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Abstract: This study investigated classification of six types of head motions using mechanomyography
(MMG) signals. An unequal segmenting algorithm was adopted to segment the MMG signals generated
by head motions. Three types of features (time domain, time-frequency domain and nonlinear
dynamics) were extracted to construct five feature sets as candidate datasets for classification analysis.
Genetic algorithm optimized support vector machine (GA-SVM) was used to classify the MMG signals.
Three different kernel functions, different combinations of feature sets, different number of signal
channels and training samples were selected for comparative analysis to evaluate the classification
accuracy. Experimental results showed that the classifier had the best overall classification accuracy
when using the radial basis function (RBF). Any combination of three different types of feature sets
guaranteed an average accuracy of over 80%. In the case of the best combination (feature set 2 + 3 + 5),
the classification accuracy was up to 88.2%. Using four channels to acquire MMG signal and no less
than 60 training samples can assure a satisfactory classification accuracy.
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1. Introduction

Recent research activities about classification of human body movements are mainly focused on the
classification for limb-motions, more frequently using surface electromyography (sEMG), which is a sort
of bioelectric signal of neuromuscular system that is recorded from the skin surface. Cheng et al. [1]
adopted a discriminant bispectrum feature extraction approach based on sEMG, and used support
vector machine (SVM) to classify nine types of hand and wrist motions. Oskoei et al. [2] demonstrated
that SVM has better performance than linear discriminant analysis (LDA) and multilayer perceptron
(MLP) in the investigation of classifying upper limb motions. The sEMG-based recognition of upper
limb motions has been applied in the control system of rehabilitation equipment and provide objective
data for quantitative assessment [3]. In particular, the pattern recognition of hand motion was applied
to real-time control of sEMG-based multifunctional prosthesis [4]. The classification of individual
and combined finger movements was adopted to control the finger postures of a prosthetic hand [5].
The classification of hand signs based on data collected from accelerometers, and sEMG were used to
identify sign language for hearing-impaired and non-verbal community [6]. Kuang et al. [7] proposed
a recognition method based on extreme learning machine (ELM) to recognize the patterns of seven
lower limb movements, with the overall recognition accuracy above 95%.

Mechanomyography (MMG), a superficial measurement of mechanical vibrations [8], has recently
been used in the classification of human body movements. Alves et al. [9] selected fourteen features and
used LDA on multi-channel MMG analysis to achieve hand movements recognition rate higher than
90%. Wu et al. [10] used SVM on MMG features for real-time continuous recognition of knee motion
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and acquired the average accuracy up to 91%. Ding et al. [11] extracted three feature sets including
wavelet packet transform (WPT) coefficients, stationary wavelet transform (SWT) coefficients, time and
frequency domain hybrid (TFDH) features, adopted SVM for the classification of five finger-motions,
and obtained the accuracy up to 91%. These research results verified the feasibility to conduct pattern
recognition of body movements based on MMG feature analysis. However, further investigations need
to be carried on, for instance, how to combine time domain, time-frequency domain and nonlinear
dynamics features properly, how to optimize SVM parameters, and how to determine the number of
signal acquisition channels and the number of training samples. Some quadriplegics who clinically
suffered from severe loss of motor function of limbs cannot manipulate some normal devices as normal
people. However, they could execute head motions. For them, it is possible to manipulate some simple
devices according to the recognition results of head motions, such as turning on or off the television
and switching the channels, turning on or off the air-conditioner and regulating the temperature,
as well as even controlling the electric wheelchair. This technology has the potential to improve their
life quality. In addition, there is a lack of research on the classification of multi head-motion via sEMG
or MMG analysis.

MMG is regarded as a mechanical counterpart of the electrical activation of skeletal muscle [12].
Before the acquisition of sEMG, it is necessary to perform the careful preparation of the skin (shaving,
abrasion, and cleaning with alcohol) [13]. However, no skin preparation is required when conducting
the MMG acquisition, thus it is convenient to perform experiments. In this paper, fifteen features were
extracted from four-channel MMG signals corresponding to six types of head motions. These features
were divided into five candidate sets for constructing feature vectors. Genetic algorithm-support
vector machine (GA-SVM) method was adopted to classify six head motions, and comparisons were
performed for different kernel functions, the selections of feature set combinations, the numbers of
acquisition channels and the numbers of training samples. Finally, the effect factors of classification
accuracy of head motions based on MMG signals are discussed.

2. Materials and Methods

2.1. Subjects

Eight healthy male students (age: 24.4 ± 0.9 years, height: 175.6 ± 4.0 cm, weight: 64.1 ± 5.8 kg)
with no history of neuromuscular disease volunteered to participate in the study. They were fully
informed of the content of the experiments and then signed the informed consent. All of them were
not engaged in strenuous exercise 24 h before the experiments.

2.2. Experimental Protocol

All the subjects were instructed to perform six types of head motions: forwarding, backwarding,
swinging to left, swinging to right, turning to left and turning to right, as shown in Figure 1. Each motion
was done repeatedly 100 times every 3 s. To avoid muscle fatigue, each subject rested for 30 min after
completing a type of motions.

MMG signals were measured by four accelerometers (TD-3, Beijing, China) on the surface of each
side of sternocleidomastoids and splenius capitis and amplified by an amplifier with a gain of 2000.
Then, the MMG signals were digitized by a 16-bit data acquisition card (NI-9205, Austin, TX, USA)
with a sampling rate of 1000 Hz. The original MMG signals were filtered by an elliptic digital filter
with the passband of 5–100 Hz. Data analysis was performed on a laptop (Inter Core i5 2.50 GHz,
RAM 4.0 GB) with MATLAB (MathWorks Inc, Natick, MA, USA).
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Figure 1. Six types of head motions. 

MMG signals were measured by four accelerometers (TD-3, Beijing, China) on the surface of 
each side of sternocleidomastoids and splenius capitis and amplified by an amplifier with a gain of 
2000. Then, the MMG signals were digitized by a 16-bit data acquisition card (NI-9205, Austin, TX, 
USA) with a sampling rate of 1000 Hz. The original MMG signals were filtered by an elliptic digital 
filter with the passband of 5–100 Hz. Data analysis was performed on a laptop (Inter Core i5  
2.50 GHz, RAM 4.0 GB) with MATLAB (MathWorks Inc, Natick USA). 

2.3. Signal Segmentation 

Since the length of MMG signal corresponding to each motion is not equal, Jiang and Xia [14] 
proposed an unequal length segmentation algorithm. In the condition that the number of motions is 
known, the MMG signal segment of each motion can be obtained. The process of acquiring the 
corresponding signal length is as follows. 

[Step 1] Obtaining the secondary envelopes of the pre-processed MMG waveform. 
[Step 2] Identifying all the maximum points and minimum points on the envelope line and sorting 
these points in sequence. 
[Step 3] Each maximum point has a head minimum and a rear minimum point. Cut out the signal 
frame between the two nearby minimum points. Thus, the two minimum points correspond to the 
start point and the end point. Accordingly, all the signal frames are acquired. 
[Step 4] Calculating the maximum absolute value (summit value) of each signal frame. The sequence 
value of each signal frame depends on the position of the point with summit value. All the signal 
frames are sorted as summit values from large to small (1 to N).  
[Step 5] Merging adjacent signal frames: comparing the Nth signal frames to the (N-1)th one, if the 
start point of the Nth signal frame coincides with the end point of the (N-1)th frame, merging the Nth 
signal frame with the (N-1)th one and moving all the sequence values of all the ones behind N 
forward with 1; otherwise, comparing the Nth signal frame with the (N-2)th one as above. 

Figure 1. Six types of head motions.

2.3. Signal Segmentation

Since the length of MMG signal corresponding to each motion is not equal, Jiang and Xia [14]
proposed an unequal length segmentation algorithm. In the condition that the number of motions
is known, the MMG signal segment of each motion can be obtained. The process of acquiring the
corresponding signal length is as follows.

[Step 1] Obtaining the secondary envelopes of the pre-processed MMG waveform.
[Step 2] Identifying all the maximum points and minimum points on the envelope line and sorting

these points in sequence.
[Step 3] Each maximum point has a head minimum and a rear minimum point. Cut out the signal

frame between the two nearby minimum points. Thus, the two minimum points correspond
to the start point and the end point. Accordingly, all the signal frames are acquired.

[Step 4] Calculating the maximum absolute value (summit value) of each signal frame. The sequence
value of each signal frame depends on the position of the point with summit value. All the
signal frames are sorted as summit values from large to small (1 to N).

[Step 5] Merging adjacent signal frames: comparing the Nth signal frames to the (N − 1)th one, if the
start point of the Nth signal frame coincides with the end point of the (N − 1)th frame, merging
the Nth signal frame with the (N − 1)th one and moving all the sequence values of all the ones
behind N forward with 1; otherwise, comparing the Nth signal frame with the (N − 2)th one
as above.

[Step 6] Removing non-motional signal frames: sorting the N signal frames according to sequence
numbers from small to large, then calculating the absolute values {D(n)} of the difference
between each signal frame with the one behind. If the absolute value D(j) of the difference
between the jth signal frame with the (j + 1)th one is much less than DA (the average value of
{D(n)}), the smaller one is considered as a non-motional signal frame and removed, back to
[Step 4]; otherwise the N signal frames were considered as all the motional signal frames.
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After these steps, the MMG signal was divided into N motion frame signal segments. The start
point and the end point of each frame signal in the sampling time series were obtained. According to
the steps above, the MMG signals of each movement during the whole experiment were cut for each
subject, as shown in Figure 2.
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Figure 2. A typical segmentation of 4-channel pre-processed MMG signals.

2.4. Feature Extraction

Root mean square (RMS), Variance (VAR), Zero crossing (ZC), modified mean absolute value
(MMAV), waveform length (WL), and log detector (LOG) were selected as time domain features [15] as
in Equations (1)–(6):

RMS =

√√√
1
N

N∑
i=1

x2
i (1)

where xi is the value at the ith sampling and N is the number of sampling points.

VAR =
1

N − 1

N∑
i=1

x2
i (2)

ZC =
N−1∑
j=1

sgn(−x jx j+1), where sgn(x) =
{

1, if x > 0
0, if x ≤ 0

(3)

MMAV =
1
N

N∑
i=1

wi|xi|, where wi =

{
1, if 0.25N ≤ i ≤ 0.75N
0.5, otherwise

(4)

WL =
N−1∑
i=1

∣∣∣xi+1 − xi
∣∣∣ (5)

LOG = e
1
N

N∑
i=1

log(|xi |)
(6)

The wavelet packet decomposition was applied to the time-frequency feature extraction.
The subspace composed of the scale function φ(t) and the subspace

{
V j

}
composed of the wavelet

function ψ(t) have a relationship of V j⊥W j and V j+1 = V j ⊕W j, V j continues to be decomposed,
as shown in Equation (7).
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V j+1 = V j−1 ⊕W j−1 ⊕W j = V j−2 ⊕W j−2 ⊕W j−1 ⊕W j = · · · (7)

According to the Equation (8)

V j = U0
j , W j = U1

j , U2n
j ⊥U2n+1

j , Un
j+1 = U2n

j ⊕U2n+1
j (8)

Further decomposition

W j = U2
j−1 ⊕U3

j−1 = (U4
j−2 ⊕U5

j−2) ⊕ (U
6
j−2 ⊕U7

j−2)

· · ·

= U2k

j−k ⊕U2k+1
j−k ⊕ · · · ⊕U2k+1

−1
j−k

· · ·

= U2 j

0 ⊕U2 j+1
0 ⊕ · · · ⊕U2 j+1

−1
j−k

(9)

The 6-scale wavelet packet decomposition was performed on the signal to obtain wavelet packet
coefficients. According to Parseval theorem, Wavelet packet node [6,1] energy (WP [6,1]), WP [6,3],
WP [6,2], WP [6,6], WP [6,7], WP [6,5] was calculated as time-frequency domain features. Approximate
Entropy (ApEn), Fuzzy Entropy (FuzzyEn) and Sampling Entropy (SampEn) were calculated as
nonlinear dynamic features. The details of the specific method refer to [16–18].

In order to investigate the effects obtained by using different features above, we divided the
featuresby nature, and selected several sets for classifier training for comparison. All the features above
were divided into five feature sets (codes 1–5). Feature set 1 includes commonly used time domain
features; feature set 2 includes time domain feature [15], which can achieve a satisfactory classification
accuracy but are not frequently used; feature set 3 includes relatively low-frequency time-frequency
domain features; feature set 4 includes relatively high-frequency time-frequency domain features;
and feature set 5 includes nonlinear dynamic features, as shown in Table 1. All the feature values were
performed normalization to [0,1]. Based on the four channel signals, part of the five feature sets were
selected to form a high-dimensional feature vector to train the classifier. In order to obtain a better
classification, it was worth using more than one feature set, at the same time, the number of features
and samples should satisfy the proportional relationship within a certain range [19]. In this study,
two or three feature sets were used respectively.

Table 1. Feature set.

Vector Number Feature Vector Feature Type

feature set 1 RMS, VAR, ZC Time domain
feature set 2 MMAV, WL, LOG Time domain
feature set 3 WP (6,1), WP (6,3), WP (6,2) Time-frequency domain
feature set 4 WP (6,6), WP (6,7), WP (6,5) Time-frequency domain
feature set 5 ApEn, FuzzyEn, SampEn Nonlinear dynamic

2.5. Classification by GA-SVM

SVM is a machine learning method based on the statistic theory with excellent generalization ability
and practicability. This method has unique advantages in pattern recognition of small training samples.

The model corresponding to the hyperplane in the feature space is

y = wTx + b (10)

where x is the input set, y is the output set, wT is the normal vector that determines the direction of the
hyperplane, and b is the offset.

min
w,b

1
2
‖w‖2 (11)
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subject to yi(wTxi + b) ≥ 1, i = 1, · · · , m
An appropriate kernel function maps x to a higher dimensional feature space and solve the

optimization problem:

min
α

1
2

n∑
i=1, j=1

yiy jαiα jκ(xi, x j) −
n∑

i=1

α j (12)

subject to
l∑

i=1
yiαi = 0, i = 1, · · · , l

The optimal solution is α = (α1, · · · ,αl)
T. Choose α j to calculate the threshold:

b = yi −

l∑
i=1

yiαiκ(xi, x j) (13)

construct the decision function:

f (x) = sgn(
l∑

i=1

αiyiκ(xi, x j) + b) (14)

When SVM is applied in classification, both the error penalty parameter (c) and the kernel
parameter (g) influence the performance of SVM. With the advantages of fitting large-scale parallel
process and a better overall optimizing ability, GA is utilized to search the best parameters c and g
in a definition domain for SVM, namely GA-SVM. GA-SVM has been applied in the classification of
the muscle states (maximum voluntary contraction, fatigue degree) based on MMG signal. GA-SVM
achieved a higher classification accuracy than the back-propagation neural networks (BP-NN) and
SVM [20], the flowchart of GA-SVM could be seen in [21].

2.6. Training and Performance of the Classifier

K-fold Cross Validation (K-CV) is a common statistical analysis method to verify the performance
of the classifier. It has been used in the evaluation of the performance of sEMG recognition system [22].
All samples for each type of motion were divided into K subsets, each of which was tested once, and the
remaining K-1 subsets were adopted as training sets for GA-SVM. Comparing the classification results
of testing samples with their true labels, the classification accuracy (CA) of all the testing samples are
calculated as Equation (15).

CA =
Nright

Nall
× 100% (15)

where Nright is the number of correctly classified samples, and Nall is the number of all testing samples.
The CV accuracy is considered as the performance indicator of classifier performance (Equation (16)).

CVA =
1
k

k∑
j=1

Ak (16)

where k is the number of folds, and Ak is the accuracy measure of the jth fold.
In this study, K was 5, i.e., 20 of the 100 samples of each motion were used as a testing set,

and the rest 80 samples were used for a training set. The searching ranges of c and g were in [0.1, 100]
and [0.01, 10] respectively. Three kernel functions were tested, including radial basis function (RBF),
linear and polynomial kernel. LibSVM3.14 toolbox [23] was used for programming implementation in
this study.
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3. Results

3.1. Feature Sets Selection

The experimental result showed that the classification accuracies of classifier trained by single
feature set were not satisfactory (the CV accuracies are lower than 80%, as shown in Figure 3).
The highest accuracy was achieved by feature set 2, with classification accuracies of 79.2% (RBF), 78.1%
(Linear) and 77.2% (Polynomial) respectively. While the lowest accuracy was using feature set 4, with the
classification accuracies of 64.4% (RBF), 64.8% (Linear) and 58.2% (Polynomial) respectively. Therefore,
when only one feature set was selected, the classification accuracies showed a certain difference.Sensors 2019, 19, x 8 of 13 
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Selecting different numbers of feature sets and different kernels of GA-SVM, the classification
accuracies are shown in Figures 4 and 5. When two feature sets were selected, the highest classification
accuracy was achieved by feature sets (2 + 5), with accuracies of 86.3% (RBF), 86.6% (Linear) and 84.4%
(Polynomial) respectively. The lowest was using feature set (3 + 4), which accuracies were 75.3% (RBF),
75.2% (Linear) and 69% (Polynomial) respectively. With three feature sets, the classification accuracies
further increased, all above 80%. In particular, classification accuracies by feature set (2 + 3 + 5) were
as high as 88.2% (RBF), 87.9% (Linear) and 85.5% (Polynomial) respectively. By comparing results
of different kernel functions, RBF and Linear were better than Polynomial. In the following parts,
RBF was used as the kernel function.
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The accuracy of each motion was obtained by using three feature sets, as shown in Figure 6.
When the feature sets consisted of the features of time domain, time frequency domain and nonlinear
dynamics, the classification accuracy of each motion was higher than 80%.
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Figure 6. The classification accuracy of each head motion using three feature sets.

To illustrate the overall result of classifying each sort of head movements, the confusion matrix
was used as shown in Figure 7, where the column is the targeted motion and the row is the predicted
motion. The results demonstrated that we could get a comparatively high classification accuracy
for three types of head motions: ‘backwarding’, ‘swinging to the left’ and ‘swinging to the right’.
The accuracy was comparatively low for ‘forwarding’, and misclassified to ‘turn to the right’ was up to
5.5%. The misclassification of ‘turning to the left’ into ‘turning to the right’ was up to 6.1%. Moreover,
the misclassification of ‘turning to the right’ into ‘forwarding’ or ‘turning to the left’ was 4.1%.
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3.2. Channels Selection

To figure out the influence of each channel on the classification accuracy, we selected two or three
of the four channels to calculate the classification accuracies based on the combination of different
channels. The result is shown in Figure 8.

The comparison results show that using three channels, the classification accuracy of channel
1&3&4 was the highest, reaching 84.4%, while the lowest using 1&2&4 was 81.7%. When using two
channels, the classification accuracy using 3&4 was the highest, reaching 78.2%, while the lowest was
only 71.5% by using channel 1&2. Therefore, the classification accuracy was influenced by the selected
signal channels. Classification accuracy by using four channels was higher than using three channels
or two channels, which embodies the rationality of using four channels of MMG signals in this study.
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3.3. Numbers of Training Samples

To investigate the relationship between the classification accuracy and the number of training
samples, using the method proposed in Section 2.6, twenty samples of each type of motions consisted
of a testing set, while n (n = 60, 65, 70, 75, 80) of the rest 80 samples were used in the training stage,
the CV accuracy is shown in Figure 9.
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When the number of training samples increased from 60 to 80, there was a slight rise in the
classification accuracy. When using the feature sets (2 + 3 + 5), (2 + 4 + 5) and (1 + 3 + 5), the classification
accuracies increased from 86.8% to 88.1%, 86.0% to 87.4%, and 85.8% to 87.4% respectively. Even in the
condition of less training samples (n = 60), the classification accuracy was still above 85%.

4. Discussion

In this study, we selected some features in time domain, time-frequency domain and nonlinear
dynamics, which were frequently used in previous researches about sEMG or MMG. According to the
results of this study, using single feature set 1, 2 or 5, i.e., time domain features and nonlinear dynamics
features, could acquire better classification accuracy, nevertheless lower than 80%. When using two
feature sets, the classification accuracy rose to a maximum of 86.3%. However, there was a great
difference between different feature sets, e.g., using feature set (3 + 4) could obtain a low classification
accuracy of 75.0%. When using three feature sets, the classification accuracy further improved, and all
the classification accuracies exceeded 80%, with a maximum of 88.1%. Generally, selecting three feature
sets, i.e., one time domain feature set (1 or 2) + one time-frequency feature set (3 or 4) and one nonlinear
time series analysis feature set (5) could acquire reasonably good classification accuracy.

We tried to reduce the signal channels for the purpose of reducing sensors, thus two or three of
the four channel signals were analyzed. The result revealed that the classification accuracy was more
satisfactory when adopting four channel signals, though it was more expensive and less convenient.
Whether more channel signals could further improve the classification accuracy requires additional
investigation. Besides, whether we can select some other muscles, even in the case of fewer signal
channels, could achieve higher classification accuracy is unknown.

MMG has been applied in the classification successfully for some motions recognition, indicating
potential applications [24–26]. Comparing with some other studies, we adopted unequal segmenting
algorithm to extract MMG signal of single motions rather than segmenting signals to a fixed length,
thus being adaptive. From the result of comparing the numbers of training samples, the classification
accuracy of testing samples improved over 1% as the number increased from 60 to 80. However, there is
no evidence that the classification accuracy could be improved further as the number further increased.

Some physical challenged people such as spinal cord injury patients with high paraplegia have
limited limb movements. They could use head motions instead of limb motions to control certain
equipment to improve their living quality. The classification algorithm presented in this paper has
potential application for these patients. Currently, this algorithm is only suitable for offline processing
and the number of samples must be known. It is expected to be improved without knowing the
exact number of samples and could be real-time processed. Some achievements have been made in
the field of prosthetic research based on MMG signal. The discrimination in MMG signal of hand
motions is large, which is easy to be recognized, leading to a high classification accuracy. However,
the discrimination in MMG signals of head motion is small, which increases the difficulty of recognition,
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resulting in the relative lower classification accuracy. The classification of head motions based on
MMG signals needs further investigation for higher classification accuracy and practical application.

5. Conclusions

This study presented comparative study of head-motion classification based on MMG.
Our experiment has demonstrated that classification of six head motions is feasible by adopting
GA-SVM algorithm based on extracted features of four-channel MMG. In the aspect of selecting kernel
function, RBF is better for the classification. With respect to the selection of feature sets, using three
feature sets enables the average classification accuracy higher than 80%; while using the combination of
time domain feature, time-frequency domain feature and nonlinear dynamic analysis feature could get
better classification accuracy, up to 88.2%. In terms of the number of channels, it is obvious that using
four-channel signal gets better results than using three-channel or two-channel signal. The classification
method is suitable for small training samples as it yields the satisfactory result when the number of
training samples is between 60 to 80.
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