
sensors

Article

Extrinsic Calibration between a Camera and a 2D
Laser Rangefinder using a Photogrammetric
Control Field

Jia Fan 1, Yuchun Huang 1,*, Jie Shan 2 , Shun Zhang 1 and Fei Zhu 1

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
fanjia@whu.edu.cn (J.F.); shun_z@whu.edu.cn (S.Z.); f_zhuwhu@whu.edu.cn (F.Z.)

2 Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA; jshan@purdue.edu
* Correspondence: hycwhu@whu.edu.cn; Tel.: +86-1806-410-3611

Received: 26 January 2019; Accepted: 26 April 2019; Published: 30 April 2019
����������
�������

Abstract: The combination of a camera and a 2D laser rangefinder (LRF) is widely used in robotics,
mapping, and unmanned driving to simultaneously obtain the 3D geometry and color texture of
a scene. However, data misregistration between the camera and the LRF frequently occurs due to
the difficulty of precise installation and alignment between them. Extrinsic calibration between the
camera and the LRF is necessary. In this study, a photogrammetric control field is used to perform
a robust and accurate calibration between the camera and the LRF which requires only one shot.
With the use of the photogrammetric control field as the common reference, extrinsic calibration
between two sensors is decoupled by calibrating each sensor separately. First, using the room corner
of the control field, the LRF is calibrated with respect to the control field by solving a simplified
perspective-three-point problem. Then, a large number of control points are used to obtain the robust
and accurate extrinsic parameters of the camera with respect to the control field. Experiments with
simulated and real data were performed. The experimental results show that the proposed scheme is
accurate, precise, and robust under different noise levels, and the calibration results can be utilized in
indoor and outdoor applications.

Keywords: 2D laser rangefinder; camera; extrinsic calibration; photogrammetric control field; direct
linear transform; perspective-three-point

1. Introduction

High-resolution cameras and 2D laser rangefinders (LRFs) are often combined in mobile
mapping [1], object detection [2], and simultaneous localization and mapping [3,4] due to their
small size, low cost, and high flexibility. The camera can provide high-resolution color and texture
information of the surrounding scene, while the LRF can collect high-precision distance information.
To take full advantages of the two sensors and obtain the 3D geometry and color texture information of
a scene, data fusion of the two sensors is needed. However, data misregistration of the camera and LRF
often occurs due to the difficulty of precise installation and alignment between them. To address this
problem, the extrinsic parameters between the two sensors, i.e., the rotation and translation between
the camera and LRF coordinate systems, need to be calibrated.

The extrinsic calibration between multiple sensors is normally accomplished through
corresponding features of the data captured by the sensors. However, it is difficult to accurately locate
the corresponding points or other features between the image and the laser range data due to the
following reasons. First, the laser range data captured by the 2D LRF record only one line formed by
the intersection points of the laser scanning plane and the object surface. Unlike the 3D point clouds
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and the image in which we can obtain many features like corners and edges, no such feature is obtained
in the line recorded by the LRF. Second, the laser range data are invisible in the image since the laser
used by the LRF is outside the visible spectrum. Therefore, finding an effective approach for accurate
extrinsic calibration between the 2D LRF and the camera is necessary and challenging.

Various calibration methods have been reported, most of which used the chessboard as the
calibration pattern. The relative position of the camera with respect to the chessboard can be
determined with the grid points of the chessboard. Besides, it is easy to recognize the laser points on
the chessboard since it is a plane. Thus, the constraints between the camera and the LRF are established
with the chessboard. Zhang and Pless [5] used a chessboard to establish a rigorous calibration method
with the point-on-plane constraint which means that the laser points should be on the chessboard plane.
This approach requires at least five shots of different poses to obtain an initial closed-form solution
for the extrinsic parameters. More than 20 shots are often required to acquire robust initials, which
makes the calibration time consuming. Moreover, point-on-plane constraints of all the laser points
were used to perform the optimization to improve the initials. The optimized solution may converge
to a local minimum due to the unstable initials. Based on Zhang’s method, Kassir and Peynot [6]
proposed a reliable automatic camera-laser calibration toolbox. Zhou and Deng [7] used line-on-plane
constraints, that is, the laser direction vector is perpendicular to the chessboard normal vector, to
decouple the rotation matrix from the translation vector, i.e., to resolve the rotation and translation
separately. The same constraints were used to optimize the initial values. This method theoretically
required three different shots to solve the initial extrinsic parameters and more shots to perform the
non-linear optimization. Vasconcelos et al. [8] used a chessboard as the calibration pattern to transform
the point-line-plane constraints in 3D space into a perspective-three-point (P3P) problem. After getting
the initial extrinsic parameters, the optimization was performed by minimizing the laser projection
error. However, it required three shots to solve the initials, and suffered from multiple solutions and
degeneration problems in solving P3P [9–11].

In addition, several methods used boards with specially designed shapes including the triangle,
V-shaped, and cubic boards, which were composed of one plane, two planes, and three planes,
respectively, as the calibration pattern. Li et al. [12] used a triangle board as the calibration pattern to
capture the point-on-line constraints, that is, the projection of laser points lie on the corresponding
lines in the image, between the laser points and triangular sides. Wasielewski and Strauss [13] used a
V-shaped board to extract the intersections in laser points and the intersection lines of two planes in the
image and optimized the extrinsic parameters using the point-on-line constraint. Sim et al. [14] refined
the constraints by using three point-on-line constraints of a V-shaped board. Although these methods
improved the constraints between the two sensors, they still required multiple shots at the target in
different poses and relied on good initial estimation of extrinsic parameters. Recently, several scholars
have presented improved calibration methods based on a trihedron. Chen et al. [15] used a cubic
pattern and the point-on-line constraint for the extrinsic calibration of a 2D LRF and a camera, which
required at least three shots of the target. Gomez-Ojeda et al. [16] introduced a method to calibrate a 2D
LRF and a camera by observing the corners in human-made scenes. This method used line-on-plane
and point-on-plane constraints to build the relationship between the two sensors to solve the initial
values and optimize the result. However, this method requires three shots to obtain the initial extrinsic
parameters and more shots to ensure an accurate result.

The abovementioned methods have two major limitations. First, although they take multiple shots,
some ill-posed shots may mislead the solution and cause the solution to become unstable. Second,
they suffer from multiple solutions or early converge to a local minimum, which may lead to incorrect
calibration results. Hu et al. [17] presented an extrinsic calibration method that only requires one shot
at the target and obtained a unique solution. They used a trirectangular trihedron as the calibration
pattern and estimated the poses of the camera and LRF using perspective-three-line [18,19] and P3P,
respectively. For the LRF calibration, they formed a simplified P3P problem using the trirectangular
trihedron and avoided multiple solutions and degeneration problems of P3P. For the camera calibration,
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they used the length of two edges to derive the real solution. However, accurate measurement of
the length of edges could be difficult. In addition, the length of the edges was determined based on
two endpoints. The lengths of the edges are inaccurate when the endpoints are noisy. Thus, they are
sensitive to noise.

This paper presents a scheme to calibrate the extrinsic parameters between the camera and 2D
LRF using a photogrammetric control field to address the above limitations. The proposed scheme
provides accurate and robust calibration results, and requires only one shot at the control field.
A photogrammetric control field is frequently used in the calibration of the camera [20,21] and 3D laser
scanner [22]. It brings no extra complexity to use the existing control field for extrinsic calibration
between the camera and 2D LRF. A typical photogrammetric control field is shown in Figure 1. It is
composed of a number of control points evenly distributed in a 3D space. The coordinates of the
control points in the control field are accurately measured in advance. The coordinates of the control
points in the image can be accurately obtained due to the distinct crossing of black and white sectors at
the center, as shown in Figure 1. This study utilizes the control field as a common reference to calibrate
the two sensors separately and successfully decouples the calibration process.
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Figure 1. Photogrammetric control field.

Extrinsic calibration between the camera and the LRF was divided into LRF calibration with
respect to the control field and camera calibration with respect to the control field. The P3P and
direct linear transformation (DLT) [23,24] were employed to obtain the extrinsic parameters of the
two sensors, respectively, with respect to the control field. The main contributions of this paper are
summarized as follows:

1. The proposed calibration scheme required only one shot at the control field to accurately calibrate
the extrinsic parameters. Compared with the calibration methods which needed multiple shots,
it makes data collection easier.

2. The proposed calibration scheme is robust. The use of an elaborately designed control field
not only avoids degeneration problems in the camera calibration, but also provides redundant
observations to enhance its robustness. In addition, the use of the control field avoids degeneration
problems in LRF calibration and provides a unique solution to traditional P3P problems by using
a 3D right triangle pyramid formed by the LRF scanning plane and the room corner.

3. The proposed calibration scheme is accurate. Camera calibration was based on the accurate
coordinates of control points, which ensured the accuracy of the extrinsic parameters of the
camera. Furthermore, robust linear fitting of LRF points was employed to locate the exact
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intersections between the LRF scanning plane and the room edges, which reduced the impact of
noise of raw LRF points during LRF calibration.

Experiments on simulated and real data were conducted, which showed that the proposed scheme
was accurate, precise, and robust. Comparison experiments demonstrated that the proposed scheme
outperformed the state-of-the-art methods.

2. Methodology

2.1. Mathematic Framework

As illustrated in Figure 2, three coordinate systems of the camera, LRF, and control field were used.
The control field coordinate system, denoted as (Ow–XwYwZw), took the vertex of a room corner as the
origin and three edges of the corner as the x-axis, y-axis, and z-axis, respectively. The camera coordinate
system was denoted as (Oc–XcYcZc). In our configuration, the camera’s optical center was the origin
of the camera coordinate system, and the x-o-y plane was parallel to the imaging plane. We ignored
the lens distortion for the rest of the paper and assumed that the images were already undistorted.
The coordinate system of the 2D LRF was denoted as (Ol–XlYlZl). We set the laser scanning center at
its origin, and the scanning plane was denoted as the x-o-z plane.
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Figure 2. Configuration of the coordinate systems.

Extrinsic calibration aims to obtain the extrinsic parameters that define the rigid relationship, that
is, the rotation matrix and translation vector between two coordinate systems. Let (RCW|TCW) and
(RLW|TLW) denote the extrinsic parameters of the camera and LRF coordinate systems, respectively,
with respect to the control field coordinate system. For any point P in the scene, its coordinates in the
control field, camera, and LRF coordinate systems are denoted as Pw = (Xw, Yw, Zw)T, Pc = (Xc, Yc,
Zc)T, and Pl = (Xl, Yl, Zl)T, respectively. They satisfy the following relationships

Pc = RCWPw + TCW, (1)

Pl = RLWPw + TLW. (2)
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On the basis of Equations (1) and (2), the extrinsic parameters between the LRF and camera
coordinate systems, denoted as (RCL|TCL), can be represented as

Pc = RCLPl+TCL

RCL = RCWR−1
Lw

TCL = TCW−RCLTLW

. (3)

Equation (3) establishes the correspondence between the LRF and the camera through the common
reference of the control field. Thus, the calibration of the extrinsic parameters between the camera
and the LRF consists of two main steps, namely, LRF calibration with respect to the control field in
Section 2.2 and camera calibration with respect to the control field in Section 2.3.

2.2. Extrinsic Calibration of the LRF

To make the extrinsic calibration of LRF accurate and robust, the intersections of line features are
employed to form a P3P problem, which can accurately locate the correspondences between the LRF
and control field coordinate systems. A trirectangular trihedron formed by the room corner was used
to perform a simplified P3P in the proposed scheme.

As shown in Figure 3, the three planes of a room corner were denoted as Π1, Π2, and Π3,
respectively. The scanning plane of the 2D LRF intersects the three planes at three line segments L1, L2,
and L3 and intersects the three edges of the corner at P1, P2, and P3, respectively.
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control field.

In the LRF coordinate system, L1, L2, and L3 can be obtained by linearly fitting the laser range
points of the segments. The intersection points P1, P2, and P3 are calculated based on the cross-product
of the three line segments, that is 

P1 = L1 × L2

P2 = L2 × L3

P3 = L1 × L3

, (4)
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where × denotes the cross-product of two vectors. The three intersection points P1, P2, and P3 and the
control field’s origin Ow constitute a right triangle pyramid with the origin as the vertex. Side lengths
d1, d2, and d3 of the triangle pyramid base can be calculated by

d1 = ‖P1−P2‖

d2 = ‖P1−P3‖

d3 = ‖P2−P3‖

, (5)

where ||·|| denotes the 2-norm distance between two points. Lengths OwP1, OwP2, and OwP3 are denoted
as λ1, λ2, and λ3, respectively. Considering that the three edges of a room corner are perpendicular to
each other, we have Equation (6) for the right triangle pyramid Ow–P1P2P3.

λ2
1 + λ2

2 = d2
1

λ2
1 + λ2

3 = d2
2

λ2
2 + λ2

3 = d2
3

. (6)

There are eight feasible solutions for traditional P3P [9]. However, considering that Equation (6) is
simplified without any angle and the length of the edges are greater than zero, we have the following
unique solution 

λ1 =
√
(d2

1 + d2
2 − d2

3)/2

λ2 =
√
(d2

1 + d2
3 − d2

2)/2

λ3 =
√
(d2

2 + d2
3 − d2

1)/2

. (7)

For the control field coordinate system, let Q1, Q2, and Q3 denote the three points that correspond
to three intersection points P1, P2, and P3 in the LRF coordinate system. Considering that they are
located on the three axes of the control field coordinate system and their distances away from origin
Ow are known by Equation (7), Q1, Q2, and Q3 can be expressed as

Q1 = (λ1, 0, 0)
Q2 = (0,λ2, 0)

Q3 = (0, 0,−λ3)

. (8)

The coordinates of (P1, P2, P3) and (Q1, Q2, Q3) are the coordinates of the same points under two
coordinate systems. Thus, solving the extrinsic parameters, i.e., the rotation matrix and translation
vector, is actually a three-point registration problem of two coordinate systems [25]. As illustrated in
Figure 4, let P1, P2, and P3 of the LRF coordinates form a spatial coordinate system with point P1 as
the origin, and the three points lie on the vx-P1-vy plane. The axis vz is perpendicular to the vx-P1-vy

plane. The rotation matrix of this coordinate system with respect to the LRF coordinate system is
denoted as R1. In the same way, the same coordinate system of vx-vy-vz can be represented with the
three equivalent points Q1, Q2, and Q3 of the control field coordinates, and rotation matrix R2 of this
coordinate system can be obtained with respect to the control field coordinate system. With the use of
the vx-vy-vz as an intermediate coordinate system, we can calculate the rotation matrix between the
LRF and the control field coordinate system.

RLW = R1R−1
2 . (9)
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Then, the translation vector is easily acquired based on the correspondence between (P1, P2, P3)
and (Q1, Q2, Q3).

TLW =
3∑

i=1

(Pi −RLWQi)/3. (10)

The trirectangular trihedron formed by the room corner is used in the extrinsic calibration of the
LRF. The room corner may not be perfectly trirectangular, i.e., the angle formed by two planes has a
deviation α from 90◦. As shown in Figure 5, in an ideal situation, a trirectangular trihedron is formed
by three planes Π1, Π2, and Π3. The scanning plane of the 2D LRF intersects the three planes at the
three line segments l1, l2, and l3, and intersects the three edges of the trirectangular trihedron at P1,
P2, and P3, respectively. Rotating Π3 around Zw to Π′3, the trihedron formed by Π1, Π2, and Π′3 is an
imperfect trirectangular trihedron due to the rotation angle α. The scanning plane of the LRF intersects
the three planes Π1, Π2, and Π′3 with the three line segments l1, l2, and l′3, and intersects the three
edges of the new trihedron at P1, P′2, and P3, respectively.
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In an ideal situation, the right triangle pyramid Ow–P1P2P3 is used to solve a simplified P3P and
finally obtain the rotation and translation of the LRF coordinate system with respect to the Ow–XwYwZw,
which is the extrinsic parameters of LRF. Due to the deviation α, the ideal intersection point P2 moves
to P′2, and the new triangular pyramid Ow–P1P′2P3 is not a right triangle pyramid. However, we still
solve a simplified P3P, which means that a right triangle pyramid O′w–P1P′2P3 is formed, and thus a
new coordinate system O′w–X′wY′wZ′w is built. In this situation, the calculated extrinsic parameters of
LRF is actually the rotation and translation of LRF with respect to O′w–X′wY′wZ′w. Therefore, rotation
and translation between Ow–XwYwZw and O′w–X′wY′wZ′w equals the extrinsic calibration error of LRF
with respect to control field caused by the deviation α from 90◦. The larger the deviation α is, the larger
the difference between P1P2 and P1P′2 is, the larger the calibration error.

It should be noted that one scan of the room corner is sufficient to determine the extrinsic
parameters between the LRF and the control field. The trirectangular trihedron formed by the room
corner makes the P3P solution unique, as derived in Equation (7). In addition, degeneration problems
in P3P caused by two parallel planes and a danger cylinder [11] are avoided by using the room corner.
The intersections of three lines accurately locate the correspondences between the range data and the
control field, which ensures the accuracy of LRF calibration. Besides, calibration does not directly use
the raw LRF range data as in Zhang’s method [5]. Instead, calibration uses linear features that are
robustly derived from the raw LRF range data, which reduces the impact of noises on the extrinsic
calibration of the LRF.

2.3. Extrinsic Calibration of the Camera

Extrinsic calibration of the camera determines its extrinsic parameters with respect to the control
field. The extrinsic and intrinsic parameters determine the position and imaging plane of the camera
in the control field. The intrinsic parameters of the camera are denoted as (x0, y0, f ), where (x0, y0)
denotes the principal point, and f is the focal length. The extrinsic parameters of the camera can be
denoted as (RCW, TCW), where

RCW = RϕRωRκ =


a1 b1 c1

a2 b2 c2

a3 b3 c3

, (11)

TCW = [XS, YS, ZS]
T, (12)

where RCW represents a 3 × 3 rotation matrix formed by rotation angle (ϕ, ω, κ) between the three axes
of the camera and control field coordinate systems, and TCW is a 3 × 1 translation vector that represents
the origin of the camera coordinate system in the control field coordinate system. The control field
coordinate system is shown in Section 2.1. According to imaging principle, camera origin S (XS, YS,
ZS)T and point P (X, Y, Z)T in the control field and the corresponding image point p(x, y) of P are
collinear. The collinearity can be represented as

x− x0 = − f a1(X−XS)+b1(Y−YS)+c1(Z−ZS)
a3(X−XS)+b3(Y−YS)+c3(Z−ZS)

y− y0 = − f a2(X−XS)+b2(Y−YS)+c2(Z−ZS)
a3(X−XS)+b3(Y−YS)+c3(Z−ZS)

. (13)

Since the camera used for calibration in our integrated sensor is a fisheye camera with relatively
large distortion, we first rectify the distortion before the extrinsic calibration in order to achieve a better
calibration result. Thus, Equation (13) only contains intrinsic and extrinsic parameters. Introducing
independent parameters li (i = 1, 2 . . . 11), Equation (13) can be re-formulated as follows

x + l1X+l2Y+l3Z+l4
l9X+l10Y+l11Z+1 = 0

y + l5X+l6Y+l7Z+l8
l9X+l10Y+l11Z+1 = 0

, (14)
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where li (i = 1, 2 . . . 11) are the functions of the intrinsic and extrinsic parameters of the camera, as
shown in Equation (15).

l1 l2 l3 l4
l5 l6 l7 l8
l9 l10 l11 1

 =


f 0 x0 0
0 f y0 0
0 0 1 0


[

RCW TCW

0T 1

]
. (15)

These linear constraints can be solved through DLT [23,24]. To avoid non-linear computation,
below we use the classical DLT in the proposed scheme. The revised DLT with two constraints [26] can
be used for more rigorous extraction of intrinsic and extrinsic parameters if higher accuracy is required.

Equation (14) is rearranged by eliminating its denominator, as shown below{
l1X + l2Y + l3Z + l4 + 0 + 0 + 0 + 0 + xl9X + xl10Y + xl11Z + x = 0
0 + 0 + 0 + 0 + l5X + l6Y + l7Z + l8 + yl9X + yl10Y + yl11Z + y = 0

. (16)

The initial value of 11 linear transformation parameters li (i = 1, 2 . . . 11) can be calculated with
Equation (16) by using six control points. To obtain more accurate and robust results, an iterative
calculation was performed. Denote the correction of the observation of image point p(x, y) as (vx, vy),
and let

A = l9X + l10Y + l11Z + 1. (17)

Then Equation (14) can be written as
V =ML−W, (18)

where

V =

[
vx

vy

]
M =

 X
A

Y
A

Z
A

1
A 0 0 0 0 xX

A
xY
A

xZ
A

0 0 0 0 X
A

Y
A

Z
A

1
A

yX
A

yY
A

yZ
A


L =

[
l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

]T
W =

[ x
Ay
A

]
Least squares [27] was used to calculate a new value of li (i = 1, 2 . . . 11) with a large number of control
points in the control field.

L = (MTM)−1MTW. (19)

The translation vector can be solved after coefficients li (i = 1, 2 . . . 11) are obtained. Considering
that RCW is a unit orthogonal matrix, we deduced that the translation vector of the extrinsic parameters
satisfies the following relationship from Equation (15)

l1XS + l2YS + l3ZS = −l4
l5XS + l6YS + l7ZS = −l8
l9XS + l10YS + l11ZS = −1

, (20)

where the three elements of the translation vector form three independent linear equations.
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Similarly, we can derive the relationship between coefficients li (i = 1, 2 . . . 11) and nine parameters
of the rotation matrix from Equation (15). The three angles that compose the rotation matrix can be
obtained as follows 

tanφ = − a3
c3

= − l9
l11

sinω = −b3 = −
l10√

l92+l10
2+l11

2

tanκ = b1
b2

=
x0l10+l2
y0l10+l6

. (21)

Start with initial values, values of A, li (i = 1, 2 . . . 11), (XS, YS, ZS), and (ϕ, ω, κ) were updated
based on Equations (17), (19), (20), and (21), respectively. The iterative procedure ends when it satisfies
that the differences of li (i = 1, 2 . . . 11) and the differences of XS, YS, and ZS calculated in two successive
iterations are all less than the corresponding thresholds. Finally, (RCW|TCW) between the camera and
the control field coordinate systems are obtained through the (XS, YS, ZS) and (ϕ, ω, κ) calculated in
the last iteration.

From the above analysis, we can draw the following characteristics about the control field based
camera calibration. First, the evenly distributed control points in the control field avoid the degeneration
problems in camera calibration caused by coplane or collinearity of the control points [28]. Second, the
high precision of the coordinates of control points in the control field and in the image ensures the
collinear condition for DLT calculation, which results in accurate camera calibration. Furthermore, a
large number of control points provide redundant observations, which makes the extrinsic calibration
of the camera robust and accurate. Besides, it requires only one shot at the control field to obtain the
extrinsic parameters of the camera with respect to the control field.

Finally, the extrinsic parameters between the camera and the LRF can be obtained using Equation
(3) once the extrinsic parameters of the LRF (Section 2.2) and the extrinsic parameters of the camera
(Section 2.3) are respectively determined with respect to the control field. As demonstrated in
Sections 2.2 and 2.3, the proposed scheme provides accurate and robust results for the extrinsic
calibration of the LRF and the extrinsic calibration of the camera, respectively. Thus, the extrinsic
calibration between the camera and the LRF is accurate and robust. In addition, the entire calibration
requires only one shot at the control field to simultaneously collect the data for extrinsic calibration of
the LRF and the camera.

3. Experiments

We conducted experiments on simulated and real data to verify the accuracy, precision and
robustness of the proposed calibration scheme. First, the simulated data with ground truth were used
to evaluate the performance of the proposed scheme under different noise levels. Second, a sensor
system with a 2D LRF and a camera was calibrated and evaluated in indoor and outdoor scenes to
validate the effectiveness of the proposed scheme in practical applications.

3.1. Experiments with Simulated Data

For the entire process of extrinsic calibration, the factors that affect accuracy are the number of
laser points in each plane, the angle between the three planes in the trihedron, the existing noises in
the laser points, the number of control points, the distribution of control points, and the existing noises
in the control points. Hu et al. [17] performed statistical experiments on the impact of the number of
laser points in each plane and the angle between the three planes. Chen et al. [28] conducted statistical
experiments on the impact of the number and the distribution of the control points. Thus, we set these
four factors as suggested. Considering that the coordinates of the control points in the control field are
precisely measured, we test the performance of the proposed scheme in terms of different image noise
levels, different laser range noise levels, and outliers in the image and laser range.

In the simulated experiments, the camera and the LRF were simulated based on the parameters of
real sensors. The focal length of the camera was set to 12 mm, and the resolution was 4608 × 3456
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pixels. The principal point of the camera was located at the center of the image. The camera was set
without lens distortion. For the 2D LRF, the laser scanning scope was 270◦, and the angular resolution
was 0.25◦. The photogrammetric control field was modeled as a 3D cuboid. The three perpendicular
edges of the cuboid and the vertex of the three edges formed the coordinate system (Ow–XwYwZw).
A total of 360 control points was evenly distributed in the 2.5 × 2.5 × 2.7 m3 cuboid. The spacing of
control points in the x-axis, y-axis, and z-axis directions were 50, 50, and 30 mm, respectively. The
image data were generated using an ideal pinhole imaging model. The LRF points of range data
were generated by shooting laser rays on the photogrammetric control field. Gaussian noises with
zero mean and different noise levels were added to offset the pixel coordinates of the image, which
are due to the ambiguity and low contrast around feature pixels. Similarly, the range data of LRF
points were added with zero-mean Gaussian noise at different levels to simulate their uncertainty in
distance measurements.

In the simulated experiments, the extrinsic parameters of rotation (in Euler angles) and translation
between the LRF and the camera were set as follows{

ψt = [15◦, 2◦, 0.1◦]
Tt = [10mm, 600mm, 20mm]T

, (22)

where row vector ψt represents the three Euler angles of rotation, and column vector Tt represents the
translation. These parameters are used as ground truth for the simulated experiments to verify the
accuracy, precision, and robustness of the proposed scheme under different noises.

The errors of rotation and translation are measured to quantitatively evaluate the performance of
the results, which are expressed as follows Eri = cos−1 rit rT

i
‖rit ‖×‖ri‖

ET =‖ T−Tt ‖
, (23)

where ri (i = 1, 2, 3) are the three column vectors of the rotation matrix calculated by the proposed
scheme, and rit (i = 1, 2, 3) are the three column vectors of the rotation matrix calculated by ψt. Eri (i =

1, 2, 3) measures the deviation angle between the two column vectors, which are used to quantitatively
evaluate the performance of rotation. The smaller Eri is, the more accurate the calibration of rotation. T
is the translation vector calculated by the proposed scheme. ET denotes the 2-norm of the difference of
the calculated translation vectors and the ground truth, which is used to quantitatively evaluate the
performance of translation. Similarly, the smaller ET is, the more accurate the calibration of translation.

3.1.1. Performance in Terms of Image Noise

We added different levels of noise to the image and calculated the mean and standard deviation
of translation and rotation errors under each noise level to verify the accuracy and precision of the
proposed scheme with respect to image noise. A total of 1000 groups of experiments were independently
performed under each noise level. For the LRF, we added 3 mm Gaussian noise with zero-mean to the
laser range. Noise levels from 1 pixel to 10 pixels were added to the image data to test the performance
of the scheme with respect to image noise. The translation and rotation errors under different noise
levels for the extrinsic camera calibration with respect to the control field and the LRF are demonstrated
in Figures 6 and 7.

The rotation and translation errors for the extrinsic calibration of the camera with respect to the
control field are shown in Figure 6. The bar in the histogram represents the mean of errors of 1000
independent experiments, and the error bar above the bar indicates the standard deviation of errors.
The rotation error under each noise level was determined based on three column vector errors Er1 ,
Er2 , and Er3 , which is less than the maximum of the three errors. As shown in Figure 6, the mean of
rotation and translation errors increase with the increase in image noise levels from 1 pixel to 10 pixels.
The mean of the rotation errors increased from 0.009◦, 0.009◦, and 0.011◦ to 0.095◦, 0.090◦, and 0.113◦,
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and the mean of the translation errors increased from 0.449 mm to 4.652 mm. This indicates that
the camera calibration was accurate even under large image noise level of 10 pixels. In addition, the
standard deviations of rotation and translation errors increased with the increase in noise levels from
1 pixel to 10 pixels, which indicates that the results of the camera calibration worsen with the increase
in noise levels. However, Figure 6 shows that the standard deviations of rotation errors increased from
0.005◦, 0.005◦, and 0.006◦ to 0.052◦, 0.047◦, and 0.058◦, and that of translation errors increased from
0.208 mm to 2.203 mm, thereby indicating that the camera calibration is precise.
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Figure 7. Rotation and translation errors for the extrinsic calibration of LRF with respect to the camera
under increasing image noise levels. (a) Rotation error and (b) translation error.

After analyzing the impact of image noises on the extrinsic calibration of camera with respect to
the control field in Figure 6, the entire process of the proposed scheme was implemented to analyze
the effect of image noises on the extrinsic calibration of the camera with respect to LRF. The statistical
results are shown in Figure 7. The mean and standard deviations of rotation and translation errors
increased with the increase in image noise levels from 1 pixel to 10 pixels. The mean of rotation errors
increased from 0.013◦, 0.047◦, 0.049◦ to 0.087◦, 0.111◦, and 0.126◦, and the standard deviations increased
from 0.007◦, 0.034◦, 0.034◦ to 0.048◦, 0.065◦, and 0.068◦. The mean of translation errors increased from
2.412 mm to 5.367 mm, and the standard deviations increased from 1.715 mm to 2.489 mm with the
increase in noise levels. The above analysis shows that the mean and standard deviations of translation
and rotation errors were small even under the noise of 10 pixels, which demonstrates that the proposed
scheme was accurate and precise for the extrinsic camera calibration with respect to LRF under the
effect of image noises. In addition, the mean and standard deviations of these errors increased slightly
with the increase in image noises from 1 pixel to 10 pixels, thereby verifying that the number of control
points provides redundant observations and makes the proposed scheme insensitive to image noises.
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The rotation and translation errors changed remarkably in Figure 7 compared with Figure 6, thereby
indicating that the addition of laser range noise obviously impacts the extrinsic camera calibration
with respect to LRF.

3.1.2. Performance in Terms of Laser Range Noise

Similar simulated experiments were performed to evaluate the accuracy and precision of the
proposed scheme with respect to laser range noise. One-pixel Gaussian noise was added in the
image, and noise levels from 1 mm to 30 mm were added to the laser range to test the performance of
the proposed scheme with respect to laser range noise. A total of 1000 groups of experiments were
independently performed under each level of range noise. The statistical results under different noise
levels for the extrinsic LRF calibration with respect to the control field and the camera are shown in
Figures 8 and 9, respectively.
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Figure 8. Rotation and translation errors for the extrinsic calibration of LRF with respect to the control
field under increasing range noise levels. (a) Rotation error and (b) translation error.

As shown in Figure 8, the mean and standard deviations of rotation and translation errors for
the extrinsic calibration of LRF with respect to the control field increase with the increase in the laser
range noise levels. Under 1 mm noise, the mean and standard deviation of rotation errors in the three
columns were 0.003◦, 0.014◦, 0.014◦ and 0.002◦, 0.011◦, 0.011◦, respectively, and under 30 mm noise,
they were 0.092◦, 0.632◦, 0.639◦ and 0.057◦, 0.445◦, 0.441◦, respectively. The mean of translation errors
increased from 0.714 mm to 32.045 mm, and the standard deviation of translation errors increased
from 0.555 mm to 22.653 mm. This finding demonstrates that the extrinsic LRF calibration with respect
to the control field was accurate and precise to range noise.Sensors 2019, 19, x FOR PEER REVIEW  14 of 23 
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The proposed scheme was performed with the range noise from 1 mm to 30 mm to evaluate the
impact of range noise on the extrinsic LRF calibration with respect to the camera. The statistical results
are shown in Figure 9. The mean and standard deviation of rotation and translation errors increased
with the increase in the range noise levels. The minimum mean and standard deviation of rotation
errors in the three columns were 0.009◦, 0.017◦, 0.019◦ and 0.005◦, 0.011◦, 0.011◦, respectively, and the
corresponding maximum values were 0.093◦, 0.632◦, 0.639◦ and 0.057◦, 0.446◦, 0.441◦, respectively.
The mean of translation errors increased from 0.870 mm to 32.055 mm, and the standard deviation
of translation errors increased from 0.521 mm to 22.658 mm. This finding indicates that the extrinsic
LRF calibration with respect to the control field was accurate and precise with respect to range noise.
In addition, the rotation and translation errors were approximately the same not only in the increasing
trend, as shown in Figures 8 and 9, but also in the above given values. This condition demonstrates
that the addition of image noise had a slight impact on the extrinsic calibration of LRF with respect
to camera.

The above analysis suggests that the addition of range noise has more influence than the addition
of image noise on the extrinsic calibration between camera and LRF. In addition, the rotation and
translation errors increased more rapidly with the increase in the laser range noise than with the
increase in image noise, as shown in Figures 7 and 9. Thus, we infer that the laser range noise had
more effect than image noise on the extrinsic calibration between the camera and the LRF.

3.1.3. Performance in Terms of Outliers

Outliers were added to the image and laser range, respectively, to test the robustness of the
proposed scheme. The noise levels were set the same as in Figures 7 and 9. Under each noise level, 3%
outliers were added, and outliers were set to a Gaussian noise with a mean equaling triple the noise
level, and a standard deviation equaling the noise level. A total of 1000 groups of experiments were
independently performed under each noise level, and the mean and standard deviation of translation
and rotation errors were calculated. The translation and rotation errors for the extrinsic LRF calibration
with respect to the camera with outliers in image noise and laser range noise are demonstrated in
Figures 10 and 11.
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As shown in Figure 10, although 3% of outliers were added in the image, the rotation and
translation errors remained small. Compared with Figure 7, in which no outliers were added, they had
the same increased trend. Under the noise level of 1 pixel, the mean and standard deviation of the
rotation and translation errors were almost the same with that in Figure 7. Under the noise level of
10 pixels, compared with the results shown in Figure 7, it had a 0.013◦, 0.009◦, and 0.011◦ increase in
the mean of rotation errors, 0.009◦, 0.002◦, and 0.004◦ increase in the standard deviation of rotation
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errors, 0.485 mm and 0.220 mm increase in the mean and the standard deviation of translation errors,
respectively. The absolute value and increase of the rotation and translation errors demonstrate that
the proposed scheme was robust with respect to the outliers in the image, and the outliers had almost
no impact on the calibration results under low noise levels.
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The performance of the proposed scheme with respect to the outliers in the laser range is shown
in Figure 11. Compared with the errors in Figure 9, in which no outliers were added, it had the same
increasing trend and a small increase in the values. Besides, it had a 0◦, 0.002◦, and 0.002◦ increase
in the mean of rotation errors, 0◦, 0.002◦, and 0.002◦ increase in the standard deviation of rotation
errors, 0.125 mm and 0.059 mm increase in the mean and the standard deviation of translation errors
under the noise level of 1 mm, and a 0.007◦, 0.078◦, and 0.080◦ increase in the mean of rotation errors,
0.008◦, 0.048◦, and 0.047◦ increase in the standard deviation of rotation errors, 4.304 mm and 2.194 mm
increase in the mean and the standard deviation of translation errors under the noise level of 30 mm.
The above analysis reveals that the proposed scheme was robust with respect to the outliers in the
laser range, and the robustness of the proposed scheme decreased with the increasing noise levels.

3.1.4. Comparison Experiments

The proposed scheme was compared with the state-of-the-art methods proposed by Hu [17] and
Zhang [5]. A total of 1000 groups of experiments were independently performed under each noise
level. The mean of rotation and translation errors for the camera calibration with respect to LRF under
different noise levels is shown in Table 1, and the standard deviations of rotation and translation errors
are shown in Table 2. As shown in Tables 1 and 2, the mean and standard deviations of rotation and
translation errors of our scheme was better than that of Hu’s and Zhang’s methods under the same
noise level. Moreover, as shown in Table 1, the maximum mean errors of our scheme were only greater
than the minimum mean errors of Zhang’s method, and greater than the two minimum mean errors of
Hu’s method. Besides, comparing the standard deviations of errors of the three methods in Table 2, we
can conclude the same as for the mean errors. Therefore, the proposed scheme was more accurate and
precise than Hu’s and Zhang’s methods.
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Table 1. Mean of the extrinsic calibration errors under different noise levels.

Noise level
Our Method Hu’s Method Zhang’s Method

Mean_ER
(degree)

Mean_ET
(mm)

Mean_ER
(degree)

Mean_ET
(mm)

Mean_ER
(degree)

Mean_ET
(mm)

Image Laser r1 r2 r3 T r1 r2 r3 T r1 r2 r3 T

1 1 0.009 0.017 0.019 0.870 0.206 0.082 0.228 15.154 0.299 0.621 0.492 27.927
1 15 0.047 0.249 0.253 12.648 0.216 0.266 0.371 21.589 0.449 0.914 0.720 41.039
1 30 0.096 0.612 0.619 31.110 0.235 0.613 0.684 36.694 0.774 1.334 0.954 54.503
5 1 0.044 0.050 0.058 2.379 1.091 0.389 1.188 80.052 1.365 3.035 2.520 139.077
5 15 0.065 0.255 0.261 12.920 1.030 0.466 1.172 77.240 1.602 3.174 2.472 135.330
5 30 0.101 0.612 0.620 31.004 1.093 0.716 1.398 89.015 1.751 3.464 2.720 151.035

10 1 0.086 0.100 0.114 4.603 2.173 0.786 2.367 158.666 3.385 5.933 4.451 246.641
10 15 0.097 0.284 0.294 14.313 2.157 0.813 2.367 158.466 3.307 6.235 4.815 272.386
10 30 0.128 0.637 0.648 31.908 2.052 0.965 2.362 155.465 3.459 6.625 5.024 286.594

Table 2. Standard deviation of the extrinsic calibration errors under different noise levels.

Noise level
Our Method Hu’s Method Zhang’s Method

Std_ER
(degree)

Std_ET
(mm)

Std_ER
(degree)

Std_ET
(mm)

Std_ER
(degree)

Std_ET
(mm)

Image Laser r1 r2 r3 T r1 r2 r3 T r1 r2 r3 T

1 1 0.005 0.011 0.011 0.521 0.151 0.053 0.145 9.877 0.199 0.321 0.354 19.859
1 15 0.027 0.184 0.182 9.297 0.157 0.195 0.197 11.089 0.335 0.485 0.505 27.727
1 30 0.057 0.440 0.436 22.316 0.158 0.449 0.425 21.273 0.553 0.667 0.678 39.164
5 1 0.024 0.028 0.030 1.114 0.818 0.247 0.785 54.093 0.957 1.629 1.706 92.758
5 15 0.037 0.181 0.179 9.011 0.748 0.311 0.719 48.512 0.979 1.449 1.650 94.119
5 30 0.060 0.442 0.437 22.119 0.805 0.469 0.753 50.433 1.320 1.788 1.786 97.304

10 1 0.050 0.056 0.062 2.165 1.567 0.497 1.506 102.691 2.315 2.817 2.714 151.223
10 15 0.056 0.188 0.185 9.043 1.591 0.521 1.531 103.585 2.433 3.228 3.200 177.354
10 30 0.074 0.452 0.447 22.193 1.586 0.644 1.517 101.520 2.546 3.143 3.290 185.319

3.2. Experiments with Real Data

An integrated sensor composed of cameras and LRFs, as shown in Figure 12, was used to calibrate
the extrinsic parameters by using the proposed scheme to verify its effectiveness in practical applications.
Indoor and outdoor scenes were collected to evaluate the performance of the proposed scheme.
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The integrated sensor in Figure 12 was composed of six cameras (placed on top of the system) and
three LRFs (placed at the bottom of the system). As an example, the extrinsic parameters between
camera 1 and LRF 1 in Figure 12 were calibrated in this experiment. The camera is Xiaoyi motion
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camera. It has an image resolution of 4608 × 3456 pixels, a focal length of 3.2 mm, and a field of view
of 145◦. The LRF is Hokuyo UTM-30LX-EM. It had a field of view of 270◦, an angular resolution of
0.25◦, and a measuring distance from 0.1 m to 30 m. The ranging accuracy was ± 30 mm for measuring
distance from 0.1 m to 10 m, and ±50 mm for measuring distance from 10 m to 30 m. The coordinate
system of the control field was built, as shown in Figure 1. The control field occupied a space of 3 × 5 m2.
A large number of control points were evenly distributed at different heights of poles. As shown in
Figure 1, three rows of poles and seven poles per row were found in the control field. Many control
points were distributed on the walls around the room. The 3D coordinates of the control points in
the control field coordinate system were previously measured by Sokkia NET 1005 total station, and
the root mean square error in the coordinates was 0.1 mm. The three angles of the room corners in
the photogrammetric control field were calculated by fitting three planes using the coordinates of the
control points in three walls. The three angles were 90.176◦, 90.220◦, and 90.135◦, respectively.

To calibrate the extrinsic parameters between the camera 1 and LRF 1 in Figure 12, the image and
range data of the two sensors were collected in the control field. Since the camera used was a fisheye
camera, the distortion of the image was rectified in advance, and the image after the rectification is
shown in Figure 13a. The image data captured a large number of control points, the ground plane, the
left and back wall planes, and the left-bottom corner of the control field. As shown in Figure 13b, the
LRF range data contained five lines, and the three lines marked by red text were the intersections of
the laser scanning plane and the three neighboring planes of the left-bottom corner.Sensors 2019, 19, x FOR PEER REVIEW  18 of 23 
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Figure 13. Image and range data for the extrinsic calibration between a camera and an LRF. (a) Image
and (b) LRF range data.

The extrinsic parameters between the camera and the LRF were calibrated using the proposed
scheme, and the calibration results were evaluated qualitatively and quantitatively. Considering
that the rigid transformation between two coordinate systems and the pin-hole geometric imaging
transformation were linear, the lines formed by the intersections of laser scanning plane and planes in
the scene remain as lines in the corresponding plane in the projected image. This feature was used for
qualitative evaluation of the results. To quantitatively evaluate the result, point-to-edge distance was
designed as demonstrated in Figure 14.
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Figure 14. Schematic diagram of point-to-edge distance.

As shown in Figure 14, the imaging of two intersecting planes are Π1 and Π2 in the image, and
the intersection line of Π1 and Π2 is L. The lines fitted by the laser points on the two planes are L1

and L2, respectively. The intersection of L1 and L2 is P′, and P is the projection of P′ on the image.
Point-to-edge distance is the distance from P to L. The smaller the point-to-edge distance is, the better
the result. The image coordinates of P are denoted as (xp, yp), and the equation of L is ax + by – c = 0,
we have the point-to-edge distance as follows

d =
‖axp + byp − c‖
√

a2 + b2
. (24)

Using the extrinsic parameters calibrated by the proposed scheme, Figure 15 shows the projection
results of the laser points on the image using the data in Figure 13, where the green, red, and blue lines
are composed of the projected LRF laser points of the left wall, ground, and back wall, respectively.
The three lines were correctly located on the corresponding planes, and the two intersections were
located on the intersection lines of the three planes. The point-to-edge distances in the image were
calculated to evaluate the calibration accuracy. The left and right point-to-edge distances were 0.5 and
0.3 pixels, respectively, thereby showing that the extrinsic calibration using the proposed scheme was
sufficiently accurate.
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Typical indoor and outdoor scenes were adopted to verify the effectiveness of the proposed
scheme and the accuracy of extrinsic calibration results. The calibration using Zhang’s method [5] and
Hu’s method [17] were performed for comparison. The indoor scene is shown in Figure 16. We used
two walls to help verify the accuracy of the calculated extrinsic parameters. The integrated sensor
was about 3 m away from the walls and shot the walls almost vertically. The camera and the LRF
captured the walls at the same time. The LRF laser points were projected on the image using our,
Zhang’s, and Hu’s extrinsic parameters, which were represented by yellow, blue, and green points,
respectively, in Figure 16. The yellow line was almost parallel to the adjacent horizontal line in the
wall, while the green and blue lines almost intersected the adjacent horizontal line. This condition
demonstrates that the rotation parameters calculated by our calibration scheme was more accurate
because the sensor shot the walls almost vertically. Then, we extracted the linking edge of the two
walls in the image, as shown by the black line in Figure 16. The intersection points, as shown by the
red points in Figure 16, were obtained by projecting the intersection points of two fitted laser lines
in the LRF coordinate system on the image. Finally, we calculate the point-to-edge distance. The
point-to-edge distance using our, Zhang’s, and Hu’s extrinsic parameters were 0.79, 27.60, and 11.13
pixels, respectively. This finding indicates that our calibration scheme was much more accurate.
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For the outdoor scene, we collected the image and range data of a building as shown in Figure 17.
The integrated sensor was about 9 m away from the target and shot the target obliquely. The projection
of the LRF laser points on the image are shown in Figure 17, in which the yellow, blue and green
represent the results using our, Zhang’s, and Hu’s extrinsic parameters, respectively. The yellow points
on the grey lamppost fit the two edges perfectly, while the blue and green points have a leftward offset
referring to the two edges. This finding demonstrates that our calibration result is the most accurate.
The linking edge and intersection point are also extracted, as shown in Figure 17. The point-to-edge
distance using our, Zhang’s, and Hu’s extrinsic parameters are 3.04, 25.06, and 18.19 pixels, respectively.
Our calibration scheme is apparently more accurate. All these experiments verify that our calibration
scheme using the photogrammetric calibration control field is more accurate in indoor and outdoor
applications whether the target is captured vertically or obliquely.
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4. Conclusions

With the use of a photogrammetric control field, this paper presents a robust and accurate
extrinsic calibration scheme between a camera and a 2D LRF which requires only one shot. Our
developed scheme references the two sensors to a common control field to achieve the state-of-the-art
performance of extrinsic calibration. First, the room corner of the control field is used to solve the
extrinsic parameters of the LRF with respect to the control field. Then, a large number of control points
are used to simultaneously calculate the intrinsic and extrinsic parameters of the camera with respect
to the control field. Finally, the extrinsic parameters between the camera and the LRF are calculated
based on the extrinsic parameters of the camera and the LRF with respect to the photogrammetric
control field. The elaborate designed photogrammetric control field provides not only accurate and
redundant control points for camera calibration, but also excellent trihedron structure to locate the
LRF in the control field. The experimental results verify that the proposed scheme is robust, accurate,
and precise, and outperforms the state-of-the-art methods. Experiments on real data verify that the
calibration results are effective in indoor and outdoor applications.

We suggest the following directions to further improve and evaluate the accuracy of the proposed
scheme in our future research.

1. By placing chessboards or equivalent ones around the control field and capturing images and laser
data from different poses, we can obtain more and closed-loop constraints which will improve
the accuracy of the extrinsic parameters.

2. We suggest adopting the methods in Reference [29,30] for camera calibration using the
photogrammetric control field to meet a higher accuracy requirement.

3. The accuracy and robustness of LRF calibration can be improved using redundant intersections.
By elaborately placing multiple trirectangular trihedrons in the control field, the laser scanning
plane of the LRF can simultaneously intersect each trirectangular trihedron with three lines, and
thus, the redundant intersections are obtained.

4. We recommend moving the integrated sensor on a vehicle or rotation platform to capture precise
movement information of the sensor and better evaluate the accuracy of the extrinsic parameters
in the object space.
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