higher than the F-score value of CNN model. This proved that our 
model was effective. However, the inner race fault with fault size 21 and 14 mils in Datasets C and 
D, and the ball fault with fault size 14 mil in Datasets B and D were easily confused with each other. 
We think that this may be related to the insufficient feature extraction. The signals of the same kind 
of faults with different degrees of severity were similar, thus the features extracted from the local 
model did not distinguish the inner race fault and the ball fault. 

4. Through T-SNE visualization, the feature learning abilities of the proposed model and CNN 
were further compared. As shown in Figure 11(a1–d2), by visualizing the features of the full-
connection layer of CNN, the features of several other conditions overlapped with each other in 
addition to those under normal conditions. In the proposed model, the fusion features became 
distinguishable, as shown in Figure 11(a2–d2). 

5. Conclusions and Future Work 

In this study, we proposed a novel model CNNEPDNN to improve CNN in rolling bearing fault 
diagnosis. After integrating DNN with CNN, the extracted local features are fused with global 
features. The performance of the proposed fault diagnosis model for bearing fault was tested in ten 
conditions under different loads. The comparison of the diagnosis results of CNN and CNNEPDNN 
indicated that CNNEPDNN could give more precise diagnosis results for the same type of faults with 
different sizes. The visualized fusion features indicated that the feature clustering effect of the 
proposed model was better than that of CNN. 

It is worth noting that the time domain features encounter some limitations, such as the bearings 
are running at variable speeds, or the noise is very high; it is difficult to design discriminant features 
or features become inconsistent, which will affect the diagnostic accuracy of DNN, and may affect 
the diagnostic accuracy of the whole model. 

In the future, we will test the proposed model under more conditions. Furthermore, there are 
still some possible misclassifications. Additional features, sensor data, and other ensemble methods 
will be considered. 
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