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Abstract: This paper considers performance criteria for the identification of sensor error models
and the procedure for their calculation. These criteria are used to investigate the efficiency of the
identification problem solution, depending on the initial data, and to carry out a comparative analysis
of various suboptimal algorithms. The calculation procedure is based on an algorithm that solves
the joint problem of hypothesis recognition and parameter estimation within the Bayesian approach.
A performance analysis of the models traditionally used to describe errors of inertial sensors is given
to illustrate the application of the procedure for the calculation of performance criteria.

Keywords: inertial sensor; filtering algorithm; sensor error model; identification; Bayesian approach;
performance criteria

1. Introduction

Currently, algorithms based on system description in state space are widely used in control and
estimation problems. To estimate the state vector of such systems, linear and nonlinear stochastic
Bayesian filtering algorithms, such as the Kalman filter, unscented Kalman filter, and particle filter [1–4],
which require the derivation of system models in state space in the form of random processes, are
often used. For example, such a problem arises during the processing of redundant measurements,
in particular, navigation data fusion, which involves signals from multiple sensors [5–7]. To design such
stochastic filtering algorithms, we need to describe sensor errors. This, in turn, generates the need to
solve the identification problem of their models. The problem aims to reveal the components of sensor
errors, i.e., to determine the model structure and estimate the unknown parameters of its components
based on the data obtained during the tests. The data are usually obtained by comparing the readings of
the sensors with reference values, and as a result only contain information about sensor errors. Common
tests, possible structures of error models, and the corresponding parameters to be identified, as well as
some methods for their derivation, are given, for example, in [8,9]. The review shows that methods
based on the analysis of sample characteristics are widely used in applied problems concerned with the
processing of measurement data. Such sample characteristics include power spectral density [10,11],
Allan variance (AV) [12–18], etc. These methods are usually effective only for stationary ergodic
processes; in addition, they require long-term measurements. Moreover, in some cases the obtained
model cannot be applied directly to Bayesian stochastic filtering algorithms [1–7,19,20] that imply
the description of errors in time domain using the shaping filter defined in state space. The wavelet
analysis is becoming increasingly popular nowadays [21]. The approach proposed in [21–23] delivers
a global selection criterion based on the wavelet variance that can be used to design an algorithm for
automatic identification of a model structure.

Many methods for the identification of state space systems have been developed so far [24–29].
For example, [1,30–32] formulate the problem of state space model identification within the framework
of the Bayesian approach as a joint problem of hypotheses about the model structure recognition and
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estimation of its parameters. The corresponding problem statement as well as its solution algorithms
are inherently close to the statements and algorithms considered in tracking problems [33–36] or system
diagnostics [37,38].

However, such methods have not been properly applied for the identification of sensor error
models. In [39] and [40] the authors use the Bayesian approach to estimate sensor error parameters only.
In [41,42] the authors show that the problem can be generalized for the identification of the sensor error
model structure as a joint problem of hypothesis recognition and parameter estimation. The problem
solution within the state space and Bayesian formulation allows us to calculate directly the probabilities
of correct structure identification in order to choose the sensor error model. The obtained estimates of
the model parameters are the optimal Bayesian estimates for any time interval. The corresponding
root-mean-square (RMS) of estimation errors can also be calculated both for stationary and nonstationary
models in the frames of this approach.

In this paper we propose a method for determining the estimation quality for the problem of sensor
error model identification. The straightforward calculation of the structure identification probabilities
allows us to compute the unconditional probability for correct model identification and unconditional
relative standard deviations for the estimated parameters. These unconditional characteristics can
be used as identification quality criteria. The criteria can be computed by simulation to answer the
question of whether it is possible in principle to determine the model and its parameters under certain
conditions. Thus, they provide a quantitative measure of possibility to identify a model under certain
conditions and evaluate the quality of such problem solution within a certain suboptimal algorithm
such as the AV.

The Bayesian approach-based algorithm for identification of a sensor error model was considered
in [42], but in this paper we focus on obtaining performance criteria for solution of the identification
problem, propose methods for their calculation and give an example of their practical application.

The paper is structured as follows: Part 2 considers the statement of the identification problem for
the sensor error model and estimation of its parameters in the framework of the Bayesian approach.
The general algorithm for its solution is described here as well. Part 3 introduces the quality criteria
for the problem and the method for their calculation. Part 4 illustrates the proposed method by the
example of the identification problem solution for models traditionally used to describe the errors of
navigation sensors.

2. Problem Statement and Solution Algorithm

To state the problem within the Bayesian approach, let us introduce the following model. Assume
that we have a set of hypotheses about sensor error models, one of which is true. Moreover, each
model can be represented in state space by the shaping filter [39,41]:

xk
i = Φk

i (θ
k)xk

i−1 + Γk
i (θ

k)wk
i ,

θk
i = θk

i−1 = θk,

}
(1)

yi = Hk
i (θ

k)xk
i + Ψk

i (θ
k)vk

i (2)

where yi is a sensor error sample obtained in the tests; xk
i is the error model state vector; k is the number

of the hypothesis that specifies the structure of the sensor error model, k = 1 . . .K is a natural number
from 1 to K; Φk

i (θ
k), Γk

i (θ
k), Hk

i (θ
k), Ψk

i (θ
k) are the matrices describing the shaping filter for this model,

which are nonlinearly dependent on the constant vector of parameters θk and time instance i; wk
i is

pk-dimensional system noise; vk
i describes the mk-dimensional white-noise component of the sensor

error. Both are discrete zero-mean Gaussian white noise with identity covariance matrices. Vector xk
i

is assumed to be Gaussian with known prior expectation and covariance. Prior probability density
function (PDF) for θk is also known. Note that for different hypotheses the dimensionality of vectors
θk and xk

i can also be different and the model can be time-varying because matrices Φk
i (θ

k), Γk
i (θ

k),
Hk

i (θ
k), Ψk

i (θ
k) can depend directly on time instant i.
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Under the assumptions made, the problem of model identification can be formulated as a joint
problem of hypotheses recognition and parameter estimation, i.e., the problem of determining the

hypothesis number k, which is best suited for measurements Yi =
[

y1 . . . yi
]T

, and estimating the

corresponding vectors θk and xk
i . Thus, we can completely describe the sensor error model if we know

the hypothesis number and the corresponding vector θk estimate.
Such a problem can be solved with the algorithm described in [40,42]. It allows us to obtain the

number of hypothesis that corresponds to the maximum posterior probability and the optimal Bayesian

estimates corresponding to the hypothesis vectors θ̂k and xk
i . The algorithm starts with definition of

initial conditions, which is followed by sequential calculation of the hypotheses probabilities and
estimates of parameter and state space vectors for each time.

First, a set of K hypothesis models Equations (1) and (2) is defined, which is potentially suitable as
a sensor error model. Prior PDFs for the vectors θk and xk

0 are usually defined as uniform and Gaussian

ones. Their parameters can be roughly estimated using sample characteristics. The PDFs for vectors θ̂k

are approximated using, for example, the point-mass method [1,2,43]:

f
θk

(
θk/Yi, H = hk

)
≈

Mk∑
j=1

µ
kj
i δ

(
θk
− θkj

)
(3)

where θkj, j = 1 . . .Mk is a grid for θk derived on a domain of its PDF within a fixed hypothesis hk, µkj
i

are PDF approximation weights. The initial weights µkj
0 corresponding to the prior PDF are defined as

equal and normed ones, so that
Mk∑
j=1

µ
kj
i = 1, ∀ k. The Monte Carlo method can also be used for such

approximation [1,44,45]. The feature of the algorithm is the subsequent sequential computation of
the posterior PDF approximations weights µkj

i for vector θk with k = 1.K, which yields the required
estimates and hypotheses probabilities. It should be noted that for a fixed value θkj, the problem of
vector xk

i estimation in Equations (1) and (2) becomes linear and can be solved using a Kalman filter
(KF). This method is also referred to as the Rao-Blackwellization procedure [1,44]. Furthermore, we
describe this recursive procedure, which consists of five steps.

In the first step, matrices Φk
i (θ

kj), Γk
i (θ

kj), Hk
i (θ

kj), Ψk
i (θ

kj) are calculated for the whole set of
values θkj within the set of grids of all hypotheses. For simplicity, hereinafter, these matrices are referred
to as Φkj

i , Γkj
i , Hkj

i , Ψkj
i . Thus, the KF bank is formed in accordance with shaping filters described by

Equations (1) and (2), and the estimates of vectors xkj
i and their covariances Pkj

i are calculated using
KF equations:

x̂kj
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i Pkj
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(
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i

(
Γkj

i

)T
,

(6)

Here, the upper indexes are used to denote that Equations (4)–(6) correspond to the linear filtering
problem within the fixed grid values of vector θkj and hypothesis hk. The innovations

λ
kj
i = yi −Hkj

i x̂kj
i/i−1 (7)
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and the corresponding covariances

Λkj
i = Hkj

i Pkj
i/i−1(H

kj
i )

T
+ Ψkj

i Rkj
i (Ψ

kj
i )

T
(8)

are also computed in this step using estimates x̂kj
i and the corresponding covariances Pkj

i .
In the second step, the values of likelihood functions

fyi(yi/Yi−1, H = hk, θkj) = N
(
λ

kj
i ; 0, Λkj

i

)
,

fxk
i

(
xk

i /Yi, H = hk, θkj
)
= N

(
xk

i ; x̂kj
i , Pkj

i

) (9)

are calculated for the whole set of values θkj by using estimates x̂kj
i , innovations λ

kj
i , and the

corresponding covariances Pkj
i , Λkj

i . Here notation N(x; x, P) means the Gaussian function of random
vector x with expectation x and covariance matrix P. The PDFs in Equation (9) are Gaussian relative
to λ

kj
i and xk

i , respectively, because the problem considered in Equations (1) and (2) is linear for fixed
values of θkj.

In the third step, the posterior probabilities of all hypotheses hk are calculated according to

Pr(H = hk/Yi) ≈
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j=1

µ
kj
i−1N
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ν

kj
i ; 0, Λkj

i
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j=1

µ
kj
i−1N

(
ν

kj
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i

) Pr(H = hk/Yi−1)

 (10)

using the values of the likelihood functions (Equation (9)) computed in the previous step. Equation (10)
can be obtained from Bayes’ rule [1,2], taking into account that the likelihood function for each
hypothesis can be calculated as:

fyi(yi/Yi−1, H = hk) ≈

Mk∑
j=1

µ
kj
i−1N

(
ν

kj
i ; 0, Λkj

i

)
(11)

At the same step, hypothesis h∗k with the highest computed probability Pr(H = h∗k/Yi) is detected.
However, the decision that the model corresponding to the hypothesis is true, is only made when
Pr(H = h∗k/Yi) ≥ γ, where γ is a threshold close to unity. As a rule, the value of γ is assumed to be
about 0.8.

In the fourth step, the approximation coefficients µkj
i for posterior PDFs of vectors θk are computed

according to Bayes’ rule:

µ
kj
i =

µ
kj
i−1 fyi

(
yi/Yi−1, H = hk, θkj

)
L∑

j=1
µ

kj
i−1 fyi

(
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) . (12)

In the fifth step, the estimates of vectors θk, xk
i and their covariances are calculated according to

the following equations:
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k
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where the approximation coefficients µkj
i obtained in the previous step are used.

As follows from the presented expressions, the algorithm has a high computational complexity.
In order to overcome this drawback, in future works it is supposed to design special procedures aimed
at reducing the amount of computations.

3. Performance Criteria Calculation

The performance criteria for identification of stochastic model described by Equations (1) and (2) can
be determined separately: firstly, for the probability of the true model structure identification, and secondly,
for the accuracy of the model parameter estimates. For the model structure, the unconditional probability
of the identification error can be used as a performance criterion. This probability can be computed
directly using the method of statistical trials:

1− Pri
R
(H = hk) ≈ 1−

L∗

L
, (15)

where L∗ is the number of samples by which the algorithm identified the models correctly, and L is
the total number of the simulated samples. The accuracy of the model parameter estimates can be
evaluated using the unconditional covariance matrix of estimation errors:

Gθk
i = E

{
(θk
− θ̂

k
i )(θ

k
− θ̂

k
i )

T}
, (16)

where E{•} is an expectation sign. Thus, the diagonal elements of this matrix will be used for parameter
estimates as a performance criterion. The elements can also be computed using the method of
statistical trials:

Gθk
i = GRθk

i ≈
1

L− 1

L∑
l=1

(
θk(l) − θ̂k

i (Y
l
i)
)(
θk(l) − θ̂k

i (Y
l
i)
)T

(17)

where θk(l) is a true value of the unknown parameters vector in sample l, θ̂k
(Yl

i) is the estimate of vector
θk(l) computed using an algorithm and measurements Yl

i. These elements determine the variance of
the estimation errors for the components of the unknown parameters vector. In what follows, we call
the performance criteria obtained using Equations (15) and (17) a real identification error probability
and a real estimation error variance, correspondingly; they will be indexed with “R”.

The unconditional performance criteria in Equations (15) and (16) can also be computed using the
probability (Equation (10)) and covariances (Equation (14)) from the above algorithm and the method
of statistical trials:

1− Pri
C
(H = hk) ≈

1
L

L∑
l=1

(
1− Prl

i(H = h∗k/Yl
i)
)
, (18)

Gθk
i = GCθk

i =

∫
Pθk

i (Yi) f (Yi)dYi ≈
1
L

L∑
l=1

Pθk
i (Yl

i) (19)

where Prl
i(H = h∗k/Yl

i) is the probability of the true hypothesis h∗k. From here on, the values of the
performance criteria obtained from Equations (15) and (19) will be called the calculated identification
error probability and the calculated estimation error variance, correspondingly, and they will be
indexed with “C”. The coincidence of the real and calculated performance criteria is evidence in favor
of the validity of the results obtained.

For a particular performance analysis, when the mean value of the unknown parameter is not
zero, it is useful to compare not variances, but the relative standard deviation (RSD), which is defined
as the ratio of the standard deviation to the mean [46]:

Vθk
i ( j) =

√
Gθk

i ( j, j)/E{θk( j)} (20)
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where j is the number of vector θk component, Gθk
i ( j, j) is the element of Equation (16) with index ( j, j).

Note that depending on the procedure by which Equation (16) was calculated, we will differentiate
between the real RSD, corresponding to the real covariance matrix (Equation (17)), and the calculated
RSD, corresponding to the calculated matrix (Equation (19)).

4. Examples of Performance Criteria Use

To illustrate the use of the performance criteria, we consider two hypotheses corresponding to the
shaping filters:  x1

i1 = x1
(i−1)1

+ σww1
i ,

x1
i2 = x1

(i−1)2
,

(21)

 x2
i1 = exp(−∆t/τm)x2

(i−1)1
+ σm

√
1− exp(−2∆t/τm)w2

i ,

x2
i2 = x2

(i−1)2
,

(22)

and measurements, which represent a sample of a total sensor error, in the form:

yi = xk
i1 + xk

i2 + σk
vvk

i , k = 1, 2. (23)

In the above relations, wk
i , vk

i are independent of each other zero-mean Gaussian white noises
with unit variances; σw is the RMS deviation of the system noise for the random walk; τ, σm are the
correlation interval and the RMS deviation of the first-order Markovian process in Equation (22),
respectively; σk

v is the RMS deviation of the white-noise component, ∆t is the discretization interval.
These models are quite common to navigation sensor error models that usually contain constant bias,
drift, and white-noise components [8,12].

The identification problem for this case can be formulated as follows. Find the number of the
hypothesis corresponding to the maximum posterior probability Pr(H = hk/Yi), optimal Bayesian

estimates for the state vector xk
i =

[
xk

i1 xk
i2

]T
and the vector of parameters θk for this hypothesis using

the given measurements Yi =
[

y1 . . . yi
]T

. Thus, each hypothesis corresponds to the different
sensor error models. The proposed algorithm chooses one of them using the posterior probability

Pr(H = hk/Yi) and estimate the corresponding parameters θ̂k. However, the aim of the simulation is
to calculate the performance criteria (Equation (15)), and Equations (17)–(20) to show the possibility of
identifying sensor error models in certain conditions.

To show how the estimation accuracy changes with the changes in the parameter values, we
consider three different cases. In the first case, the RMS of the white-noise component is assumed
to be zero

(
σk

v = 0, k = 1, 2
)
. Note that we used the KF Equation (Equation (5)), in which the noise

covariance matrix is not inverted. The vectors of unknown parameters θk are defined as θ1 = σw

for model (22) and as θ2 =
[
τm σm

]T
for model (22). Both vectors are uniformly distributed with

elements within the ranges of σw ∈
[

0.04 0.15
]

u, τm ∈
[

1 25
]

min, σm ∈
[

0.5 1.5
]

u. Here,
“u” means some arbitrary units, for example, deg/s or deg/h in the case of gyro errors, or m/s2 in the
case of accelerometer errors. In the second case, the white-noise component is assumed to be known
with RMS deviation σk

v = 0.5 u., k = 1, 2. In the third case, the RMS of the white-noise component is
unknown and uniformly distributed in the domain σ1,2

v ∈
[

0.25 1
]

u.

4.1. Results of Model Structure Identification Probability

The real (Equation (15)) and calculated (Equation (18)) identification error probabilities are
computed using the method of statistical trials for all the three cases described above. This implies that
the problem is solved using the proposed algorithm for 500 simulated samples for each case.

In the first case, the mean probability of the identification error is close to zero after a couple of
measurements (Figure 1a). Thus, these processes can be easily identified. To illustrate that not all
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methods allow us to do so, we give the AV [9,12] of these processes in Figure 1b. The AV [9,12] are
obtained using a complete set of measurements of length 2000 s. The model identification using AV
usually consists in empirical finding of significant slopes in the plot. We can hardly find difference
between the AV for different models in Figure 1b because we can see only +1/2 slope in this plot, but
there is no significant slope −1/2 of the first-order Markovian process. Taking into consideration the
correlation interval of the first-order Markovian process, the slope −1/2 starts after the averaging time
of 200 s, where AV is unreliable because of the sample length of 2000 s. To distinguish between these
processes using AV, we should take a sample exceeding 20,000 s in length.
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In the second and third cases, the mean probabilities of the identification error after 2000 s of
measurements are about 2% (Figure 2a) and 10% (Figure 3a), respectively. Here, we may conclude that
the uncertainty of the white-noise component affects significantly the model identification probability
for these two models. The AV for these cases have two significant slopes: −1/2 and +1/2 that correspond
to the white noise and random walk (Figures 2b and 3b).
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Thus, we can separate white noise and correlated processes, but the random walk and the
first-order Markovian processes can hardly be distinguished with the use of AV as in the first case.
Note that for the second and third cases, we did not set apart the white noise as a separate hypothesis,
which is why we did not calculate the probability of its detection directly. Hence, the possibility
of white-noise component identification by using the proposed algorithm can be judged from the
corresponding RMS error of the white-noise component, which is presented in the next subsection.

It is shown that the first-order Markovian process and random walk cannot be distinguished by AV
for all three cases. These results show that the potential accuracy of model and parameter identification
can be much higher than the accuracy provided with the use of AV. The criteria for the performance
can be calculated as unconditional error probabilities (Equations (15) and (18)). Figures 1a, 2a and 3a
also show the coincidence of the real and calculated identification probabilities, which implies that the
calculated values are reliable for estimation of identification probability in a real-data experiment.

4.2. Results of Parameter Estimation Accuracy

The mean accuracy characteristics for parameter estimation can also be calculated using the
proposed algorithm. This subsection is devoted to the study of accuracy in different conditions.
However, before we proceed to the analysis of parameter estimation accuracy, let us show how the
results of such analysis can be generalized using RSD. Consider Equations (22) and (23) with different
uncertainty ranges of parameters. For example, let τm be uniformly distributed within the range of[

1 5
]

min in the first case, τm ∈
[

5 25
]

min in the second case, and τm ∈
[

25 125
]

min in the
third case. For these cases we can obtain calculated and real RMS (Figure 4a).

It can be seen from the plots (Figure 4a) that the RMS of the estimation errors are substantially
different due to different true values of the correlation interval and the level of initial uncertainty.
However, the RSD (Figure 4b) for different sizes of the prior uncertainty domain of parameter τm

coincide. Thus, the result obtained for a parameter with the initial uncertainty domain θ ∈
[
θ1 θ2

]
can be generalized for all domains of the form θ ∈

[
rθ1 rθ2

]
, where r is an arbitrary real number

different from zero. Thus, we use RSD as an accuracy characteristic in the following plots.
Figures 5 and 6 show the RSD for the estimates of parameters for the both models and all three

cases considered above. It may be inferred that in the presence of white noise, the accuracy of the
parameter estimation does not vary much regardless of whether the RMS noise is known or not.
The greatest influence that causes decrease in the estimation accuracy is explained by the presence of
the white-noise component.
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Figure 4. (a) Estimation error RMS for the correlation interval of the Markovian process with different
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(b) estimation error RSD for the correlation interval of the Markovian process with the same parameters.
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Figure 6. (a) Real and calculated RSD for RMS deviation of system noise for the random walk:
1 (red)—without white-noise component, 2 (green)—with white-noise component of known RMS,
3 (blue)—with white-noise component of unknown RMS; (b) Real (1—red) and calculated (1—red
dashed) RSD for white-noise component RMS estimates with model (21) and Real (2—green) and
calculated (2—green dashed) RSD for white-noise component RMS estimates with Equation (22).
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In the third case, the RMS of the white-noise component is estimated with a rather high accuracy,
which is the same for the both alternative models (Figure 6b). It should be noted that if we try to
estimate the RMS of the white noise in a sample without white noise, such as in the first simulation
case, the white noise RMS estimates will converge to zero. The above facts allow us to conclude that
the white-noise component is easy to detect both with the use of the proposed algorithm and AV. Note
that in Figures 4–6 the calculated and real RSD coincide, which is evidence of the validity of the results
obtained and reliability of the calculated values.

5. Conclusions

The Bayesian approach to identification of sensor error models based on the solution of a
joint hypotheses recognition and parameter estimation problem is considered. The following main
advantages of this approach are emphasized: possibility of estimating an unknown structure and
parameters of a model at any time interval both for stationary and nonstationary processes; capability
of calculating characteristics for estimation accuracy; the possibility of obtaining a model in the form
that is convenient for solution of the estimation problem using stochastic filtering algorithms.

In the framework of this approach, the paper proposes the performance criteria for the identification
problem of sensor error models in the form of an unconditional probability for identification of a
true model structure and a relative standard deviation (RSD) for unknown parameters of the model.
The probability of choosing the correct structure of the model is defined as the probability of choosing
a shaping filter corresponding to the correct model. The RSD of unknown parameters are determined
using the unconditional covariance matrices calculated for the chosen filter. The introduced criteria
create preconditions for an objective study of the performance of the identification algorithm depending
on the initial data. This analysis should be carried out to evaluate the possibility of the identification
problem solution under given conditions, including a given set of hypotheses, or to choose the
conditions that provide a satisfactory solution.

An example of the identification problem solution is given for the models that are traditionally
used to describe errors of navigation sensors. The models are represented as a sum of correlated
processes specified by the random walk or the first-order Markovian process, white-noise and constant
components. The dependencies in the probability of correct model identification and the accuracy
of parameter estimation from the RMS of the white-noise component are analyzed, including the
case when the RMS is not precisely known and should be identified during the problem solution.
It has been shown that the probability of model identification largely depends on the presence of the
white-noise component. At the same time, the fact of uncertainty in the knowledge of the white-noise
component RMS has an insignificant effect on the probability of model identification and the accuracy
of parameter estimation.

In our future work the proposed criteria will be used to evaluate the performance of suboptimal
algorithms, such as the Allan variance, for the problems of estimating error models of navigation
sensors. This study will involve the comparison of suboptimal and the proposed algorithms.
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