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Abstract: A novel satellite target recognition method based on radar data partition and deep learning
techniques is proposed in this paper. For the radar satellite recognition task, orbital altitude is
introduced as a distinct and accessible feature to divide radar data. On this basis, we design a new
distance metric for HRRPs called normalized angular distance divided by correlation coefficient
(NADDCC), and a hierarchical clustering method based on this distance metric is applied to segment
the radar observation angular domain. Using the above technology, the radar data partition is
completed and multiple HRRP data clusters are obtained. To further mine the essential features
in HRRPs, a GRU-SVM model is designed and firstly applied for radar HRRP target recognition.
It consists of a multi-layer GRU neural network as a deep feature extractor and linear SVM as a classifier.
By training, GRU neural network successfully extracts effective and highly distinguishable features
of HRRPs, and feature visualization technology shows its advantages. Furthermore, the performance
testing and comparison experiments also demonstrate that GRU neural network possesses better
comprehensive performance for HRRP target recognition than LSTM neural network and conventional
RNN, and the recognition performance of our method is almost better than that of other several
common feature extraction methods or no data partition.

Keywords: radar automatic target recognition (RATR); high resolution range profile (HRRP); deep
learning; radar data partition; gated recurrent unit (GRU)

1. Introduction

Space target recognition is a primary function of space surveillance information systems, and
satellite recognition is of critical importance on this study, especially for observation satellites. However,
few open research achievements have been reported. The difficulty of this problem is that satellites are
simply too small or too far away for detailed information to be recognized, and it is relatively hard to
obtain effective identification data. With the development of wideband radar, not only can we locate
the target position, but also get other useful radar data of targets, such as high-resolution range profile
(HRRP) and inverse synthetic aperture radar (ISAR) image [1,2]. An HRRP is the phasor sum of the
time returns from different scatterers on the target located within a resolution cell [3], which represents
the projection of the complex returned echoes from the target scattering centers onto the range axis [4].
It contains lots of geometric structure information about the target down range, such as scatterers
distribution and target size. In addition, compared with ISAR image, HRRPs have the advantages
of easy acquisition, storage and processing. That’s why radar HRRP target recognition has gained
high attention from radar automatic target recognition (RATR) community [5-7]. In summary, this
paper focuses on the satellite target recognition based on radar data and proposes a novel recognition
method, which mainly consists of data partition and deep learning model.
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Feature extraction and selection is a basic and crucial technology for radar target recognition
research. It is significant to adopt reasonable and effective features to improve recognition performance.
Currently, the targets of HRRP recognition research are basically about ground or aviation targets,
such as tanks and airplanes [8-15]. Satellites, as an important space target, have different motion
characteristics, one of which is that their motion must follow Kepler’s law. Besides, because the fuel
carried by satellites is limited, the orbital maneuver range of most satellites is restricted, which makes
satellite orbits relatively stable [16,17]. Orbit information is easily accessible and non-burdensome
because target range and position measurement is a basic function of radar, therefore, orbit information
is a distinct and accessible feature for recognizing the satellites whose eccentricity is very small,
and could be introduced into radar data partition when multiple satellites need to be recognized.
In addition, radar observation pitch and azimuth angles are also important and helpful information.
Utilizing radar observation angles has many benefits for target recognition, such as reducing search
range and computation, relaxing attitude sensitivity and improving recognition rate [18,19]. Radar
observation angular domain division have been studied in [8,11,20,21]. Uniform frame segmentation
method is used in [8,11] but has been proved simple and unreasonable [22]. Angular domain division
method based on statistical characteristics is studied in [20], but it would generate many matching
templates and need huge computation burden and storage requirement. Correlation coefficient is
firstly introduced to solve this problem in [21] and could measure similarity between HRRPs to a
certain extent. However, other information may also be helpful to measure similarity and could be
applied, such as angular distance. Therefore, for the data partition, the proposed method will utilize
orbit information as a powerful feature, and a hierarchical clustering method with a novel distance
metric, namely normalized angular distance divided by correlation coefficient (NADDCC), will be
applied to segment radar angular domain.

In addition to the above available satellite and radar information, it is still necessary to further
mine information in HRRP data to raise the recognition accuracy. Many studies have been done
on HRRP feature extraction and selection methods. In the early days, researchers often calculated
FFT-magnitude, power spectrum and a variety of high-order spectrum of HRRP data, and used them
as the features of classifier for target recognition [8-10]. Although these engineered features could
play a part in target recognition, they are dependent on researchers” experience and techniques. Other
than the features of artificial selection, machine learning algorithms have been widely utilized to
extract features based on high-dimensional HRRP data [11-15]. Principal component analysis (PCA)
is applied to extract the complex HRRPs’ feature subspace within each target-aspect sector in the
literature [11]. Dictionary learning is adopted to extract the features of HRRP data, which possess
high noise-robust and discrimination [12,13]. Manifold learning is employed to reduce the feature
dimensions of radar HRRP [14,15]. These methods can extract appropriate features in some cases, but
they are all shallow architectures that may not represent the essence of radar HRRP. Thereby, how to
automatically extract the deep abstract features, which can play an important role in target recognition,
has become a significant research issue.

The deep learning theory [23] advanced by Hinton could solve the abovementioned problem
effectively. Deep learning allows computational models that are composed of multiple processing
layers to learn representations of data with multiple levels of abstraction [24]. Because of its powerful
recognition or prediction ability, deep learning methods have consistently been used in many
applications, such as computer vision [25], speech recognition [26], networking and health care [27-29].
Some deep learning structures applied in several recent papers have been demonstrated useful for
radar target recognition, such as autoencoder and its varieties [30,31], convolutional neural network
(CNN) [32] and recurrent neural network (RNN) [33,34]. Due to the unique structure of RNN, it has
been widely applied to process sequential data, such as action recognition [35], scene labelling [36],
and language processing [37], and has achieved impressive results [38]. However, it is founded that
simple conventional RNN could not learn on a wide range of dependencies, and gradients of distant
time steps do not play a role in learning because of gradient vanishing. To solve this problem, long
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short-term memory (LSTM) and gated recurrent unit (GRU) architecture have been designed to learn
long term reliance on sequential data. GRU is a variety of LSTM and retains the LSTM’s resistance to
the problem of gradient vanishing. Moreover, the internal structure of GRU is simple and it requires
less computation to update the hidden state, which makes the training speed faster [37,39,40]. So GRU
neural network will be applied in this satellite recognition method to extract and select the deep
abstract features of radar sequential HRRP data.

In this paper, a novel satellite target recognition method is proposed based on radar data. This
method could make full use of radar data and apply deep learning technology to extract highly
distinguishable features. Its features are summarized as follows:

(a) Satellite orbital altitude is introduced as a distinct and accessible feature for radar data partition;

(b) Radar observation angles information is fully utilized, and a hierarchical clustering method
based on a new distance metric (NADDCC) is applied to segment angular domain to improve
recognition rate;

(c)  Anovel end-to-end GRU-SVM model is designed, which uses radar HRRP data as input and
target class as output, and firstly applied to identify targets based on radar HRRP data. GRU
neural network is applied as a deep features extractor and support vector machine (SVM) is
used as a classifier in this model. Compared with some deep neural networks such as CNN,
autoencoder and denoising autoencoder, and shallow learning algorithms such as PCA [11],
dictionary learning [12,13] and manifold learning [14,15], the presented model can extract the
deep abstract features of HRRPs and obtain better recognition results.

The rest of this paper is organized as follows: in Section 2, the information contained in satellite
orbit and radar data is analysed. In Section 3, we introduce GRU, SVM and the construction of
the GRU-SVM model, and present the overall flow chart of this recognition method. In Section 4,
recognition results are provided and the performance under different recognition methods and
conditions is compared and analysed. In Section 5, some conclusions are drawn.

Notations: To simplify the presentation, we define the following notations used in this paper.
We use bold lower case letters to represent a vector, e.g., p € CP, and use bold upper case letters to
represent a matrix, e.g.,, M € C™I. The acronyms used in this paper are summarized in Table 1 for the

sake of readability.
Table 1. List of the acronyms used in this paper.
Acronym Definition
GRU Gated Recurrent Unit
HRRP High Resolution Range Profile
SVM (LSVM) (Linear) Support Vector Machine
RATR Radar Automatic Target Recognition
ISAR Inverse Synthetic Aperture Radar
NADDCC Normalized Angular Distance Divided by Correlation Coefficient
PCA Principal Component Analysis
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
MTRC Migration Throuth Resolution Cells
RCS Radar Cross Section
MAE Mean Absolute Error
AE AutoEncoder

DAE Denoising AutoEncoder
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2. Analysis of Satellite and Radar Information

2.1. Description and Preprocessing of HRRP

HRRP is the amplitude of echo summation for target scattering centers in each range cell of
wideband radar. Figure 1 shows the illustration of a HRRP sample from a satellite target. High
resolution radar operates in microwave frequency band, and the size of targets or their components
is much larger than the wavelength of radar. In this case, the echo characteristics of targets can be
calculated by using a simplified scattering center model [3,4,9,41,42]. Therefore, for complex targets
such as a satellite, the projection of an object on radar line of sight can be divided into many range cells
by high resolution radar. According to the scattering center model, the scatterers in different range
cells will rotate in the same way when a satellite target rotates, which causes that the echo amplitudes
between range cells have certain correlation. Besides, windowing processing of the returned echoes
before getting HRRP data and multiple reflections phenomena of measured HRRP data would enhance
the correlation between adjacent range cells. Therefore, there is a certain temporal correlation between
range cells and radar HRRP could be seen as sequential data, which is suitable to be learned by
RNN-based neural networks.

Line of Sight (LOS)

Range Cell Scatterers

Figure 1. Illustration of a HRRP sample from a satellite.

The radar signatures, which return from multiple scattering centers within the same range
cell, will be coherently summed as a single signature for that range cell. According to related
literature [3,9], suppose the transmitted signal is s(t)el?"ct, the n — th complex echo in the d — th range
cell(d =1, 2, ---, D) in the baseband can be approximated as:

Lg
Xa(t, n) ~s(t) Y oge I/ MRMFA s )
i=1

where s(t) is the complex envelop which could be approximated as unchanged for all scatterers in
one range cell. A represents the wavelength of wideband radar and £, is the carrier frequency of radar
signal. Lgq denotes the number of scatterers in the d — th range cell. og4; represents the intensity of
the i — th scatterer in the d — th range cell. R(n) is the radial distance between the radar and target
reference center in the n — th echo. Ayg;(n) is the radial displacement of the i — th scatterer of the d — th
range cell in the n — th echo. Usually, s(t) is a rectangular pulse signal with unit intensity and could be
omitted. After eliminating the initial phase of the n — th echo e J47/AR(0) the n — th HRRP can be
defined as:
x(n) = [x1(),x2(n), - -, xp(n)]

— “Z}:ll o3P | 'Z}il G2
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Several sensitivity issues of HRRP should be focused on when the HRRP target recognition
task is carried out. The first one is time-shift sensitivity. To decrease the computation complexity,
HRRP is only a portion of received radar echo extracted by a range window, which contains the
target signal. Thus the position of the target signal in HRRP would change with the measurement.
However, it would be better for feature learning that all the training samples meet a uniform parameter
model. So we adopt envelope alignment method [43] as time-shift compensation technique in this
paper, which is achieved based on the summation average of multiple HRRPs cross-correlations.
The second one is amplitude-scale sensitivity. It is caused by the fact that many factors could influence
the intensity of an HRRP, such as target distance, radar transmitting power, radar antenna gain, radar
receiver gain and radar system losses. It makes that HRRPs measured by different radars or under
different conditions would have different amplitude-scales. In order to deal with amplitude scale
sensitivity, each HRRP is normalized by energy normalization method [3,9]. Suppose an HRRP is
defined as x(n) = [x1(n), x2(n), - -, xp(n)], then its energy normalization preprocessing result x(n) is

shown as follows:
= [x(n), xz(n), -+, xp(n)]
x1(n) xa(n) .. xp(n) @)
VER a2 52 2 IR, )
After the above preprocessing step, the HRRP sample examples of satellites are shown in Figure 2.

The last and toughest one is called target-attitude sensitivity. This issue will be analyzed in detail in
Section 2.3 and further alleviated.
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Figure 2. HRRP sample examples of satellites. (a) HRRP sample example of satellite No.1; (b) HRRP
sample example of satellite No.2.

2.2. Analysis and Statistics of Satellite Orbit

Currently, thousands of artificial satellites move around the Earth for the purposes of
communication and navigation, information relay, missile warning, on-orbit service and so on. Among
them, observation satellites are the key targets, which need to be identified for space surveillance
information systems. Unlike ground or aviation targets, satellites’ motion must follow Kepler’s law,
that is, they basically move along certain orbit. As shown in Figure 3a, satellite orbit is mainly described
with the following parameters:

(1) Semi-major axis (a): the distance from the apogee or perigee to orbital center which describes the
size of satellite orbit;

(2)  Eccentricity (e): describes the shape of satellite orbit;

(3) Inclination (i): the angle between the orbital plane and the equatorial plane which determines the
accessible area of a satellite;

(4) Longitude of ascending node (Q)): the right ascension at the intersection of the orbital plane and
the equatorial plane.
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(5) Argument of perigee (w): angular distance of orbit perigee and ascending node.

Based on the above parameters, the altitude range of a satellite can be computed by:

Hmax = a'(l + e) -Re
{ Hppin = a:(1 = ¢) = R, @)

where Hpax and Hyyin respectively refer to the maximum and minimum altitude of a satellite. Re denotes
the radius of Earth. In this way, the variation of satellite altitude difference with eccentricity can be
calculated when the value of semi-major axis is given, as shown in Figure 3b. It can be seen that only
when eccentricity is small enough can the orbital altitude information be used for identification, so it is
still necessary to investigate the eccentricity distribution of current observation satellites. UCS Satellite
Database [44] has made detailed statistics of satellites currently orbiting Earth. Eccentricity and apogee
altitude statistical results of observation satellites are shown in Figure 3c,d. It shows that the eccentricity
of most satellites is lower than 0.01, especially for optical or radar imaging satellites. Therefore, orbital
altitude information is an available and useful feature for recognizing observation satellites.
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Figure 3. Analysis and statistical results of observation satellite orbit. (a) Satellite orbital parameters
description; (b) Variation of altitude difference with eccentricity when semi-major axis is given;
(c) Eccentricity statistical results; (d) Apogee altitude statistical results.

For non-cooperative satellite targets, it is difficult to compute orbital altitude by orbital parameters
because orbital parameters are not necessarily known or constant. However, it may become easy when
radar is applied. For radar, distance measurement is a basic function and its observation angles are
known. Satellite orbital altitude could be obtained by multiple coordinate transformation based on
radar measurement data and the main coordinate transformation diagrams are shown in Figure 4.
The detailed orbital altitude calculation process is shown in Appendix A.
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Ys

Figure 4. Coordinate transformation diagrams. (a) Radar body coordinate system transforms into
geocentric coordinate system; (b) Radar polar coordinate transforms into radar body Cartesian
coordinate system.

2.3. Target-Attitude Sensitivity and Radar Observation Angular Domain Segmentation

Target-attitude sensitivity is one of the most difficult problems in radar HRRP target recognition
research. According to the scattering center model [3,4,9,41,42], the variation of target attitude
will lead to different range shifts for different scattering centers on the target, even within the
attitude region where the scattering center structure remains unchanged (that is, without migration
throuth resolution cells, MTRC). Specifically, for the HRRP of the m — th returned echo, suppose it is
x(m) = [x1(m),x2(m), -+, xp(m)], then the echo power of the n — th range cell could be computed by:
|2

a(m)f = xa(m)(m) = Y 02 +2Y " Y o cos[0pik(m) 5)

where * represents complex conjugate operation. o,; denotes the intensity of the i — th scatterer in
the n — th range cell. Z‘iL:r‘l Gfu. is the conjugate product of the sub-echo for all scatterers in the n — th
range cell, which represents the intensity sum of each scatterer and is relatively stable. However,
cos[0pik (m)] of the second item, which is called cross-term, will change with the variation of m, where
Onik (m) represents the phase difference of the i — th scatterer and the k — th scatterer of the n — th range
cell in the m — th returned echo. Therefore, an HRRP, which is the amplitude of coherent sum of the
complex returned echoes from scatterers in a range cell, can be changed substantially.

The target-attitude sensitivity problem makes it hard to recognize satellite targets base on HRRP
data and needs to be focused on. It has been founded that average range profile [22] is helpful to
improve attitude stability of HRRP, because the sum of the irrelevant echo power of the cross-terms
will greatly weaken the effect of cross-items. As mentioned earlier, the correlation coefficient between
average range profiles can be used to measure similarity of HRRPs [21]. For a set of HRRP samples
{x(0), x(1), ---, x(M —1)}, which are translationally aligned and without MTRC, we represent them

asx(i) = [x1(i),x2(i),---,xp()], i = 0,1,---,M —1, then its average range profile is [22] defined as:

M-1 M-1

u = % Z|X1(m)

m=0 m=0

(6)

Research also suggests that utilizing radar observation angles information is beneficial, such as reducing
search range and computation, relaxing target-attitude sensitivity and improving recognition rate [18,19].

Through the above analysis, for the target-attitude sensitivity problem of HRRP, we propose a
hierarchical clustering method with a novel distance metric, namely the normalized angular distance
divided by correlation coefficient (NADDCC), to segment radar observation angular domain. This
distance metric includes both angular distance information and correlation coefficient between HRRP
average range profiles, which could measure similarity between HRRP average range profiles better.
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For average range profiles p; = [;(1), p(2), ---, p;(D)] whose observation azimuth and elevation
angles are 6; and ¢;, and p; = [uj-(l), (2), -, u](D)] whose observation azimuth and elevation

angles are 6; and ¢;, their angular distance dangle(ul, b ) and correlation coefficient p(ui, 1 ) are
defined as follows:

dangle(pi, b ) = \/<ei—ej)2 + (Ei_gj)z ()
I e = (T
p(ui,w)—“ui”zuwnz‘ HEE v

The larger the correlation coefficient and the smaller the angular distance, the higher the similarity
of HRRP average range profiles. In addition, the distance metric applied for hierarchical clustering
usually need to satisfy some necessary properties, such as non-negativity, identity and symmetry.
In order to make the two distances work equally, they are normalized by means of dividing by their
respective maximum. Taking into account the above considerations, the distance metric presented in
this paper is designed as follows:

dangle(ui/ 1 )/max(dangle> _ \/(ei_ej)2 + (Si_sj)z' | 35 [ 21l K [ z-max(p)
p(wi, b )/max(p) T [ i (n) by (n) |- max(dange)

(1, 1) = ©)

Hierarchical clustering algorithm adopts bottom-up aggregation strategy. Firstly, each HRRP
average range profile is regarded as an initial cluster, and then two nearest clusters are found and
merged at each step of algorithm operation. The process is repeated until the number of preset clusters
is reached. The clustering process can be summarized as follows:

Hierarchical Clustering Algorithm

Input: HRRP average range profile sample set S = {uq, tp, -+, um};
distance metric davg(Ci, Ci) = m Yuec ZquCj d(ui, !Jj);
cluster number k.

Process: forj = 1, 2, ---, mdo

S = {u)
end for
fori = 1,2, ---, mdo
forj =i+1,---, mdo
M(i, ]) = davg(ci/ Cj)/'
M, 1) = MG, )
end for
end for
set the number of current clusters: ¢ = m
whileq > kdo
find the two nearest cluster C;. and Cjs;
merge Cj, and Cj,: Gy = G U G5
forj = j*+1,j+2, ---, qdo
renumber cluster G as Cj_1
end for
delete line j* and column j* of matrix M

forj = i+1,---,q-1do
M(i, ]) = dan(Ci*/ Cj);
M(j, i') = M(i, j)
end for
q=q-1
end while

Output: clusters C ={Cy, Cy, ---, Ci}
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3. GRU-SVM Model

The designed GRU-SVM model is a combination of a GRU neural network as a deep feature
extractor and SVM as a classifier. It makes the best of the advantages of the GRU deep neural network
and SVM to extract the deep abstract features and complete an accurate classification. This model is
described in detail below.

3.1. GRU

As mentioned above, GRU is designed in [37,45] to learn long term reliance on sequential data,
and its overall performance is better than LSTM and simple conventional RNN [39,40]. Figure 5 shows
a GRU model. There are only two gates in a GRU, namely the update gate z and the reset gate r.
The update gate is utilized to modulate the previous information inside the unit. The larger the value
of update gate, the more the status information of the previous moment insides. The reset door is used
to control how much previous state information will be forgotten. The smaller the value of the reset
gate, the more the previous state information is forgotten.

—h o

®

Figure 5. Gated recurrent unit.

The update gaze z; and reset gate r; at the time t are defined as:

{ Zt = G(WZXt + Uth—l) (10)

re = o(Wix¢ + Uthe_q)

where W and U are weight matrices. x denotes input data. The hidden state h and candidate hidden
state hy in GRU are calculated respectively as follows:
hy= (1 - z)heq + z¢h an
h; = tan h(tht + Ut(rt * ht—l))

where * represents element-wise product. The o(-) and tanh(-) are two different activation functions
which can be defined as:

_ 1
o) = 12
tanh(x) = L=< 12
anh(x) = 1=

In this paper, GRU is employed in the GRU neural network to extract effective features based on
HRRP sequential data.

3.2. SVM

The support vector machine (SVM) was developed by Vapnik [46] for binary classification.
Its objective is to find the optimal hyper-plane f(w,x) = w - x + b to separate two classes in a given
dataset, where x is the feature vector. SVM learns the parameters w and b by solving the following
constrained optimization problem:
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min%wTw + CZf:l &
yiw-x+b) 21-§ (13)

2 0i=1p

where wT

The corresponding unconstrained optimization problem of Equation (18) is as follows:

w is the Manhattan norm, C is the penalty parameter, and ¢ is the cost function.

p
min%wTw + CZmaX(O, 1 - yi’(wT x; + b)) (14)
i—1

where y’ is the actual label, and w' x + b is the predictor function. This equation is known as L1-SVM,
with the standard hinge loss. Its differential counterpart L2-SVM is given by the following equation:

P
min%” wl+C Z maX(O, 1 - yi'(wT x; + b))z (15)
i=1

where || w ||, is the Euclidean norm (also known as L2 norm), with the squared hinge loss.

Despite being intended for binary classification, SVM may be used for multi-classification as
well. One approach to achieve this is the use of kernel tricks, which convert a linear model into a
non-linear model by applying kernel functions. However, we just use LSVM instead of utilizing kernel
tricks in this paper, because LSVM does not employ any feature extraction and transformation and can
serve as a simple baseline for evaluating the quality of extracted features. A one-vs-one scheme is
employed to achieve multi-classification in this paper, which establishes the binomial classifier for
every two classification.

3.3. GRU-SVM Model Construction

In this paper, a novel end-to-end GRU-SVM model has been designed and firstly applied to
recognize targets based on radar HRRP data. The structure of GRU-SVM model is shown in Figure 6.
The composition of this model includes two parts: GRU neural network as a feature extractor and
LSVM as a classifier. GRU neural network is constituted of input layer, four hidden layers and output
layer, where GRU hidden layer and fully connected layer (dense layer) are included. And the input
layer, two GRU hidden layers and a fully connected layer make up the encoder module, whose output
are defined as the features extracted by GRU neural network. In order to make the training model
more accurate, we apply the bidirectional scheme demonstrated in reference [47] in GRU hidden
layers (see Bid-GRU layer in Figure 6). In addition, two fully connected layers have been employed
after the encoder to extract good features. And the last layer, also called output layer, would output
the satellite classifications by adopting softmax activation function. That is, GRU neural network is
trained in a supervised way. The reasons why we choose to apply the softmax classifier to train GRU
neural network are that it’s an excellent multi-class classifier and its common loss function, namely
categorical cross-entropy loss, is more sensitive to classification output than the hinge loss of LSVM,
which means that it is always optimizing the network parameters to reduce loss during training.
Therefore, the utilization of softmax classifier may make the features extracted by the encoder more
highly distinguishable. By training GRU neural network, the encoder will produce the length-fixed
feature vectors which contain sufficient information for target recognition. LSVM classifier takes
feature vectors as input and produce classification results. It mainly has two roles: one the one hand,
LSVM classifier could have outstanding generalization performance for the testing data after it is
trained with the extracted features and their corresponding labels; on the other hand, LSVM classifier
is applied as a simple baseline for evaluating the quality of features extracted by different methods
here, because it does not employ any feature extraction and transformation. However, the softmax
classifier in this GRU neural network may be not suitable for comparing the quality of extracted
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features on account of the existence of nonlinear activation function. Linear ¢(-), relu ¢ (-) and softmax
P (+) activation functions are employed in this model and defined as follows:

@(x) = Lxjwi +b

b(x) = ma>X<A(O, X) (16)
Y(x); = Zi;exk
_________ |
— | Xy Xy Xy
|
[ !
| s h, — h, —> > i :
GRU1 = -~ P
| 1 < h2 \ ¢ h96
Encoder < | l l l |
|, - —
| h' — h, ¢ — iy ||
| Dense, Linear l l l |
_ | Features | f] s T | Y
e ren | |
| & & Eu |
| Dense, Softmaxl l l |
| c @ Cp | s the class number

Figure 6. The structure of GRU-SVM model.

After the analysis and description of Sections 2 and 3, the overall framework of this proposed
satellite target recognition method is shown in Figure 7. It can be divided into three parts, namely
training process, testing process and the methods and techniques used therein. Orbital altitude
calculation and observation angular domain segmentation are applied to divide HRRP data, including
training samples and testing samples. The detailed orbital altitude calculation process is shown in
the Appendix A. On this foundation, GRU neural network is trained to get the deep abstract features
based on divided HRRP training data. Then, the classification results of testing data could be obtained
by the trained GRU neural network and LSVM.
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Figure 7. Overall framework of this satellite target recognition method. Note: Tr_S, Te_S and F_V
represent the training samples, testing sample and feather vector, respectively. Their subscripts denote
different data partition results, where the first subscript represents the partition results of orbital altitude
and the second represents the partition results of hierarchical clustering.

4. Experimental Results and Discussion

In this section, test experiments will be carried out to obtain the performance of the proposed
recognition method. After dividing training data and completing the training process of GRU-SVM
model, the recognition accuracy of testing data set will be gotten according to the testing process in
Figure 7. Furthermore, performance testing and comparison experiments of different conditions and
recognition methods also have been done to better illustrate the advantages of this recognition method.

4.1. Data Generation and Partition

Considering the difficulty of obtaining satellite HRRP measured data, we utilize reliable simulation
radar HRRP data from ten satellites that simulated by an X-band radar with a center frequency of
10 GHZ and a bandwidth of 1 GHz. The main parameters of radar and these satellites are listed in
Table 2 and the detailed flow chart of radar data generation is shown in Figure 8. The observational
relationship between satellite and radar is calculated based on their parameters. Then, radar cross
section (RCS) and echo are computed and radar data is obtained. In our experiments, each satellite
target has 70,000 HRRP samples and each HRPP is a 300-dimensional vector. The data preprocessing
operation has been done as described in Section 2.1. 80% of radar data will be applied as training
set and others as testing set. For training set, data partition would be done by orbital altitude
calculation and observation angular domain segmentation. Figure 9 shows the data partition results.
The orbital altitude of this ten satellites is divided into three ranges in this paper, namely Hg,; < 500km,
500 < Hg,t < 1000km and Hg,t > 1000km. Meanwhile, a hierarchical clustering method with a novel
NADDCC distance metric has been implemented for HRRP data in each orbital altitude range to get
clustering datasets. It should be noted that a set of radar observation angles is shared by continuous
700 radar HRRP data. Thus, we could be decide which cluster the test data belongs to when determining
its altitude range and angles cluster.
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Table 2. Parameters of the radar and satellites.
Center Frequency 10 GHZ
Bandwidth 1 GHZ
Radar Parameters Longitude 115°
Latitude 30.5°
Altitude 0
Satellite Apogee Range (km) Eccentricity Inclination (°)
No.1 390 ~ 425 81 x 1074 51.6
No.2 300 ~ 320 1.0 x 1077 51.0
No.3 310 ~ 322 1.1 x 1073 54.5
No.4 721 ~ 730 5.0 x 1073 57.0
No.5 630 ~ 643 21 x 1074 97.8
No.6 615 ~ 624 22 x 107* 97.9
No.7 670 ~ 682 1.1 x 1073 98.1
No.8 1045 ~ 1165 13 x 1073 63.4
No.9 1094 ~ 1112 35 x 1073 123.0
No.10 1347 ~ 1355 32 x 1074 58.0
Satellite visible periods Radar observation angles
Visible panel computation
Figure 8. Flow chart of data generation.
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Figure 9. Partition results of training radar data. (a) Hgyy < 500km; (b) 500 < Hgyt
(c) Hga> 1000km.

< 1000km;

4.2. Training Assessment of GRU Neural Network

After data partition, GRU neural network could be trained with these clustering datasets as input.
In order to train the network faster and more accurately, we apply the following deep neural network
training techniques in this paper:

(1) 20% of training data is used as validation set to adjust the hyper-parameters;
(2) Drop-out is employed for the two GRU layers to avoid the problem of overfitting and set to 0.25;
(3) Batch normalization is inserted after each layer to accelerate the training.

For multi-classification problems, recognition accuracy, categorical cross-entropy loss Losscc and
mean absolute error (MAE) loss Lossyiag are often applied to assess classification result. They are

defined as follows:
accuracy = N/M

M m
L = - ~log ..
ossee iE‘l ]'§1 YI] °8 yq (17)

M
LOSSMAE = 31 i§1|yi—§'i|

where M is the total number of current training samples and N is the number of the samples predicted
correctly. ¥, denotes the prediction value of the ith sample and y; denotes expected value. m represents
the class number and is usually greater than or equal to 3. In order to reduce the loss and improve
accuracy in the training process, it is necessary to choose a suitable optimizer for GRU neural network.
Adam is an excellent optimizer which combines the main advantages of the previous deep learning
optimizers AdaGard and RMSProp. Thus, the Adam optimizer is used with the initial learning rate
1x1073. When evaluation indicator is not improving, the learning rate will decrease in multiple.
The training records of 100 epochs are shown in Figure 10. It could be found that the training and
validation accuracy raises with the increase of training epoch and converges to a high accuracy value.
Correspondingly, the categorical cross-entropy loss and MAE of training and validation data decrease
with the increase of training epoch. These results all confirm that GRU neural network is well trained
for all training clustering datasets.
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Figure 10. Training records of 100 epochs based on different training dataset. (a) Training accuracy;
(b) Validation accuracy; (c) Categorical crossentropy loss of training set; (d) Categorical crossentropy
loss of validation set; (¢) MAE loss of training dataset; (f) MAE loss of validation set.

4.3. Recognition Results and Comparative Analysis

The performance of this recognition method could be obtained on the basis of data partition and
GRU neural network training, and a full comparative analysis of the recognition results under different
conditions and recognition methods is also made in this section.

4.3.1. Classification Results of this Recognition Method

After completing radar data partition and GRU neural network training, a series of trained neural
network models can be obtained based on training datasets of different clusters. According to the
overall recognition framework in Figure 7, the orbital altitude calculation and observation angles
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assignment of testing data will be carried out, which is for determining which training model to extract
their deep abstract features. Then, classification testing would be implemented by LSVM based on
these features and corresponding recognition results of testing data could be gotten. The confusion
matrices of these data tested by all training models are shown in Figure 11 and the corresponding
recognition accuracy are listed in Table 3. It can be seen that testing data could be correctly divided
into its corresponding trained model by orbital altitude calculation and observation angles assignment.
Meanwhile, these ten satellites can be well recognized and achieve a total accuracy of 99.2%

No.1 49
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Figure 11. Confusion matrices of untrained data tested by the following training model. Hg,y < 500km

(a) Cluster = No.1; (b) Cluster = No.2; (c) Cluster = No.3. 500<Hg,; < 1000km:(d) Cluster = No.1;

(e) Cluster = No.2; (f) Cluster = No.3; (g) Cluster = No.4. Hgy> 1000km: (h) Cluster = No.1;
(i) Cluster = No.2; (j) Cluster = No.3.
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Table 3. Recognition accuracy of this recognition method.

Orbital Recognition Rate of Satellites (%) Total
Alti Clust
(tli::‘l)d € USer TNod1 No2 No3 Nod4 No5 No6 No7 No8 No9 No.10 A“(,‘,}:f Y
No.1 99.7 989 994 /1 / / / / / /
(0, 500] No.2 99.7 996 995 / / / / / / /
No.3 970 905 957 / / / / / / /
No.1 / / / 990 997 998  99.2 / / /
No.2 / / / 994 997 997  98.8 / / /
(500, 1000) No.3 / / / 996 994 998  99.2 / / / 99.2
No.4 / / / 100  99.6  99.7 989 / / /
No.1 / / / / / / / 999 999 999
(1000, o0) No.2 / / / / / / / 985 999 989
No.3 / / / / / / / 100 100 100

! There is no such satellite in the corresponding cluster.

4.3.2. Comparative Analysis of Classification Results

For the feature extraction based on radar HRRP data of satellites, it is unclear whether the
GRU neural network performs better than the conventional RNN or LSTM neural networks or not.
Therefore, we still need to conduct performance testing experiments for these three RNN-based neural
networks. In this paper, we focus on the quality of features extracted by them and the training
time they need, where feature quality could be reflected by the recognition accuracy after LSVM
classifier. Radar HRRP data under different partition conditions are applied as the input of these neural
networks. To better compare their training complexity, they are trained with the same training data
scale, computing resources and network training parameters when the same radar HRRP data are
used as input. The performance testing results are shown in Table 4.

These results demonstrate that the features extracted by GRU neural network are the most
distinguishable, and thus GRU-SVM model achieve the maximum recognition accuracy. Although
conventional RNN needs the least training time, it cannot learn a good presentation of the satellite HRRP
sequential data because of the network structure limitation and vanishing gradient. The performance in
satellite HRRP feature extraction of the LSTM neural network is inferior to that of GRU neural network,
and LSTM needs the maximum training time owing to its complex network structure. Therefore,
considering the above comparison results, we choose GRU neural network as the feature extractor of
satellite HRRP sequential data and just need to compare the performance of GRU neural network and
other common feature extraction methods later.

Table 4. Performance comparison of three RNN-based neural network.

Orbital Recognition Rate of Satellites (%) Total
Method  Ajtitude Cluster Accuracy
(km) No.l1 No.2 No3 No4 No.5 No.6 No7 No8 No9 No.l0 (%)

GRU-SVM 99.7 989 99.4 /1 / / / / / / 99.6
RNN-SVM (0, 500] No.2 702 435 868 / / / / / / / 66.9
LSTM-SVM 9.7 937 977 / / / / / / / 96.0
GRU-SVM / / / 99.0 99.7 998  99.2 / / / 97.8
RNN-SVM (500, 1000] No.1 / / / 99.1 829 875 807 / / / 86.9
LSTM-SVM / / / 99.4 86.3 88.2 79.7 / / / 87.7
GRU-SVM / / / / / / / 100 100 100 100
RNN-SVM (1000, o) No.3 / / / / / / / 97.6 930 900 93.3
LSTM-SVM / / / / / / / 96.1 99.4 93.1 96.0
GRU-SVM / / / / / / / 99.0 999 987 99.2
RNN-SVM (1000, o) x 2 / / / / / / / 86.7 939 553 78.7
LSTM-SVM / / / / / / / 974 998  96.6 97.9
GRU-SVM 99.6 97.4 92.0 98.1 94.6 95.0 89.0 97.8 99.6 97.1 95.8
RNN-SVM X No.2 88.1 73.6 78.6 88.2 81.0 77.5 61.4 89.6 85.7 78.2 79.5

LSTM-SVM 959 939 836 904 8.9 809 693 85 981 879 87.0
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Table 4. Cont.

Orbital
Method Altitude Cluster Training Data Scale Epoch CPU GPU Training Time
(km)
GRU 52630 NVIDIA 21h36min16s
RNN (0, 500] No.2 55,440 HRRPs 100 3_2 G Quadro 20 h 29 min 36 s
LSTM 4000 43h 59 min 28's
GRU 26 h32min1ls
E5-2680 GTX :
RNN 16h01 13
(500, 1000] No.1 62,720 HRRPs 100 256 G 1080 Ti min 158
LSTM 32h52min36s
GRU 52630 NVIDIA 33h11 min 04 s
RNN (1000, oo) No.3 36,400 HRRPs 100 3'2 G Quadro 19h43min53s
LSTM 4000 30h 51 min39s
GRU 30h 34 min 00 s
E5-2680 GTX :
RNN 17h 17 48
(1000, o) X 84,000 HRRPs 100 256 G 1080 Ti min 48 s
LSTM 36 h 08 min 35 s
GRU 37h43min 18 s
E5-2680 GTX .
RNN 22h 08 34
X No.2 86,800 HRRPs 100 256 G 1080 Ti min 34 s
LSTM 42h37min34s

! There is no such satellite in the corresponding cluster. 2 This method or technology is not applied.

In order to demonstrate the effect and advantages of this proposed recognition method, recognition
performance for testing data is compared when different methods are applied to recongnize satellites
under different conditions. Four deep neural networks, namely GRU neural network, CNN,
autoencoder (AE) and denoising autoencoder (DAE), and three shallow models, including PCA,
dictionary learning (DL) and manifold learning (ML), serve as feature extractor and LSVM is used to
classify these satellites based on these extracted features. To ensure fairness in performance comparison,
the number of some layers in these neural networks should be as same as possible, such as GRU hidden
layer, CNN layer and encoder/decoder layer; These seven feature extraction methods could all reduce
the 300-dimensional HRRP samples to same dimension, for example 64 dimensions in this paper.
Table 5 shows the detailed recognition accuracy of these seven methods under various conditions and
the corresponding statistical comparable results are shown in Figure 12. We can make the following
conclusions from these two charts:

(1) Orbital altitude calculation and observation angles clustering technology are favourable for
improving the recognition rate of satellites for all seven methods, which verifies the validity of
radar data partition;

(2) Compared with the latter six methods, GRU-SVM model has good recognition performance for
these ten satellites. Therefore, its total recognition accuracy rate is almost highest among these
seven methods no matter whether orbital altitude calculation or observation angles clustering
is applied.

Although the classification results of LSVM could prove the feature extraction validity of GRU
neural network in some aspects, it is still expected to further display the distribution of extracted features
for these seven recognition methods. Therefore, dimension reduction visualization technology is
employed in this paper, which can map high dimensional feature data to two or three dimensions. At this
time, the distribution of extracted features can be seen intuitively. Figure 13 shows dimension reduction
distribution of features extracted based on one cluster training data (Hg,: > 1000km, Cluster = No.3)
for these seven methods. It can be found in Figure 13a that the GRU neural network has the best
feature distribution result because the dimension reduction features of three satellites are separated
from each other. However, other methods have more or less intersections between different satellite
classes, especially the last five methods. It is confirmed that the features extracted by the GRU neural
network are more effective and highly discriminative.
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Table 5. The recognition accuracy of seven methods under different conditions.
Or!;aital Recognition Rate of Satellite (%) Total
Method Al(tlit;fle Cluster “No1 No2 No3 No4 No5 Noé No7 No8 No9 Nodo Accuracy
V1! Y, 99.1 974 997 997 996 998 991 991 999  99.6 99.2
x 2 933 823 945 997 964 986 944 990 999 973 95.4
CRU-SVM v 972 828 894 977 893 924 848 938 995 907 91.7
X X 636 410 733 8.1 708 8.0 568 574 908 489 67.6
v v 989 938 974 996 950 954 884 997 991 974 96.6
v X 973 881 966 988 904 937 812 933 992 889 93.1
CNN-SVM X Y, 979 836 833 985 8.9 927 785 943 987 918 90.4
X X 769 826 820 786 701 706 708 776 630 59.1 72.6
v v 864 839 771 863 8.8 759 702 815 983 884 83.3
v X 81.0 8.0 790 760 8.0 700 640 720 930 820 779
AE-SVM X v 772 677 523 767 638 581 576 531 854 546 63.9
X X 69.0 570 430 640 490 43.0 400 390 780 430 52.0
v Y, 853 804 730 8.1 751 767 698 785 956 79.0 80.0
v X 81.0 740 720 770 700 69.0 620 710 920 69.0 73.6
DAE-SYM X v 736 586 454 778 518 563 53.0 50.8 765 533 60.3
X X 640 460 390 660 390 470 400 380 700 420 49.0
v v 894 845 777 902 89 798 777 819 975 910 86.7
v X 8.0 770 770 760 820 700 66.0 740 930 820 77.6
PCASYM X Y, 791 646 521 780 645 549 554 508 757  66.5 66.0
X X 710 480 380 660 510 440 460 380 820 510 54.0
v v 874 800 752 894 764 760 744 785 969 850 81.2
v X 820 750 700 770 720 670 60.0 720 920 750 749
DL-SVM X v 744 538 473 773 557 531 565 519 772 574 60.6
X X 65.0 390 340 650 450 420 420 370 730 420 49.0
v Y, 876 834 791 926 801 802 752 797 970 813 83.6
v X 83.0 780 740 820 740 73.0 670 720 93.0 73.0 773
ML-SVYM X v 743 627 540 827 563 573 563 528 781 592 63.3
X X 68.0 470 430 740 440 470 440 380 730 460 53.0
1

This method or technology is applied. 2 This method or technology is not applied.
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Figure 12. Statistical recognition result of seven methods under different conditions. 1 The first number

represents whether to use orbital altitude calculation and the second represents whether to utilize

observation angles clustering, for example ‘10’ denotes orbital altitude calculation has been applied but

clustering is not applied.
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Figure 13. Dimension reduction distribution of training data (Hg,; > 1000km, Cluster

seven methods. (a) GRU neural network; (b) CNN; (c) Autoencoder (AE); (d) Denoising autoencoder

(DAE); (e) PCA; (f) Dictionary learning (DL); (g) Manifold learning (ML).
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5. Conclusions

In this paper, a novel satellite target recognition method based on radar data is proposed. It mainly
includes two modules of data partition and a deep classification model. Satellite orbital altitude is
introduced as a distinct and accessible feature because it is easy to calculate based on radar data and has
relative stability. A hierarchical clustering method based on a new NADDCC distance metric is utilized
to segment the radar observation angular domain. These two technologies can effectively complete
data partition. Then, a GRU-SVM model is designed for radar HRRP satellite recognition, which is
comprised of a deep GRU neural network as a feature extractor and LSVM as a classifier. The GRU
neural network training records and feature visualization results all confirm that this GRU neural
network could extract more deep and abstract features and these features have better separability.
Furthermore, performance testing and comparison experiments also demonstrate that GRU neural
network possesses better comprehensive performance for HRRP target recognition than LSTM neural
network and conventional RNN; data partition can improve the recognition rate of satellites, and the
recognition performance of our satellite target recognition method is almost better than that of other
several common feature extraction methods or no data partition.
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Appendix A. Satellite Orbital Altitude Calculation Method

Satellite orbital altitude could be obtained by multiple coordinate transformation based on radar
measurement data. The Figure 4 shows these coordinate transformation diagrams. It mainly involves
the following coordinate systems:

(1) Geocentric Cartesian coordinate system: its origin O is situated at the center of the Earth. OpXg
axis is located in the equatorial plane and points to the meridian at the Greenwich Observatory.
OgZg axis is perpendicular to the equatorial plane, coincident with Earth’s rotation axis and
points to the north pole. OgYf axis is located in the equatorial plane and its direction satisfies the
right-handed rectangular coordinate system criterion.

(2) Radar body Cartesian coordinate system: its origin S is situated at the radar station. SXg axis is
located in the ground plane of the radar station and points to the south. SYg axis is located in the
ground plane of the radar station and points to the east. SZg axis passes the radar station, along
its plumb line and points to the zenith.

The detailed coordinate transformation process is as follows:

(a) Conversion of radar polar coordinate system into radar body Cartesian coordinate system

Set the coordinates of satellite target in the radar polar coordinate system to (p, 6, ¢), where p
is the slant distance from satellite to radar station. 6, ¢ represent the radar observation azimuth and
elevation angle, respectively. These parameters could be obtained in the process of radar measurement.
Then, the coordinates (Xl, Y1, 21) of the satellite in the radar body Cartesian coordinate system could
be calculated by the following formula:

X1 = p-cosB-cose
y; = p-sinf-cose (A1)
71 = p-sine

(b) Conversion of geodetic coordinate system to geocentric Cartesian coordinate system
Set the geodetic coordinates of the radar station are (As, s, H), where Ag, ¢s, H represent the
longitude, latitude and altitude of the radar station, respectively, which are known for certain radar
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station. Its corresponding coordinates (x’, y’, z’) in the geocentric Cartesian coordinate system can be
computed by the following formula:

x" = (N + H)-cos Ag-cos @g
y’ = (N + H)-sin Ag-cos ¢@g (A2)
7 = (N‘(l - e2)+H)-sin ©s

where N denotes the radius of prime vertical and is calculated by N = a/ (1 — e? sin? (ps). a, e represent
the semi-major axis and oblateness of earth.
(c) Conversion of radar body Cartesian coordinate system to geocentric Cartesian coordinate system
Set the coordinates of satellite in the radar body Cartesian coordinates system are (xl, Vis zl),

suppose its corresponding coordinates in the geocentric Cartesian coordinates system are (xe, Ve ze),
then the conversion formula is as:

Xe X1 X/
Ye |= Rr| yq |[+]| ¥ (A3)
Ze Z1 z’

where Ry is rotation matrix and calculated as:

Sin (pgcosAg  —sinAg  COS (PgCOS Ag
Rt =| sin@gsinAg cosAg  cos @gsinAg (A4)
—COS @Pg 0 sin @g

Once the coordinates of satellite in the geocentric Cartesian coordinate system are known, it is
easy to calculate the altitude of the satellite. The calculation formula is as follows:

Haat = \/ (xe)? + (o) + (ze)? - Re (A5)
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