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Abstract: A performance bound—Cramér-Rao lower bound (CRLB) for target estimation and
detection in sparse stepped frequency radars is presented. The vector formulation of this CRLB is
used to obtain a lower bound on the estimation error. The estimation performance can be transformed
into different types of CRLB structures. Therefore, the expressions of bounds under three equivalent
models are derived separately: time delay and Doppler stretch estimator, joint multiple parameter
estimator, and sparse-based estimator. The variables to be estimated include the variances of unknown
noise, range, velocity, and the real and imaginary parts of the amplitude. A general performance
expression is proposed by considering the echo of the target in the line-of-sight. When the relationship
between CRLB and various parameters are discussed in detail, the specific effect of waveform
parameters on a single CRLB is compared and analyzed. Numerical simulations demonstrated that
the resulting CRLB exhibits considerable theoretical and practical significance for the selection of
optimal waveform parameters.

Keywords: targets estimation and detection; performance analysis; sparse stepped frequency;
Cramér-Rao lower bound

1. Introduction

A sparse stepped frequency (SSF) signal extends the traditional continuous bandwidth to random
discontinuous frequency bands in modern radars. However, the performance of SSF signals has not
been evaluated effectively. The Cramér-Rao lower bound (CRLB) expresses the lower bound of the
variance of unbiased estimators in [1,2], which has a wide range of applications in radar. Various
CRLBs of joint parameter estimation for broadband signals have been proposed.

In [2], a Gaussian signal and a linear frequency modulation (LFM) signal are analyzed. It is
verified that the CRLB of joint estimation depends on the signal-noise-ratio (SNR), threshold, and signal
structure. In [3,4], an LFM signal is used to analyze the CRLB of joint Range–Doppler(RD) estimation
performance in both active radar and distributed passive radar networks. Particularly in [5], the CRLB
of RD estimation is computed using FM commercial radio signals for passive radar network systems;
this demonstrates that the coherent CRLB is much lower than that of the noncoherent processing mode.
Subsequently, a modified CRLB is investigated in [6]; it is applicable for passive multistatic radar
systems with antenna arrays. Analysis confirmed that the joint estimation performance is related to
the geometry of the target, radar configuration, SNR, and signal parameters. Reference [7] investigates
the CRLB of the joint target radial velocity and the acceleration estimation performance of an linear
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stepped frequency (LSF) signal. In [8], the CRLB expression is derived to guide TDOA estimation using
a frequency-hopping signal. Similarly, in [9,10], the performance of joint TD estimation is studied with
random stepped frequency signals. In addition, some researchers have explored the performances
of other parameters; e.g., in [11,12], the CRLB of a target’s position, intensity, and geometry type
are derived by considering the signal as a geometric theory of diffraction (GTD)-based scattering
center model. The CRLBs of a known and an unknown phase for joint RD estimation is presented
in [13]; the unknown time delay, Doppler stretch, amplitude, and uniform distributed initial phase are
estimated simultaneously in [14]. Although the target estimation of an SSF signal has been employed
in wideband radar system [15–17], the CRLB performance expression above for various waveforms
cannot be applied directly to an SSF. In fact, compared with an LFM or LSF signal with limited
continuous bandwidth, an SSF exhibits a higher synthetic bandwidth, thus, enabling it to improve the
resolution of separating multiple close-range spatial targets. Moreover, because its carrier frequency
is sparse and exhibits random hopping, the range–Doppler coupling problem can be suppressed
effectively [18]; further, the interference from other users can be avoided.

The parameters of target echo, and environmental and transmit waveforms affect the performance
significantly. Therefore, the relationship among these parameters and the estimation performance
are compared and analyzed. Some conclusions have been drawn from the following studies. In [19],
the CRB for the unbiased estimators of parameters from compressed samples are investigated. The CRB
increases when the number of compressed samples is larger than that of the targets. In [20], the CRLB
criterion of time delay estimation is analyzed under various pulse shapes. It is concluded that the
performance depends on the pulse’s period, order, and shape. In [21], the estimation performances
for uniform and nonuniform frequency samplings are analyzed. The best sampling set is gained
by statistical strategy. In [2], it verifies that the CRLB of the joint estimation depends on the SNR,
threshold, and signal structure. In [14], the performances of unknown time delay, Doppler stretch,
amplitude, and uniform distributed initial phase are explored simultaneously. In [22,23], primary
factors including the SNR, central carrier frequency, carrier frequency bandwidths and frequency
shifting code words that affect the performance are discussed.

These expressions effectively explain the CRLB for target estimation in previous references.
However, because of the sparseness and irregularity of the selected frequencies, the existing regularity
for linear frequencies is no longer applicable in the sparse signal. Therefore, a new process of
performance analysis for an SSF signal is necessary. In this work, the estimation problem using
an SSF signal as a transmitting waveform can be equivalent to that of the three different structures.
The accordance expression of a special CRLB deduction can be obtained based on a variant SSF.
All relevant variables are retained without simplification in the process to facilitate the further analysis
of the parameter relationships accordingly.

The primary work and contributions can be stated as follows: First, by referring to the CRLB of
delay and Doppler stretch equivalent model used in the wideband signal [2] and in random stepped
frequency signal [9], a general representation of the same performance is derived by considering
an SSF signal with a chirp envelope. After setting some of the parameters, the CRLBs of an SSF
signal with a rectangular envelope are verified. Next, according to the GTD-based scattering center
estimation [11], the similar CRLB for multiple parameter estimations using an SSF waveform is
derived. The actual performances under various model assumptions are analyzed comprehensively
and systematically. Subsequently, a sparse-based expression for model error [24] is substituted directly
into the SSF estimation for introducing the CS estimation method. Finally, the degree and trend
of each individual coefficient constituting the bound of the entire joint estimation are discussed.
The relationship between the CRLB and various parameters are developed in detail. The resulting
CRLB above presents instructional significance for transmitting waveform optimization.

The remainder of this paper is organized as follows. In Section 2, the signal model for the SSF
signal is introduced. In Section 3, The CRLB of basic LSF and SSF signals within a time delay and
Doppler stretch model are presented. In Section 4, the CRLB of joint multiple parameter estimation is
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discussed. In Section 5, the CRLB of a sparse-based estimator is introduced. Numerical simulation
examples and results are described in Section 6 and conclusions are presented.

Notation 1. A capital bold letter x represents a matrix. x (n) is the nth sample point. A letter with superscript
θ̂ represents the estimation of θ. E { · } represents the expectation operator. Tr ( · ) denotes the trace of
matrix.b · cis the rounding operator. ‖ · ‖0 represents the `0 norm. ‖ · ‖2 is the standard Euclidean norm

with the value ‖ x‖2 =
√

∑i |xi|2. The symbol ∂ is the partial derivative operator. ( · )∗, ( · )T , and ( · )H

indicate the conjugate, transpose, and conjugate transpose.

2. Signal Model

In this study, tn denotes the sampling time of the nth pulse; the width of every narrow band pulse
is Tw, pulse repetition interval (PRI) is T. Therefore, the transmitting signal is

x0(t) =
N−1

∑
n=0

rect
(

t− nT
Tw

)
e−j2π fnt (1)

where rect( · ) stands for a rectangular function with

rect
(

t
T

)
=

{
1 , − T/2 ≤ t ≤ T/2
0 , else

fn is set as the chosen frequency for every pulse. It is noteworthy that the transmitting frequencies
can be calculated by fn = f0 + Cn∆ f , where f0 is the initial carrier frequency, and ∆ f is the frequency
step. The sequence of frequencies is Cn ∈ [1, M] with N = ‖C‖0 <= ‖m‖0 = M, where M is the
total multiples of step ∆ f in the whole frequency span, and N is the number of transmitting pulses.
The frequency pattern is determined by n and Cn.

The receiving signal is the time delay and Doppler stretch version of the transmitting signal.
After processing by mixing and sampling, the discrete form of the echo is

y(n) = x(n) + w(n)

=
K
∑

k=1
Ake−j4π( f0+Cn∆ f )(Rk+VknT)/c + w (n)

(2)

where the kth target signal consists of the range Rk, velocity Vk, and echo amplitude Ak. When K = 1,
x(n) in (2) can be simplified as

x(n) = Ae−j4π fn(R+VnT)/c . (3)

Defining y = [y(1), y(2), ..., y(n)]T and x = [x(1), x(2), ..., x(n)]T , the matrix form is given by
y = x + w. w(n) is the zero-mean white Gaussian noise (WGN), which is distributed as w ∼ N(0, σ2).
The estimation performance for this type of signal model will be studied in the next section.

3. CRLB of Basic LSF and SSF Signals—Time Delay And Doppler Stretch

We derived a performance bound for the SSF waveform. The relationship among all the
parameters is analyzed to provide useful information for waveform optimization. From this theory
performance, the range–Doppler information can be estimated more efficiently in the radar system.

The receiving signal can be transferred into the time delay and Doppler stretch versions as the
form in [2] from the transmitting signal, that is

s(t) = ax ((t− τ) /σ) + w(t) (4)
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where τ = 2R/c is the time delay of the echo from the target at distance R (range is proportional to
time delay; therefore, we use the time delay to explain the estimation in the range domain), c is the

speed of light, σ =
c+v
c− v

is the Doppler stretch, a is the amplitude. Here, we define the SNR using the

signal power E and power spectrum density (PSD) N0 of w(t), that is

E = a2
∫ ∞

−∞
|s(t)|2dt. (5)

We will consider the estimation performance for this type of signal model. The CRLBs of the joint
time and Doppler estimation are derived. The probability density function(PDF) p(s|θ) of the complex
echo signal x is given by

p(s|θ) = K exp
{
− 1

N0

∫ ∞

−∞
|s(t)− ax (σ (t− τ))|2dt

}
(6)

where K is a constant, and θ = [τ σ ] is the parameter vector to be estimated. The covariance matrix
for an unbiased estimate θ̂ satisfies

CRLBθ̂ = E
[(

θ̂− θ
)
·
(
θ̂− θ

)T
]
≥ J−1 (7)

where ()T is the transpose of a vector, and J is the Fisher information matrix (FIM), which is
defined by [1,2]

J(θ) = E
{
∇θ ln p(s|θ) · [∇θ ln p(s|θ)]T

}
(8)

Therefore, the FIM is

J−1(θ) =
N0σ

2|a|2
(

DsBs − Cs
2
) [ Ds −Cs

−Cs Bs

]
(9)

where Bs
∆
=
∫ ∞
−∞ |ṡ(t)|

2dt, Cs
∆
=
∫ ∞
−∞ t|ṡ(t)|2dt, Ds

∆
=
∫ ∞
−∞ t2|ṡ(t)|2dt, ṡ(t) = ds(t)/dt. The CRLBs of the

time delay and Doppler stretch can be specifically expressed as

var (τ̂) =
[
J−1(θ)

]
11

=
N0σDs

2|a|2
(

DsBs − Cs
2
) (10)

var (σ̂) =
[
J−1(θ)

]
22

=
N0σBs

2|a|2
(

DsBs − Cs
2
) (11)

3.1. CRLB of SSF-Chirp Signals

From (10) and (11), the CRLB performance of the signal waveform depends on the signal
parameters Bs, Cs, and Ds. We impose SF signal (4) into them, and subsequently calculate the theoretical
performances of the CRLBs. This rectangular function can be expressed in the form of a unit step
function, that is

∫ +∞

−∞
s(t)

[
u
(

t +
Tw

2

)
− u

(
t− Tw

2

)]
dt =

∫ nT+
Tw

2

nT−
Tw

2

s(t)dt. (12)
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Therefore, the first power of tn can be calculated under the interval from
(

nT − Tw

2

)

to
(

nT +
Tw

2

)
; therefore, tn

∣∣∣∣∣∣∣
nT+

Tw

2

nT−
Tw

2

= Tw is obtained. Similarly, the quadratic term

is t2
n

∣∣∣∣∣∣∣
nT+

Tw

2

nT−
Tw

2

= 2nTTw, the third term is t3
n

∣∣∣∣∣∣∣
nT+

Tw

2

nT−
Tw

2

=
T3

w
4

+ 3n2TwT2, the forth term is

t4
n

∣∣∣∣∣∣∣
nT+

Tw

2

nT−
Tw

2

= T3
wTn + 4n3TwT3 and the fifth term is t5

n

∣∣∣∣∣∣∣
nT+

Tw

2

nT−
Tw

2

=
T5

w
16

+
5n2T3

wT2

2
+ 5n4TwT4.

To simplify the expressions above, we introduce Z(i,j) =
N−1
∑

n=0
ni fn

j(0 ≤ i ≤ 4, 0 ≤ j ≤ 2) into the

following deviation. The parameter values of a chirp envelope are as follows:

(Bs) chirp = 4π2

 z(0,2) + γTz(1,1)

+
1
4

γ2T2z(2,0) +
1

48
γ2NT2

w



(Cs)chirp = 4π2

 γT2
w

12
z(0,1) +

1
16

γ2T2
wTz(1,0) + Tz(1,2)

+γT2z(2,1) +
1
4

γ2T3z(3,0)



(Ds)chirp = 4π2


T2

w
12

Z(0,2) +
1
4

γT2
wTz(1,1)

+
γ2T2

wT2

8
z(2,0) + T2Z(2,2)

+γT3z(3,1) +
γ2T4

4
z(4,0) +

γ2T4
wN

320



(13)

The values of the CRLBs depend on not only the total number of pulses M, but also the selected
frequencies fn , but the frequency pattern from the relationship between sequence of pulses n and sequence
of frequency Cn.

3.2. SSF-Rect Signals

When the slope with the value γ = 0, the envelope of the SSF signal changes from chirp to
rectangular, namely an SSF-rect signal. Therefore, substituting γ = 0 into (13), the intermediate
variables for an SSF-rect signal are

(Bs) rect = 4π2Twz(0,2)

(Cs ) rect = 4π2TTwz(1,2)

(Ds )rect = 4π2Tw

(
T2z(2,2) + T2

wz(0,2)/12
) (14)

When N = M, Cn = n, the signal will be in the form of an LSF signal. The expression is the same
as that of the SSF for cases involving a chirp envelope and a rectangular envelope. Similarly, when
n = 0, N = 1, fn = f , SSF signal will degenerate into LFM signal. We obtain z(0,1) = f0, other values
in z(i,j) are equal to 0.
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4. CRLB of Joint Multiple Parameter Estimation

4.1. Basic Model of CRLB

In this section, the CRLBs of the joint multiple parameter estimation are derived. The PDF of the
complex echo signal y is given by

p(y|θ) =
(

1
πσ2

)N
exp

{
−

N
∑

n=1

|y(n)− x(n)|2

σ2

}

=
N
∏

n=1

1
πσ2 exp

{
−|y(n)− x(n)|2

σ2

} (15)

where θ is the parameter vector to be estimated. The variables in the definition θ = [σ2|R|V|Ar|Ai]

represent the variance of unknown noise, range, velocity, and real and imaginary parts of the amplitude,
correspondingly. According to [1,2], the CRLB matrix for an unbiased estimate θ̂ is the same as that
in (7) and (8). We have

∇θ ln p(x|θ) =
[

∂

∂σ2 ,
∂

∂R
,

∂

∂V
,

∂

∂Ar
,

∂

∂Ai

]T
(16)

Therefore, each item in the FIM can be calculated by

Jij = E

[
∂ ln p(y|θ)

∂θi

∂ ln p(y|θ)H

∂θj

]
(17)

4.2. Series Expressions of Partial Derivative

The log-likelihood function can be obtained by taking the natural logarithm of (15)

ln p(y|θ) = ln (π)−N + ln
(
σ2)−N

+

{
− 1

σ2

N
∑

n=1
|y(n)− x(n)|2

}
= −N ln π − N ln σ2 − 1

σ2

[
(y− x)H (y− x)

] (18)

The partial derivative for the noise variance is derived:

∂ ln p(y|θ)
∂σ2 = − N

σ2 +
1
σ4

[
(y− x)H (y− x)

]
(19)

Subsequently, the derivation for range is calculated as follows:

∂ ln p(y|θ)
∂R

= − 1
σ2

∂
[
(y− x)H (y− x)

]
∂R

(20)

According to
∂x
∂R

=
−j4π

c
Fx , the partial derivation equation above can be written as

∂ ln p(y|θ)
∂R

= − 8π

σ2c
Re
[
(jFx)Hw

]
(21)

Similarly, the partial derivative for the velocity term is
∂x
∂V

=
−j4πT

c
nFx.

∂ ln p(y|θ)
∂V

= −8πT
σ2c

Re
[
(jnFx)Hw

]
(22)
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For the real and imaginary parts of the amplitude, let A =Ar+Ai, the corresponding derivations
are found respectively as follows

∂ ln p(y|θ)
∂Ar

= − 2
σ2 Re

[
1

AH xHw
]

(23)

∂ ln p(y|θ)
∂Ai

=
2
σ2 Re

[
1

AH (jx)Hw
]

(24)

From the deduction of the above, the integrated matrix can be expressed as

∇θ ln p(x|θ) =



− N
σ2 +

1
σ4

[
wHw

]
− 8π

σ2c
Re
[
(jFx)Hw

]
−8πT

σ2c
Re
[
(jnFx)Hw

]
− 2

σ2 Re
[

1
AH xHw

]
2
σ2 Re

[
1

AH (jx)Hw
]


(25)

4.3. Derivations of the FIM

The FIM elements are calculated in this section. (17) is split into the combinatorial form

Jσ2RVAr Ai
=

 Jσ2 0

0
JRV JRVAr Ai

JAr Ai RV JAr Ai

 (26)

Because the measurement noise w obeys the complex normal distribution, some important
properties are satisfied, as follows

E{w} = 0N×1

E{wwT} = 0N×N

E{wwH} = σ2IN×N

E{wHw} = Nσ2

E{wHwwHw} = N(N + 1)σ4

E{w∗wT} = E{(wwH)T} = σ2

E{w∗wH} = E{(wwT)∗} = 0N×N

(27)

Considering the variance of noise as a constant related to the distribution, the first item in (26)
can be extracted for calculation. According to these properties, Jσ2 can be calculated by

Jσ2 = σ−4E

[
∂ ln p(y|θ)

∂(σ2)

∂ ln p(y|θ)
∂(σ2)

H
]

= σ−4E
[
N2 − 2Nσ−2wHw + σ−4wHwwHw

]
= σ−4N

(28)
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A useful formula can be extracted to reduce the computational complexity. For two arbitrary
matrices P and Q, the expectation after multiplying the real part of two matrices satisfies the
following rule

E
[
Re (Pw)Re(Qw)H

]
=

1
4

E
[
(Pw + P∗w∗)

(
wHQH + wTQT)]

=
σ2

2
Re(PQH)

(29)

Additionally, Γ = jFx is set to simplify the expression. It is apparent that (jnFx)H = ΓHn, where
n is a real number diagonal matrix with n = nH = nT . Substituting this symbol into JRV and JAr Ai and
calculating the expectation of the unbiased estimation error, every item in (26) can be simplified using
this rule, which are

E
[
Re
[
ΓHw

]
Re
[
ΓHw

]H
]
=

1
2

σ2Re(ΓHΓ)

E
[
Re
[
ΓHw

]
Re
[
ΓHnw

]H
]
=

1
2

σ2Re(ΓHnΓ)

E
[
Re
[
ΓHnw

]
Re
[
ΓHw

]H
]
=

1
2

σ2Re(ΓHnΓ)

E
[
Re
[
ΓHnw

]
Re
[
ΓHnw

]H
]
=

1
2

σ2Re
(
ΓHn2Γ

)
E
[

Re
(

1
AH xHw

)
Re
(

wHx
1
A

)]
=

σ2

2
Re
(

1
AAH xHx

)
E
[
−Re

(
1

AH xHw
)

Re
(

wH (jx)
1
A

)]
=

σ2

2
Im
(

1
AAH xHx

)
E
[
−Re

(
1

AH (jx)Hw
)

Re
(

wHx
1
A

)]
=
−σ2

2
Im
(

1
AAH xHx

)
E
[

Re
(

1
AH (jx)Hw

)
Re
(

wH (jx)
1
A

)]
=

σ2

2
Re
(

1
AAH xHx

)

(30)

To integrate the processes above, the submatrices can be written as follows.

JRV =
32π2

σ2c2

[
Re(ΓHΓ) TRe(ΓHnΓ)

TRe(ΓHnΓ) T2Re
(
ΓHn2Γ

) ] (31)

JAr Ai =
σ2

2

 Re
(

1
AAH xHx

)
Im
(

1
AAH xHx

)
−Im

(
1

AAH xHx
)

Re
(

1
AAH xHx

)
 (32)

The remaining eight items in J can be obtained separately, which are

E(R, Ar)=E

[
∂ ln p(y|θ)

∂(R)
∂ ln p(y|θ)

∂(Ar)

H
]

= E

[(
− 8π

σ2c
Re
[
ΓHw

])(
− 2

σ2

)
Re
[

1
AH xHw

]H
]

=
16π

σ4c
σ2

2
Re
(

1
A

ΓHx
)
=

8π

σ2c
Im(

1
A

xHFHx)

(33)
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The similar results are given by

E(R, Ai)=E

[
∂ ln p(y|θ)

∂(R)
∂ ln p(y|θ)

∂(Ai)

H
]
= − 8π

σ2c
Re(

1
A

xHFHx)

E(V, Ar)=E

[
∂ ln p(y|θ)

∂(V)

∂ ln p(y|θ)
∂(Ai)

H
]
=

8πT
σ2c

Im
(

1
A

xHFHnHx
)

E(V, Ai)=E

[
∂ ln p(y|θ)

∂(V)

∂ ln p(y|θ)
∂(Ai)

H
]
= −8πT

σ2c
Re
(

1
A

xHFHnHx
)

E(Ar, R)=E

[
∂ ln p(y|θ)

∂(Ar)

∂ ln p(y|θ)
∂(R)

H
]
= − 8π

σ2c
Im
(

1
AH xHFx

)
E(Ar, V)=E

[
∂ ln p(y|θ)

∂(Ar)

∂ ln p(y|θ)
∂(V)

H
]
= −8πT

σ2c
Im
(

1
AH xHnFx

)
E(Ai, R)=E

[
∂ ln p(y|θ)

∂(Ai)

∂ ln p(y|θ)
∂(R)

H
]
= − 8π

σ2c
Re
(

1
AH xHFx

)
E(Ai, V)=E

[
∂ ln p(y|θ)

∂(Ai)

∂ ln p(y|θ)
∂(R)

H
]
= −8πT

σ2c
Re
(

1
AH xHnFx

)

(34)

Another two submatrices are summarized as

JRVAr Ai
=

8π

σ2c

 Im(
1
A

xHFHx) −Re(
1
A

xHFHx)

TIm
(

1
A

xHFHnHx
)
−TRe

(
1
A

xHFHnHx
)
 (35)

JAr Ai RV=−
8π

σ2c

 Im
(

1
AH xHFx

)
TIm

(
1

AH xHnFx
)

Re
(

1
AH xHFx

)
TRe

(
1

AH xHnFx
)
 (36)

Based upon the previous derivation, the complete FIM is presented in (37) by substituting
the results of the submatrices into the original (26). Subsequently, the values of the CRLBs,
which characterize the estimated performance, can be calculated by substituting this FIM into (7).

J =



σ−4N 0 0

0

32π2

σ2c2 Re(xHFHFx)
32π2

σ2c2 TRe(xHFHnFx)

32π2

σ2c2 TRe(xHFHnFx)
32π2

σ2c2 T2Re
(
xHFHn2Fx

)
8π

σ2c
Im
(

1
A

xHFHx
)

− 8π

σ2c
Re(

1
A

xHFHx)

8πT
σ2c

Im
(

1
A

xHFHnHx
)
−8πT

σ2c
Re
(

1
A

xHFHnHx
)

0
− 8π

σ2c
Im
(

1
AH xHFx

)
−8πT

σ2c
Im
(

1
AH xHnFx

)
− 8π

σ2c
Re
(

1
AH xHFx

)
−8πT

σ2c
Re
(

1
AH xHnFx

)
σ2

2
Re
(

1
AAH xHx

)
σ2

2
Im
(

1
AAH xHx

)
−σ2

2
Im
(

1
AAH xHx

)
σ2

2
Re
(

1
AAH xHx

)


(37)

5. CRLB of Sparse Based Estimator—Compressive Sensing

Compressive sensing is applicable to the sparse target recovery model for this type of
undersampled signal. Unlike the performance analysis above, this method presents its own evaluation
criteria when calculating the estimation performance. In this section, the CRLB performance for a CS
with an SSF signal is analyzed.

In the receiving signal (3), the spaces of the range and velocity can be divided into P×Q
grids. The dimensions of the range are [R1, R2, · · · , RP]. Similarly, the dimensions of the velocity are
[V1, V2, · · · , VQ]. Therefore, the range unit can be written as ∆R = c/(2∆ f P), and the velocity unit
can be written as ∆V = c/(2 f0TQ). At every grid, the target exhibits the corresponding scattering
intensity, that is



Sensors 2019, 19, 2002 10 of 18

x(p, q) =

{
A, The ((p− 1)Q + q)thgrid exists a target

0, The target is not located at ((p− 1)Q + q)th grid
(38)

The phase of the echo signal is redefined as

Φi (m, (p− 1) Q + q) = exp(j4π( f0 + m∆ f )(Rp + VqmT)/c), (39)

where m ∈ [1, 2, ..., M], p ∈ [1, 2, ..., P], q ∈ [1, 2, ..., Q], and every Φi is an M × 1 column vector
representing the phase shift on M pulses caused by the target at the position of the ith grid. Therefore,
Φ is the combination of all possible phase shifts on range velocity grids. Researchers in [24,25] have
deduced the CRLB for estimating the sparse parameter. Additionally, we can obtain the performance
representation from the FIM. Similar to the same concept of (7) and (8), we have

Jij=
1
σ2

(
ΦH

I ΦI

)
ij

(40)

where I is the index set defined in the columns of submatrix ΦI from Φ. Therefore, the unbiased
estimation by the CRLB is

E
{
‖x̂− x‖2

}
≥ Tr(J−1) = σ2Tr

((
ΦH

I ΦI

)−1
)

(41)

The performance characterization is related to only Φ. This rule is appropriate for the sparse target
estimation. However, it is noticeable that, after compressive sensing reconstruction, the recovered
results are subsequently mapped inversely to the corresponding real range velocity unit as the
subscript. The largest K values are transformed into x̂. If the subscript of the maximum value is
located at one position x̂k in all scopes PQ, the real range and velocity estimations are determined
by calculation. Specifically, Rk = ∆R ∗ β, Vk = mod(x̂k, β), where β = bx̂k/Qc, b·c is the rounding
operator, mod(a, b) denotes the remaining operators from a to b. The sparse targets can subsequently
be reconstructed accurately.

6. Experiments and Discussion

This section introduces several simulations to examine how the CRLB performs when the
parameters are changed. The discussions above are compared herein.

6.1. CRLB Comparison with Different Waveforms

According to the deviation of the time delay and Doppler stretch model, we generate the CRLB
by various waveforms in different parameter configurations for comparison. These waveforms include
LFM1 and LFM2 with changing pulse width and total bandwidth, LSF1 and LSF2 with changing
pulse number and total bandwidth, two SSF waveforms with changing envelope, namely SSFchirp (13)
and SSFrect (14). In each trial, the value of SNR is set from 0 to 40 dB. Other basic parameters are
Tw = 1 ms, T = 2 ms, M = 100, N = 50, ∆ f = 50 kHz, f0 = 10 MHz. The theoretical CRLB for time
delay and Doppler stretch estimation are respectively illustrated in Figure 1a,b. For the legends [A,B,C]
in the figure, three parts represent the total number of pulses in a burst, pulse width for each pulse,
and equivalent coverage bandwidth. “M in order” represents the using frequencies from 0 to M− 1
multiples of ∆ f in sequence. “Random N from M” means N frequencies combination is generated as
the rule of SSF from frequency span M∆ f .
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Figure 1. Comparison of CRLBs with different waveform. (a) CRLB of time delay; (b) CRLB of
Doppler-stretch.

As shown in the figure, the performance trend of the estimation from multiple waveforms is
consistent along with the increasing SNR under the same basic parameters. However, the difference
exists between time estimation and Doppler estimation. For time delay estimation, the CRLB of
SF-based waveforms are obviously not as good as that of LFM signal, but have better performance in
Doppler estimation. When the bandwidth range and pulse width change, it has slight influence on the
estimation for LFM. With the increasing bandwidth in LSF, the performance improves significantly.
By comparison, the CRLB of SSF with N sparse frequencies is used between N pulses and M pulses in
LSF signal. Moreover, the envelope plays an insignificant role.

6.2. Comparison of Different CRLBs

For the deviations in the time delay and Doppler stretch model, we use the CRLB of SSF-chirp
signal as an example. The obtained statistical rules are also applied to the SSF-rect and LSF signals
based on a reasonable definition of variables.

For each SNR value from 0 to 40 dB, we calculate the theoretical var(τ̂)ship of 500 independent
Monte Carlo simulations. In each trial, the frequency combination is generated randomly from
the frequency span. The basic parameters are Tw = 1 ms, T = 5 ms, M = 100, N = 50, ∆ f = 1 KHz,
f0 = 5 MHz. The estimation performances with different frequency steps are illustrated in Figure 2a.
The basic parameters are set as the above setting while ∆ f is set to 0 kHz, 50 kHz, 100 kHz, and 200 kHz
for comparison. Similarly, f0 is set to 5 MHz, 15 MHz, 25 MHz and 35 MHz in Figure 2b; frequency
number N is set to 10, 40, 70, and 100 in Figure 2c. Any four groups of sparse frequency combination
are selected from all the tests to compare in Figure 2d.

As shown in the figure, the changes in ∆ f , f0, and N exhibit corresponding effects on the range
of the final CRLB. However, only ∆ f exhibits uniform variations, the other two variables exhibit
differentiations under equidistant values. The effect of random combination is minimal when the other
conditions remain unchanged.

The CRLB of the joint multiple parameter estimation is the same as in (4). Every normalized
CRLBi as the ith independent parameter can also be calculated individually. For every SNR value from
0 to 50 dB, the theoretical CRLB is calculated. In each trial, the frequency combination is generated
randomly within the frequency span. The other basic parameters are the same as that in the first
simulation. The target information to be estimated is set as R = 5 km, V = 2 m/s, A = 0.5 + 0.8j.
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Figure 2. CRLB comparison with different parameters. (a) different frequency step ; (b) different initial
carrier frequency; (c) different frequency number; (d) different sparse frequency combination.

The estimation performance of every CRLBi is illustrated in Figure 3a. It shows the contribution
of each separated value to the overall CRLB by changing the SNR. If the best estimation performance
is synthesized, the parameters related to the single coefficient to be estimated can be adjusted
appropriately.

To observe the trend of performance caused by various parameters more intuitively, a statistical
analysis is presented in Figure 2b. The differences of the effects from various factors on the estimation
performance are shown clearly. For each group of parameters, 500 independent Monte Carlo
simulations are performed to obtain a statistical trend. The primary parameters of the variables
are shown in Table 1.

Table 1. Parameters setting for multiple groups of SSF signal.

Variables Initial Value the Value of ith Groups Value Range

σ2 (σ2)(0) = 1 (σ2)(i) = 102(i/20) i = [1, 50]
∆ f (kHz) ∆ f (0) = 1 ∆ f (i) = ∆ f (0) + (10i− 1) i = [1, 50]
f0 (MHz) f0

(0) = 1 f0
(i) = f0

(0) + (i− 1) i = [1, 50]
N N(0) = 40 N(i) = N(0) + (i− 1) i = [1, 50]

T(ms) T(0) = 1 T(i) = T(0) + (i− 1) i = [1, 50]
C Random Random Cn ∈ [1, M]
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Figure 3. Comparison of CRLBs with changing SNR. (a) Monte Carlo Comparison of CRLBs; (b) Monte
Carlo simulation of CRLB-θ with multiple variables.

(·)(0) represents the initial value for any variables; (·)(i) represents the value in the ith group.
When testing a variable, other variables are defined as the initial value. For the parameters
of every group, the logarithmic proportional function is used to characterize the trend, that is

P(i) = log
var(·)(i)

var(·)(0)
. The testing variables are the frequency combination coefficient C, frequency

number N, environment parameter σ2, PRI T, frequency step ∆ f and initial carrier frequency f0.
As shown in the figure, the changes in ∆ f , f0, and N exhibit corresponding effects on the range
of the final CRLB. However, only ∆ f exhibits uniform variations; the other two variables exhibit
differentiations under equidistant values. The effect of random combination is minimal when the other
conditions remain unchanged.

The related parameters are divided broadly into the following categories.
Envelope of signal: When γ = 0, var(·)chirp = var(·)rect. The value of γ has little effect. Because

the value is sufficiently small, and the most of this coefficient concentrate in the items of n sequence
with fn >> n > γ, it implies that the envelope is not the dominant factor.

SNR, velocity, and amplitude: The real coefficient containing π, c, and σ2 will directly affect
the calculation results. The three items N0, σ, |a| are related to the SNR, velocity, and amplitude,
respectively. The SNR can be obtained from the power and PSD, namely, SNR = E/N0. Specifically,
CRLB is proportional to σ, and inversely proportional to N0.

Sparse frequency combination, frequency number N: When the value of N is fixed, the using
signal bandwidth and the synthetic bandwidth are constant for each sparse frequency combination.
Thus, the combination of frequencies does not have a significant effect. However, the maximum interval
between two frequencies and the dispersion of every combination will impose higher requirements on
the recovery method. Different methods involve particular constraints on the relationship between N
and M, as well as special requirements for the rule of frequency hopping. We will not discuss this in
detail; only the performance comparison will be emphasized herein.

Initial carrier frequency, pulse width, frequency step, and PRI: These parameters are determined
by the signal, and are not changed by the environment and target scene. The trends of the three
parameters is are synchronized. The value of f0 is typically large, reaching MHz or even GHz, which is
significantly larger than any other parameters. Therefore, it is the most significant factor. Conversely,
T and Tw are negligible owing to their small magnitudes.
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6.3. CRLBs Using Different Estimators

This simulation uses the bound comparison produced by different estimators. The symbols C1,
C2, and C3 are used to represent the time delay and Doppler stretch estimator, joint multiple parameter
estimator, and sparse based estimator, respectively. The comparison results are shown in Figure 4.

The general parameters are set with Tw = 1 ms, T = 4 ms, M = 50, N = 80, ∆ f = 1 kHz,
R0 = 15 km, V0 = 2 m/s, A0 = −0.5 + 0.5j, and the SNR is changed from 0 to 30 dB. In Figure 4a,
the sampling rule includes the uniform M frequencies in M pulses, uniform N frequencies in N pulses,
and random M sequences from N frequencies with M pulses. The time delay τ and Doppler stretch σ

estimation are tested. In Figure 4b, the primary target information is measured: target range R, velocity
V, and amplitude A under different sampling models. Jointly, the obtained overall CRLB C2-All is
shown in the same figure. In Figure 4c, the sparse estimation is considered with the method based on
grid partition. Therefore, it depends on the numbers of range grids GR and velocity grids GV. We use
three groups of different grid numbers as an example.
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Figure 4. Comparison of CRLBs using different model. (a) CRLB using time delay and Doppler stretch
estimator; (b) CRLB using multiple parameter estimator; (c) CRLB using the sparse based estimator.

As shown in the figure, the CRLB index is changed owing to the different samplings. In the
uniform samplings, more samplings produce better estimation performance. However, the transmitting
frequencies chosen randomly are somewhere in between. Therefore, we conclude from the statistical
estimation, part of the estimation can be consistent with the theoretical value, while the estimation
performance remains unchanged when the SNR is large.
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6.4. RD Comparison between Different Methods

A practical example is presented to demonstrate the effectiveness of the target location using
different estimation methods. We use the IDFT method, correlation function method [18], and CS
method to estimate the range and velocity as a practical example. The contrasting figures illustrate
the effect of resolution improvement and sidelobe suppression in the range domain. An SSF
transmitting signal is designed using all available frequencies. The system parameters are set with
carrier frequency f0 = 7.5 MHz, sample frequency fs = 1 kHz, pulse width Tw = 1 ms, PRI T = 4 ms,
frequency span is 500 kHz, pulse number M = 250, step size ∆ f = 1 kHz. Six targets are considered
with the parameter configuration as (#1) R1 = 258 km, V1 = 3 m/s, (#2) R2 = 258 km, V2 = 6 m/s,
(#3) R3 = 251 km, V3 = 0 m/s, (#4) R4 = 250 km, V4 = 0 m/s, (#5) R5 = 244 km, V5 = −1 m/s, (#6)
R6 = 240 km, V6 = −5 m/s. The SNR for every target is set to the same value 20 dB. Thus,
the frequency utilization rate is only 46%. We set multiple moving targets in the line-of-sight with the
range and velocity values shown in Figure 5d.

Targets #3 and #4 are located at a close proximity with the same (zero) velocity. For the convenience
of observation, the targets are shown with the same amplitude and SNR. Two-dimensional signal
processing for the echo signals is performed from 50 burst pulses transmitted continuously. Processing
methods are used to estimate the information of the targets. The comparison results of the three
methods are shown in Figure 5a–c.

(a) (b)

(c) (d)

Figure 5. Target RD estimation with different method. (a) IDFT method; (b) Correlation function
method; (c) compressive sensing method; (d) actual location of targets as a reference (The theoretical
values of the actual range and velocity location are the discrete points in (d), which only provide
references for estimation in (a) (b) and (c)).

It is apparent that the IDFT method cannot determine the location of the targets. The range and
velocity information of the targets can be obtained by the correlation function method. However,
owing to the effect of the high-range sidelobe level, this method cannot distinguish the exact location
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of the targets. If we do not consider the ambiguity caused by the radial velocity, and only focus
on the sidelobe suppression in the range domain, the CS method yields a better performance in
improving the precision of the range measurement. The selected observation range of the axis is
−20 to 0 dB. As shown, the sidelobe below −20 dB have little effect on the targets; additionally, it is
easy to distinguish two closely spaced targets.

Next we will give a statistical result for IDFT, CORR and CS method. In Figure 6, by adding
the range, velocity and the amplitude estimated error together, the statistical values of the minimum
mean square error (MMSE) are tested by Monte Carlo simulations. The times of Monte Carlo is 500,
SNR from 0 to 30 dB. For CS, the traditional orthogonal matching pursuit method is chosen here.
Three different methods are drawn separately because of the difference in error value level. Figure 6a
illustrates the MMSE of IDFT and CORR method. The results of comparison between CRLB and
MMSE of CS method are shown in Figure 6b.
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Figure 6. Monte Carlo tests of target estimation. (a) MMSE of IDFT and CORR method; (b) CRLB and
MMSE of CS method.

As shown in the figure, with the increase of SNR, the trend of MMSE is decreased before stable
in a certain value until it reaches a large SNR. CORR method has the fastest speed to achieve stable
accuracy, and CS method has the best robustness in this test. The results of theoretical CRLB and
MMSE are consistent with CS method. When SNR exceeds 20 dB, the limitation of grids will lead to a
same error without further reduction.

7. Conclusions

In this paper, the CRLB performance by different representations was analyzed under the
conversion of multiple equivalent models. Several theoretical derivations were investigated for
different estimation methods; they will serve as reference and guidance for the design of transmission
waveforms in the front end and the estimation of signals in the back end. With these specific
expressions, the estimation performances for different parameter combinations could be determined
directly. With increasing ∆ f , f0, N, and T, CRLB performance was improved. Additionally,
environmental noise as an extremely important factor should be considered. Meanwhile, regarding
the determined frequency width, the effect of frequency combination based on statistics was much
weaker for this type of signal. The theoretical results are beneficial for target estimation and detection
by introducing an SSF signal into a radar system.
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