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Abstract: Calderon’s method has been successfully used for the direct image reconstruction in
electrical capacitance tomography. In the method, the truncation radius adopted in numerical
integral greatly influences the reconstruction results. In the past, the truncation radius is selected as a
constant empirically according to the permittivity distribution pattern and noise level. In this paper,
the influence of the truncation radius in Calderon’s method on the reconstruction results was first
analyzed by numerical simulation. Then, a strategy for adaptive selection of the truncation radius was
proposed. The amplitude information of the elements in the scattering transform matrix computed
from the Dirichlet-to-Neumann (DN) map was used to determine the range for the truncation radius
selection, and the phase information was further used to select a proper truncation radius value
within this selection range. Finally, experiments were carried out to verify the strategy. Experimental
results showed that small relative image error and good visual effect could be obtained by using the
truncation radius selected by the proposed strategy.

Keywords: electrical capacitance tomography; industrial process tomography; direct image
reconstruction; Calderon’s method; truncation radius

1. Introduction

Electrical capacitance tomography (ECT) is an imaging technique to obtain the permittivity
distribution in the region of interest from capacitance measurements on the external boundary [1].
The ECT technique has been developed since the 1980s and widely used for process monitoring
in industrial applications, e.g., two-phase flow [2–4], fluidized beds [5] and flame monitoring [6,7].
Compared with other process tomographic techniques based on ultrasound, optics, X-ray and
gamma-ray, it has several advantages including low cost, rapid response, good portability and
radiation-free [8]. A typical ECT system usually consists of three main parts [9]: (1) An ECT sensor,
(2) a data acquisition and processing unit, and (3) a computer for image reconstruction.

With the ECT data acquisition system, the capacitances between every two electrodes of the
ECT sensor can be measured [10]. Then the permittivity distribution can be reconstructed by using
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a suitable reconstruction method. Because of the ‘soft-field’ property, the image reconstruction in
ECT, i.e., recovering permittivity distribution from surface capacitance measurements, is a non-linear
inverse problem and is severely ill-posed [11]. Therefore, the performance of image reconstruction
method is crucial to ECT.

In the literature, most image reconstruction methods are implemented based on the sensitivity
theorem [12], e.g., the one-step methods including linear back projection (LBP) method [13], Tikhonov
method, singular value decomposition (SVD) method [14] etc., and the iterative methods including the
Landweber method [15], algebraic reconstruction technique (ART) method [16], etc. These methods
have been widely used in many applications. However, the intrinsic ‘soft-filed’ property of ECT in the
sensing region is ignored in these cases [17].

Besides the sensitivity-based methods, another one-step method for direct image reconstruction
is introduced by Calderon [18] and has been successfully applied in ECT [17,19,20]. Unlike the
sensitivity-based methods, the boundary map matrix is used in the Calderon’s method and the
two-dimensional Fourier transform is applied to reconstruct the perturbations of the permittivity
distribution. Calderon’s method can provide the gray value at any pixel of the reconstructed image
using a direct and independent approach. It is time-saving as no matrix inversion or iterative process
is involved [19].

Several parameters need to be determined when using the Calderon’s method, i.e., the number of
electrodes, integral nodes and truncation radius used in the numerical integral. (1) If more electrodes
are used in ECT, the quality of the reconstructed image can be improved, but the hardware burden
will increase. The number of electrodes is generally selected as 12 or 16. (2) More integral nodes will
increase the accuracy of the integral process but result in a long computing time. In our previous
study, the number of integral nodes was selected as 30 [21]. (3) Increasing the truncation radius
will increase the high-frequency components in the reconstructed image, but also increase the image
noise. In practical applications, the truncation radius is usually set as a constant empirically at
present. However, when we apply the Calderon’s method to the monitoring of industrial processes,
e.g., two-phase flows [22], the selection of initial truncation radius greatly influences the reconstructed
results and the recognition of flow patterns. For example, it is appropriate to choose a small truncation
radius for laminar flows and a large truncation radius for core-type flows. Since the true distribution is
usually unknown, it is difficult to select a suitable truncation radius. Therefore, it is necessary to find a
method to adaptively select the truncation radius with respect to different permittivity distributions.

In this paper, the basic fundamental of the Calderon’s method is first presented. Then numerical
simulations are carried out to analyze the influences of the truncation radius in the Calderon’s method
on the reconstructed results with four typical permittivity distributions. A method is proposed to
adaptively select the truncation radius using the amplitude and phase information of the scattering
transform, which can improve the applicability of the Calderon’s method.

2. Calderon’s Method for Direct Image Reconstruction in ECT

For ECT, the governing equation of the sensing field, denoted by Ω, is:

∇ · ε(z)∇ϕ(z) = 0 (1)

where z represents the point with coordinates (x, y). ε(z) and ϕ(z) are the permittivity and electrical
potential at z. Figure 1 shows a typical ECT sensor.

According to the divergence theorem, the relationship between the integrals of the spatially
varying permittivity and voltage and current measurements on the boundary is:∫

Ω
υ(z)∇ · ε(z)∇ϕ(z)dz =

∫
∂Ω
υ(z)ε(z)

∂ϕ(z)
∂n

dl−
∫

Ω
∇υ(z) · ε(z)∇ϕ(z)dz = 0 (2)
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where υ(z) is an arbitrary continuous function in L2-space and dl is the measured arc length on
the boundary.

The Dirichlet-to-Neumann (DN) map takes the given voltage distribution on the boundary to
the current density distribution, which is also called the voltage-to-current-density map and can be
expressed as:

Λε : ϕ(z)|∂Ω → ε(z)
∂ϕ(z)
∂n
|∂Ω (3)

where Λε denotes the DN map when Ω contains ε(z). Equation (2) can be rewritten as:∫
Ω
ε(z)∇υ(z) · ∇ϕ(z)dz =

∫
∂Ω
υ(z)Λε[ϕ(z)]dl (4)

For a disturbed permittivity ε(z) = 1 + δε(z), if this change only exists in Ω and ϕ1+δε(z) ≈ ϕ1(z),
we obtain: ∫

Ω
δε(z)∇υ(z) · ∇ϕ1(z)dz ≈

∫
∂Ω
υ(z)(Λ1+δε −Λ1)[ϕ1(z)]dl (5)

In Calderon’s method, we construct that ϕ1(z) = eikz and υ(z) = ei
−

kz. The right side of Equation (5)
is defined as the scattering transform, t(k), and k = k1 + ik2. Then Equation (5) becomes:

t(k) ≈
∫

Ω
δε(z)∇υ(z) · ∇ϕ1(z)dz = −2(k2

1 + k2
2)

x

Ω

δε(x, y)e−i(−2k1,2k2)·(x,y)dxdy (6)

here, the scattering transform can be regarded as the two-dimensional Fourier transform of the
permittivity distribution.

Then the permittivity change can be obtained by using inverse Fourier transform,

δε(x, y) ≈
1

2π2

x

R2

t(k1 + ik2)

k2
1 + k2

2

ei(−2k1,2k2)·(x,y)dk1dk2 (7)

In the polar coordinates of parameters r and θ, Equation (7) can be rewritten as:

δε(x, y) ≈
1

2π2

∫ R

0

∫ π

−π

t(reiθ)

r
ei2r(−cosθ,sinθ)·(x,y)dθdr (8)

where R is the truncation radius of the region used in the numerical integral.
The scattering transform has been approximated and linearized to provide practical and simpler

implementations in the D-bar method [23]. Since Calderon’s method is an approximation of the D-bar
method, the approximation method of scattering transform t(k) is also used here. When we consider
the noise in practical measurements, t(k) needs to be truncated, which can be expressed by:

t(k) ≈


∫
∂Ω ei

−

kz(Λ1+δε −Λ1)eikzdl, |k| ≤ R
0, |k| > R

(9)

The truncation radius, R, is the upper limit of the frequencies in the inverse Fourier
transform process.
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Figure 1. A typical electrical capacitance tomography (ECT) sensor. Figure 1. A typical electrical capacitance tomography (ECT) sensor.

3. Adaptive Selection of Truncation Radius

3.1. Influence of the Truncation Radius on Reconstructed Results in Spatial Domain

In Calderon’s method, three parameters need to be pre-determined, i.e., the number of electrodes,
integral nodes and truncation radius used in the numerical integral. As the integral nodes have been
studied and selected as 30 in our previous work, the number of electrodes and truncation radius were
analyzed here. In the following, four typical permittivity distributions, i.e., core, multiple objects,
annular and stratified, were simulated, as shown in Figure 2a–d. The red color represents the region
with high permittivity (ε = 3) and the blue color represents the region with low permittivity (ε = 1).
The finite element method (FEM) was used to solve the forward problem, i.e., to obtain the boundary
capacitance values from different permittivity distributions.

From Equation (4), increasing the number of electrodes in ECT can improve the computational
accuracy of the scattering transform. However, increasing the number of electrodes will increase the
hardware burden. To analyze the influences of the number of electrodes on the reconstructed results,
the variations in the relative image errors against the number of electrodes for the typical permittivity
distributions are shown in Figure 2e. The relative image error between the true permittivity distribution
and reconstructed image can be expressed by:

err =
‖gr − g‖
‖g‖

(10)

where err is the relative image error, gr is the true permittivity distribution and g is the reconstructed
permittivity distribution. The truncation radii are selected as 6, 5, 2.4 and 2.4 for the four permittivity
distributions, respectively.

Figure 2e shows that the relative image errors decrease significantly if the number of electrodes
changes from 8 to 16. When the number of electrodes is larger than 16, the relative image errors only
change a little bit. With consideration of the hardware burden and image quality, the number of
electrodes is selected as 16 in this paper.
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Figure 2. Four typical permittivity distributions: (a) Core, (b) multiple objects, (c) annular and (d) 
stratified. (e) Relative image errors against number of electrodes for the four distributions. 
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Figure 2. Four typical permittivity distributions: (a) Core, (b) multiple objects, (c) annular and
(d) stratified. (e) Relative image errors against number of electrodes for the four distributions.
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Then the influences of the truncation radius on the reconstructed results are investigated.
The reconstructed images of different permittivity distributions with different truncation radii and
without noise are shown in Figures 3a–6a. The black dotted lines represent the edges of the original
region with high permittivity. The reconstructed radially symmetric permittivity distributions along
the x- or y-axis are shown in Figures 3b–6b. The reconstructed permittivity is normalized by dividing
the maximum permittivity and setting the negative permittivity to 0. The negative permittivities are
retained in these figures to show the influence of R.
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The relationship between the relative image error and the truncation radius with different
permittivity distributions is shown in Figures 3c, 4c, 5c and 6c. The simulated capacitance values are
contaminated with noise of relative magnitude 0.01% and 0.1%. The error bars are plotted using the
standard deviations, which are calculated by repeating the reconstruction with noise-contaminated
capacitance values for 100 times.

In Figures 3a and 4a, a small R means that the reconstructed image contains few high
frequency components. In the reconstructed images, the low frequency components contribute
to the slowly-changing part, which represents the general overview and contour of the image. A large
R means that the reconstructed image contains more high frequency components. More high frequency
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components can reconstruct sharp changes between adjacent image areas, such as edges and details in
the image. However, more high frequency components also give rise to more noise. Therefore, it is
important to select an appropriate R to make a trade-off in the Calderon’s method.

In Figure 3b, with R increasing, the slope of the normalized permittivity curve increased and
the fluctuation of permittivity on the edge increased. In Figure 4b, with R increasing, the centers
of the reconstructed circles became closer to the position of x = 0. When R = 4, the locations of the
reconstructed circles were more accurate. By visual inspection, the suitable R was between 4 to 5 for
core-type and multiple-object-type distributions.

In Figures 3c and 4c, the truncation radius greatly influenced the relative image error. The truncation
radii obtained using the minimum errors without noise for core-type and multiple-object-type distributions
were 6.6 and 5.3. When the noise level increased, R with the minimum error decreased.

With consideration of the visual effect of the reconstructed image and the relative image
errors, the truncation radius should be selected within a range between 4 and 6 for core-type
and multiple-object-type distributions.

Figures 5 and 6 show the reconstructed results of annular and stratified permittivity distributions.
Unlike the core-type and multiple-object-type permittivity distributions, the region of high permittivity
was on the edge of the sensing region. With consideration of the visual effect of the reconstructed
image and the relative image errors, the truncation radius should be selected between 2 and 4, which
were lower than that for core-type and multiple-object-type distributions.

The above analysis shows that the truncation radius cannot be set as a constant for ECT in various
industrial applications. It is necessary to find a method to adaptively select a suitable R.

3.2. Influence of the Truncation Radius on Scattering Transform in the Frequency Domain

In this section, R was analyzed in the frequency domain. Equation (9) provides an approximation
of t(k) in a grid inside the disc |k| < R. t(k) needs to be truncated by selecting a suitable R, which acts as a
low-pass filter. Since the image reconstruction process, i.e., the calculation of δε(x, y), can be regarded
as the two-dimensional inverse Fourier transform of:

F(r,θ) =
t(reiθ)

2r
(11)

the truncation radius, R, plays a role of limiting the frequencies in the inverse Fourier transform process.
Increasing R means that the reconstructed images contain more high frequency components and the
contours and boundary details of the objects become clearer. However, the noises and artifacts increase
with R increasing.

Let us consider the spectral information of the reconstructed image, i.e., amplitude distribution
and phase distribution of F. The amplitude distributions of F for different permittivity distributions are
shown in Figure 7.
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To clearly show the variation tendency of the amplitude of F in Figure 7, the relationship between
the truncation radius and the mean amplitude of F is shown in Figure 8. The mean amplitude of F is
calculated by:

Fa(r) =

2π∑
θ=0

mag(F(r,θ))

N
(12)

where mag() is the amplitude value of a complex number and N is the number of θ.
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In Figure 8, the amplitude values without noise increased by a large scale from a fixed value of 
( )aF r , e.g., 5. If the noise level increases, the corresponding truncation radius decreases when ( )aF r = 

5. The values of F located in the neighborhood of R = 0 were less affected by the noise. Then the 
maximum R could be determined by selecting a fixed mean amplitude value of F. For example, if 
this mean amplitude value was 5, the maximum truncation radii for the four distributions were 
lower than 8. 
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distributions, which are shown in Figure 9. 
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Figure 8. Mean amplitude of F against the truncation radius for different permittivity distributions:
(a) Core, (b) multiple objects, (c) annular and (d) stratified.

In Figure 8, the amplitude values without noise increased by a large scale from a fixed value of
Fa(r), e.g., 5. If the noise level increases, the corresponding truncation radius decreases when Fa(r) = 5.
The values of F located in the neighborhood of R = 0 were less affected by the noise. Then the maximum
R could be determined by selecting a fixed mean amplitude value of F. For example, if this mean
amplitude value was 5, the maximum truncation radii for the four distributions were lower than 8.

Then we considered the absolute phase distributions of F for different permittivity distributions,
which are shown in Figure 9.
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Then the mean phase of F is calculated by:

Fp(r) =

2π∑
θ=0

∣∣∣angle(F(r,θ))
∣∣∣

N
(13)

where angle() is the phase value of a complex number. Then the relationship between the truncation
radius and mean phase value of F is shown in Figure 10.
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In Figure 10a,b, for the core-type and multiple-object-type distributions without noise, there 
existed one wave crest in the phase curve, and the peak value of phase located in the interval 
between R = 4 to R = 6. If the noise level becomes larger, the truncation radius becomes lower to reach 
the peak value. For the annular and stratified distributions in Figure 10c,d, there existed two wave 
crests in the phase curve, and the two peak values of phase locate in the intervals between R = 2 to 4 
and 4 to 6. If the noise level becomes larger, the second wave crest is not obvious but the first wave 
crest still exists. From the reconstructed results in Section 3, the peak value of the absolute phase 
curve could be used as an index to select a suitable truncation radius. 
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Figure 10. Absolute phase value of F against the truncation radius for different permittivity distributions:
(a) Core, (b) multiple objects, (c) annular and (d) stratified.

In Figure 10a,b, for the core-type and multiple-object-type distributions without noise, there
existed one wave crest in the phase curve, and the peak value of phase located in the interval between
R = 4 to R = 6. If the noise level becomes larger, the truncation radius becomes lower to reach the peak
value. For the annular and stratified distributions in Figure 10c,d, there existed two wave crests in
the phase curve, and the two peak values of phase locate in the intervals between R = 2 to 4 and 4 to
6. If the noise level becomes larger, the second wave crest is not obvious but the first wave crest still
exists. From the reconstructed results in Section 3, the peak value of the absolute phase curve could be
used as an index to select a suitable truncation radius.

3.3. Adaptive Selection of the Truncation Radius

R can be theoretically selected as [24]:

R = −
1

10
log δ (14)
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where δ is the noise level. However, the suitable R for practical applications is generally much larger
than the theoretical choice. In electrical impedance tomography for medical applications, R is usually
selected between 4 and 6 empirically. Regarding ECT for industrial applications, the permittivity
distribution changes dramatically. As described in the previous section, the choice of R in medical EIT
is not suitable for annular and stratified distributions any more.

From the above analysis, the amplitude and phase information of F can be combined to determine
a suitable truncation radius. Firstly, the scattering transform t(k) is computed from the DN map.
Then the truncation radius is selected using the following strategy for adaptive selection of R, as shown
in Figure 11. When t(k) is obtained, the maximum R can be determined by a fixed mean amplitude of F
and the minimum R can be set as a constant, which was selected as 2 in this paper. In this selection
range of R, the peak value of Fp(r) could be detected and used to select the corresponding R.
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Figure 11. Flowchart of the strategy for adaptive selection of truncation radius.

The schematic diagram of Calderon’s method with adaptively selected truncation radius is shown
in Figure 12. The capacitance values were measured by the ECT data acquisition system and used to
construct the DN map. Then t(k) was computed from the DN map and R was selected by the proposed
strategy. Finally, the permittivity change could be obtained by using Equation (8) with the selected R.
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Figure 12. Schematic diagram of Calderon’s method with adaptively selected truncation radius.

R selected by the proposed method and the corresponding relative errors for the four permittivity
distributions are shown in Table 1. The minimum relative errors were obtained using R between 2 to
8 with a step of 0.1 for the four permittivity distributions, and the corresponding R are also shown
in Table 1 for comparison. When the simulated capacitance values were contaminated with noises,
the truncation radii and relative errors were the mean values from 100 times calculations.

Comparing Figures 3 and 4 and Table 1, the truncation radii selected by the proposed method
were in the suitable range between 4 to 6 for the core-type and multiple-object-type distributions,
although they brought relatively higher image errors than the actual minimum errors. The truncation
radii selected by the proposed method were lower than those with the minimum errors. However, with
the selected R, fewer artifacts existed in the reconstructed images and the locations of the reconstructed
circles were more accurate, which are beneficial for flow pattern recognition. When the noise level
increased, the suitable truncation radius decreased.

For the annular and stratified distributions, the truncation radii selected by the proposed method
were very close to those obtained according to the minimum errors, which were also in the suitable
range between 2 to 4. The noise level had less impact on the selection of truncation radius for the
annular and stratified distributions.
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Table 1. Comparison of the relative errors and truncation radii obtained by the proposed method with
those obtained according to the minimum relative error.

R Selected by
the Proposed

Method

Relative Error
Using the
Selected R

R with
Minimum

Relative Error

Minimum
Relative Error

Core
without noise 5 50% 6.6 42%
0.01% noise 4.9 52% 3.1 45%
0.1% noise 4.7 59% 2.8 45%

Multiple
objects

without noise 4.1 75% 5.3 61%
0.01% noise 4.1 80% 5.2 62%
0.1% noise 3.8 96% 4.3 78%

Annular
without noise 2.4 23% 2.8 21%
0.01% noise 2.4 23% 2.8 21%
0.1% noise 2.2 30% 2.7 22%

Stratified
without noise 2.4 39% 1.9 38%
0.01% noise 2.4 39% 1.9 38%
0.1% noise 2.4 39% 1.9 38%

4. Experimental Results

In this section, experiments were carried out to evaluate the performance of the proposed method.
The number of electrodes in the ECT sensor was selected as 16. The inner diameter of the sensor
was 100 mm and the length of the electrode was 120 mm, as shown in Figure 13a. The ECT system
developed by Beihang University was used to measure the capacitance values between every two
electrodes of the ECT sensor, as shown in Figure 13b. The signal-to-noise ratio (SNR) of the capacitance
measurement with the ECT system was larger than 50 dB for the 16-electrodes sensor.
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Figure 13. (a) ECT sensor and (b) ECT data acquisition system.

Similar to the simulation process, several typical permittivity distributions were constructed.
Cylindrical nylon rods were used to construct the core-type and multiple-object-type distributions, i.e.,
D1 to D3. Several 3D-printed models and a certain amount of fine sand were used to construct the
square-shaped, V-shaped, stratified and annular distributions, i.e., D4 to D9. The permittivities of the
plastic rods and sand were about 3.

The permittivity distributions were reconstructed using the measured capacitance values and
Calderon’s method with the proposed strategy for truncation radius selection. The truncation
radius selected by the proposed method was denoted as R_s. The photos, cross-sectional views and
reconstructed images of the core-type and multiple-object-type distributions are shown in Figure 14.
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larger than R_s, more artifacts appeared, which meant that the high-frequency noise was introduced 

Figure 14. Photos, cross-sectional views and reconstructed images of different permittivity distributions
from D1 to D5 with different truncation radii.

The selected truncation radii were 4.9, 4.4, 5.1, 3.7 and 5 for the distributions D1 to D5. From the
visual point of view, when R was smaller than R_s, the reconstructed high-permittivity regions were
excessively large. The low frequency components provided more slow-changing parts. When R was
larger than R_s, more artifacts appeared, which meant that the high-frequency noise was introduced with
R increasing. The high frequency components brought sharp changes between adjacent image areas.

The photos, cross-sectional views and reconstructed images of the stratified and annular
distributions are shown in Figure 15.
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Figure 15. Photos, cross-sectional views and reconstructed images of different permittivity distributions
from D6 to D9 with different truncation radii.

For the stratified and annular distributions D6 to D9, the selected truncation radii were 2.6, 2.6, 2.7
and 3.2, which were much smaller than those selected for distributions D1 to D5. By visual inspection,
the selected truncation radii were also suitable for flow pattern recognition. It should be noted that the
reconstructed images were visually good as well when R was a little larger than R_s, e.g., R_s + 1.

To evaluate the reconstructed results with the selected truncation radius quantitatively, the
relationship between the relative image errors and the truncation radius are shown in Figure 16.
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Figure 16. Relative image errors against the truncation radius for different permittivity distributions
from (a) D1 to D5 and (b) D6 to D9.

From Figure 16, the relative errors using the selected R could be obtained, as shown in Table 2.
Then we could obtain the minimum relative image errors for the permittivity distributions D1 to D9,
and the corresponding truncation radii, which are also shown in Table 2 for comparison.

Table 2. Comparison of the relative errors and truncation radii obtained by the proposed method with
those obtained according to the minimum relative error.

R Selected by the
Proposed Method

Relative Errors Using
the Selected R

R with Minimum
Relative Errors

Minimum
Relative Errors

D1 4.9 48% 3.2 45%
D2 4.4 53% 4.6 52%
D3 5.1 57% 4.4 52%
D4 3.7 57% 3.8 57%
D5 5 60% 4 52%
D6 2.6 46% 3 45%
D7 2.6 41% 2.7 41%
D8 2.7 44% 2 42%
D9 3.2 32% 2.8 30%

For all the distributions except for D3 and D5 in Table 2, the differences between the relative errors
using the proposed method and the minimum relative errors were lower than 3%. For the distributions
D3 and D5, the images reconstructed by the proposed method could reflect better contours of the objects,
compared to the images with the minimum relative errors. There existed some contradictions between
the visual effect of the reconstructed image and the relative image errors. The reason may be that
there existed geometrical errors in the true distributions used for error calculation. With consideration
of a tradeoff between the relative image error and visual effect, the truncation radii selected by the
proposed method were in proper selection range.

5. Conclusions

A strategy for adaptive selection of the truncation radius was proposed by using the amplitude
and phase information of the scattering transform. The following conclusions were drawn.

(1) A small truncation radius means that the reconstructed image contains few high frequency
components. The low frequency components contribute to the slowly-changing part in the image.
If the truncation radius becomes larger, the images contain more high frequency components
and the contours and boundary details of the objects become clearer. However, the noises and
artifacts increase;
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(2) The permittivity distributions can be divided into two categories, i.e., the core-type and the annular
distributions. For the core-type permittivity distributions, i.e., the region of high permittivity is
enclosed by a continuous region of low permittivity, the truncation radius should be between
4 and 6 to obtain a better image quality. For annular and stratified distributions, i.e., the region
of high permittivity contacts the boundary of the sensing region, the suitable truncation radius
should be between 2 and 4, which is much lower than that for core-type distributions. For a
higher noise level, a smaller truncation radius should be selected;

(3) The amplitude and phase information of the scattering transform are combined to determine a
suitable truncation radius. The experimental results show that small relative image error and good
visual effect can be obtained by using the truncation radius selected by the proposed method.

The main contribution of this paper was that a suitable truncation radius in Calderon’s method
for direct image reconstruction could be adaptively obtained by using the information of scattering
transform, without the need of the true distribution pattern. The scattering transform can be directly
computed from the measured capacitance values, which makes the proposed method easy to implement
and useful in industrial applications.
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