
sensors

Article

RT-Seg: A Real-Time Semantic Segmentation
Network for Side-Scan Sonar Images

Qi Wang, Meihan Wu, Fei Yu, Chen Feng *, Kaige Li, Yuemei Zhu, Eric Rigall and Bo He

School of Information Science and Engineering, Ocean University of China, Qingdao 266000, China;
18764819653@163.com (Q.W.); wumeihan@stu.ouc.edu.cn (M.W.); yf0327sky@163.com (F.Y.);
lkg@stu.ouc.edu.cn (K.L.); zhu201621102@163.com (Y.Z.); 4e3.rigall.eric@gmail.com (E.R.);
bhe@ouc.edu.cn (B.H.)
* Correspondence: fccjg@ouc.edu.cn

Received: 1 April 2019; Accepted: 25 April 2019; Published: 28 April 2019
����������
�������

Abstract: Real-time processing of high-resolution sonar images is of great significance for the autonomy
and intelligence of autonomous underwater vehicle (AUV) in complex marine environments. In this
paper, we propose a real-time semantic segmentation network termed RT-Seg for Side-Scan Sonar
(SSS) images. The proposed architecture is based on a novel encoder-decoder structure, in which
the encoder blocks utilized Depth-Wise Separable Convolution and a 2-way branch for improving
performance, and a corresponding decoder network is implemented to restore the details of the targets,
followed by a pixel-wise classification layer. Moreover, we use patch-wise strategy for splitting the
high-resolution image into local patches and applying them to network training. The well-trained
model is used for testing high-resolution SSS images produced by sonar sensor in an onboard Graphic
Processing Unit (GPU). The experimental results show that RT-Seg can greatly reduce the number
of parameters and floating point operations compared to other networks. It runs at 25.67 frames
per second on an NVIDIA Jetson AGX Xavier on 500*500 inputs with excellent segmentation result.
Further insights on the speed and accuracy trade-off are discussed in this paper.

Keywords: side-scan sonar (SSS); real-time semantic segmentation; depth-wise separable convolution;
patch-wise strategy

1. Introduction

Side-Scan Sonar (SSS) has become one of the main underwater sensors which has a wide array of
applications such as oceanographic surveys [1], geological survey [2] and searching for rescue [3]. The
detection of topography and seabed target is realized by the SSS acoustic principle, we can regard the
result presented as an image, which is the most intuitive way of visualizing information and has greater
significance. Sonar sensor can be mounted on AUVs to quickly perform various ocean missions like
path planning [4] and navigation [5,6] by the semantic segmentation results of SSS images. Meanwhile,
the real-time segmentation and autonomous recognition technology also promote the development of
underwater intelligent devices. The SSS imaging principle is shown in Figure 1. By moving the AUV
ahead, the seabed is scanned stripe by stripe, each scan line is recorded as one ping.

Due to the complex underwater environment and interference from its own equipment, SSS
images have the following characteristics: (1) Intensity inhomogeneity, (2) poor image contrast and
(3) serious noises including reverberation, reflection, acoustic loss, scattering, ambient noise and so
on. These characteristics greatly influence feature extraction and image recognition. Researchers used
various methods to pre-process the SSS images and studied traditional segmentation algorithms [7–10]
to process them. While it achieves certain results, the process is time consuming and the accuracy
remains relatively low [11].

Sensors 2019, 19, 1985; doi:10.3390/s19091985 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/9/1985?type=check_update&version=1
http://dx.doi.org/10.3390/s19091985
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1985 2 of 17

Sensors 2019, 19, x FOR PEER REVIEW 2 of 18

10] to process them. While it achieves certain results, the process is time consuming and the accuracy
remains relatively low [11].

Figure 1. The SSS imaging principle.

Recent advancement in machine learning with the improvement of computing performance
encouraged researchers to further study new algorithms [12] for target detection of the SSS image.
The emergence of deep learning [13] promoted more and more Deep Convolutional Neural Networks
(DCNNs), designed to better extract features for image recognition and segmentation. Since Long et
al. [14] proposed a Fully Convolutional Network (FCN), which extended the original CNN structure
into pixel-wise prediction without a fully connected layer, many excellent image segmentation
networks focusing more on accuracy appeared one after another. But most methods either suffer from
a large number of parameters [15], a large number of floating point operations [16–19], or both [20,21],
and most of their datasets are optical or medical images. In these conditions, they become unusable
for many mobile or battery-powered applications such as SSS image analysis tasks. To this end, we
design an effective network structure to satisfy the real-time semantic segmentation for SSS images.

In this work, we focus on the practical trade-off between speed and accuracy involved in
designing segmentation architectures for a specific application and platform. We are inspired by the
SegNet [22], an encoder-decoder structure, where the encoder uses the pooling layer to gradually
reduce the spatial dimension of the input data, and the decoder gradually recovers the details of the
target and the corresponding spatial dimension through a network layer such as a deconvolution
layer. This structure has been widely applied to the field of semantic segmentation. One of the main
contributions of RT-Seg is its novel encoder block. It utilizes the depth-wise convolution where the
parameters are reduced significantly, and the 2-way branch ensure the features of SSS images can be
extracted better. Moreover, we also bring some innovations in the decoding method which can
recover the target details more accurate. In particular, to deal with the high-resolution SSS image, we
use the patch-wise strategy [23] splitting the original image into local patches and sending them to
network training. The experiment of real-time semantic segmentation by our network was carried
out on our AUV through its GPU module.

The remainder of the paper is organized as follows: In Section 2, we review the related work.
Then we give detailed explanation of our RT-Seg structure in Section 3. In Section 4, we introduce the

Figure 1. The SSS imaging principle.

Recent advancement in machine learning with the improvement of computing performance
encouraged researchers to further study new algorithms [12] for target detection of the SSS image.
The emergence of deep learning [13] promoted more and more Deep Convolutional Neural Networks
(DCNNs), designed to better extract features for image recognition and segmentation. Since
Long et al. [14] proposed a Fully Convolutional Network (FCN), which extended the original CNN
structure into pixel-wise prediction without a fully connected layer, many excellent image segmentation
networks focusing more on accuracy appeared one after another. But most methods either suffer from
a large number of parameters [15], a large number of floating point operations [16–19], or both [20,21],
and most of their datasets are optical or medical images. In these conditions, they become unusable for
many mobile or battery-powered applications such as SSS image analysis tasks. To this end, we design
an effective network structure to satisfy the real-time semantic segmentation for SSS images.

In this work, we focus on the practical trade-off between speed and accuracy involved in designing
segmentation architectures for a specific application and platform. We are inspired by the SegNet [22],
an encoder-decoder structure, where the encoder uses the pooling layer to gradually reduce the spatial
dimension of the input data, and the decoder gradually recovers the details of the target and the
corresponding spatial dimension through a network layer such as a deconvolution layer. This structure
has been widely applied to the field of semantic segmentation. One of the main contributions of RT-Seg
is its novel encoder block. It utilizes the depth-wise convolution where the parameters are reduced
significantly, and the 2-way branch ensure the features of SSS images can be extracted better. Moreover,
we also bring some innovations in the decoding method which can recover the target details more
accurate. In particular, to deal with the high-resolution SSS image, we use the patch-wise strategy [23]
splitting the original image into local patches and sending them to network training. The experiment of
real-time semantic segmentation by our network was carried out on our AUV through its GPU module.

The remainder of the paper is organized as follows: In Section 2, we review the related work.
Then we give detailed explanation of our RT-Seg structure in Section 3. In Section 4, we introduce
the implementation details of our datasets and network training. Section 5 shows the experimental
results and analysis in which we evaluate different networks on two SSS images datasets, followed by
a conclusion in Section 6.

Sensors 2019, 19, 1985 3 of 17

2. Related Work

2.1. SSS Images Segmentation

Due to the different sources of noise interference, there is no general segmentation algorithm
for SSS images. Although unsupervised methods [8,24,25] like clustering can be used for SSS image
segmentation, their results are not necessarily semantic. These methods cannot subdivide the classes
they trained to segment, but can perform better at searching for regional boundaries. Early semantic
segmentation methods relied on handcrafted features such as Histogram of Oriented Gradient
(HOG) [26] and Scale-invariant feature transform (SIFT) [27] combined with common classifiers and
hierarchical graphical models. This continues until the revival of deep learning. Convolutional neural
networks (CNNs) are robust to face noisy images, they not only help image recognition, but also greatly
promote the development of semantic segmentation.

2.2. Semantic Segmentation

Semantic segmentation is one of the basic tasks in computer vision, which consists of dividing a
visual input into different semantically interpretable categories. “Semantic interpretability” describes
classification categories as meaningful in the real world. Moreover, it has numerous benefits in
robot-related applications [28–30]. Figure 2 is an example of semantic segmentation, aiming to predict
the class label for each pixel in the image.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 18

implementation details of our datasets and network training. Section 5 shows the experimental
results and analysis in which we evaluate different networks on two SSS images datasets, followed
by a conclusion in Section 6.

2. Related Work

2.1. SSS Images Segmentation

Due to the different sources of noise interference, there is no general segmentation algorithm for
SSS images. Although unsupervised methods [8,24,25] like clustering can be used for SSS image
segmentation, their results are not necessarily semantic. These methods cannot subdivide the classes
they trained to segment, but can perform better at searching for regional boundaries. Early semantic
segmentation methods relied on handcrafted features such as Histogram of Oriented Gradient (HOG)
[26] and Scale-invariant feature transform(SIFT) [27] combined with common classifiers and
hierarchical graphical models. This continues until the revival of deep learning. Convolutional neural
networks (CNNs) are robust to face noisy images, they not only help image recognition, but also
greatly promote the development of semantic segmentation.

2.2. Semantic Segmentation

Semantic segmentation is one of the basic tasks in computer vision, which consists of dividing a
visual input into different semantically interpretable categories. “Semantic interpretability” describes
classification categories as meaningful in the real world. Moreover, it has numerous benefits in robot-
related applications [28–30]. Figure 2 is an example of semantic segmentation, aiming to predict the
class label for each pixel in the image.

(a) (b)

Figure 2. An example of semantic segmentation. (a) The test image containing three classes: Person,
bicycle and background; (b) The well predicted segmentation result.

In convolutional neural networks, it is common to periodically insert a pooling layer between
successive convolutional layers. Its function is to progressively reduce the spatial size of the
representation and extract the main features, leading to a decrease in the number of parameters in
the fully connected layer. Through convolution and pooling operations, a number of features is
obtained. In the fully connected layer, we will connect all the features and send the output values to
the classifier (such as the softmax classifier). Due to the large number of parameters of the full
connection layer, and the image structure will be broken. Therefore, the researchers began to use the
convolution layer to “replace” the fully connected layer.

In 2014, Long et al. from the University of California in Berkeley, CA, USA, proposed a Full
Convolutional Network (FCN), which allows convolutional neural networks to perform dense pixel
prediction using convolution layer without the need of the fully connected layer. Using this method,

Figure 2. An example of semantic segmentation. (a) The test image containing three classes: Person,
bicycle and background; (b) The well predicted segmentation result.

In convolutional neural networks, it is common to periodically insert a pooling layer between
successive convolutional layers. Its function is to progressively reduce the spatial size of the
representation and extract the main features, leading to a decrease in the number of parameters
in the fully connected layer. Through convolution and pooling operations, a number of features is
obtained. In the fully connected layer, we will connect all the features and send the output values
to the classifier (such as the softmax classifier). Due to the large number of parameters of the full
connection layer, and the image structure will be broken. Therefore, the researchers began to use the
convolution layer to “replace” the fully connected layer.

In 2014, Long et al. from the University of California in Berkeley, CA, USA, proposed a Full
Convolutional Network (FCN), which allows convolutional neural networks to perform dense pixel
prediction using convolution layer without the need of the fully connected layer. Using this method,
much faster than the image block classification, an image segmentation map of any size can be
generated. FCN becomes the cornerstone of deep learning applied to semantic segmentation.

Sensors 2019, 19, 1985 4 of 17

In addition to the fully connected layer, another major problem in semantic segmentation is the
pooling layer. Although the pooling layer expands the receptive field, it causes the loss of location
information. However, since semantic segmentation requires that the label map fits perfectly, location
information needs to be preserved. There are two different structures to solve this problem. The first is the
encoder-decoder structure. The encoder gradually reduces the spatial dimension of the pooling layer, and
the decoder repairs the details and spatial dimensions of the object. There is a quick connection between
the encoder and the decoder, which helps the decoder better repair the details of the target. UNet [31]
and SegNet [22] are the most commonly used structures in this approach. Most recently, Lin et al.
proposed RefineNet [15], which extended the standard encoder-decoder approach by adding residual
units inside the skip-connections between encoder and decoder. The second method uses the dilated
convolutional structure to remove the pooling layer, such as Deeplab [17]. The current state-of-the-art
network in the popular benchmark dataset PASCAL VOC [32] belongs to DeepLab-v3 [18] (86.9% means
intersection-over-union (MIOU) on test sets) and DeepLab-v3 + [33] (89.0%).

To obtain more accurate segmentation boundaries, researchers also attempted to cascade their
DCNNs with post-processing steps, such as using conditional random fields (CRF) [16,17].

2.3. Real-Time Semantic Segmentation

Recently, real-time semantic segmentation has begun to draw attention. Paszke et al. introduced
ENet [34] as an effective lightweight segmentation network. Chaurasia et al. [35] proposed the LinkNet
architecture using ResNet18 as the encoder. LinkNet achieves a better accuracy than ENet. However,
ENet overcomes it in terms of computational efficiency. Researchers from the University of Adelaide
and the University of Melbourne have solved the problem by deploying multitasking models on
computing-constrained, achieving the state-of-the art effect. Simultaneously implemented semantic
segmentation and depth estimation [36]. Nonetheless, these networks are designed to process common
images, when the image size is about 200–800 pixels, and pay little attention to specific applications
such as SSS image processing.

3. Network Architecture

In this section, we will introduce a detailed description of RT-Seg. Its structure is divided into two
main modules: The encoding module is mainly responsible for extracting different levels of features
from the SSS image, the corresponding decoding module is responsible for upsampling these features
to the original input resolution and calculate the final class probability maps. Our network architecture
is shown in Figure 3.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 18

much faster than the image block classification, an image segmentation map of any size can be
generated. FCN becomes the cornerstone of deep learning applied to semantic segmentation.

In addition to the fully connected layer, another major problem in semantic segmentation is the
pooling layer. Although the pooling layer expands the receptive field, it causes the loss of location
information. However, since semantic segmentation requires that the label map fits perfectly, location
information needs to be preserved. There are two different structures to solve this problem. The first
is the encoder-decoder structure. The encoder gradually reduces the spatial dimension of the pooling
layer, and the decoder repairs the details and spatial dimensions of the object. There is a quick
connection between the encoder and the decoder, which helps the decoder better repair the details of
the target. UNet [31] and SegNet [22] are the most commonly used structures in this approach. Most
recently, Lin et al. proposed RefineNet [15], which extended the standard encoder-decoder approach
by adding residual units inside the skip-connections between encoder and decoder. The second method
uses the dilated convolutional structure to remove the pooling layer, such as Deeplab [17]. The current
state-of-the-art network in the popular benchmark dataset PASCAL VOC [32] belongs to DeepLab-v3
[18] (86.9% means intersection-over-union (MIOU) on test sets) and DeepLab-v3 + [33] (89.0%).

To obtain more accurate segmentation boundaries, researchers also attempted to cascade their
DCNNs with post-processing steps, such as using conditional random fields (CRF) [16,17].

2.3. Real-Time Semantic Segmentation

Recently, real-time semantic segmentation has begun to draw attention. Paszke et al. introduced
ENet [34] as an effective lightweight segmentation network. Chaurasia et al. [35] proposed the
LinkNet architecture using ResNet18 as the encoder. LinkNet achieves a better accuracy than ENet.
However, ENet overcomes it in terms of computational efficiency. Researchers from the University
of Adelaide and the University of Melbourne have solved the problem by deploying multitasking
models on computing-constrained, achieving the state-of-the art effect. Simultaneously implemented
semantic segmentation and depth estimation [36]. Nonetheless, these networks are designed to
process common images, when the image size is about 200–800 pixels, and pay little attention to
specific applications such as SSS image processing.

3. Network Architecture

In this section, we will introduce a detailed description of RT-Seg. Its structure is divided into
two main modules: The encoding module is mainly responsible for extracting different levels of
features from the SSS image, the corresponding decoding module is responsible for upsampling these
features to the original input resolution and calculate the final class probability maps. Our network
architecture is shown in Figure 3.

Figure 3. An illustration of the RT-Seg architecture.

3.1. Encoder Architecture

The encoding structure of RT-Seg is built in a sequential way by stacking the initial block and
four novel encoder blocks as shown in Figure 3.

Figure 3. An illustration of the RT-Seg architecture.

3.1. Encoder Architecture

The encoding structure of RT-Seg is built in a sequential way by stacking the initial block and four
novel encoder blocks as shown in Figure 3.

Sensors 2019, 19, 1985 5 of 17

The initial single block of our network possesses a convolutional layer with 16 filters which adds
up to 16 feature maps after convolution, then max-pooling performs to reduce the input size by half,
that is presented in Figure 4a. The encoder block in our proposed architecture is based on the inverted
residual block in MobileNet-V2 [37] which is a light-weight network. Our novel encoder block is
shown in Figure 4b.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 18

The initial single block of our network possesses a convolutional layer with 16 filters which adds
up to 16 feature maps after convolution, then max-pooling performs to reduce the input size by half,
that is presented in Figure 4a. The encoder block in our proposed architecture is based on the inverted
residual block in MobileNet-V2 [37] which is a light-weight network. Our novel encoder block is
shown in Figure 4b.

(a)

(b)

Figure 4. (a) Initial block; (b) RT-Seg encoder block, where k is the number of input channels, t is the
channel expansion factor (t > 1) and n represents the serial number of our encoder blocks, we mark
the number of filters at each layer.

In our encoder block, the 2-way branch is applied to get different scales of receptive fields. One
way of the branch uses a 3 × 3 kernel size, the other way uses a 5 × 5 kernel size to learn visual patterns
for large objects. Therefore, the RT-Seg is a “wider” architecture that makes efficient use of its
minimized number of layers to achieve accurate segmentation in real time.

The first 1 × 1 convolution is the “expansion” layer, in order to increase the number of channels
and obtain more features, which is important for next operations. If the latter DW, convolutional layers
receive a small number of input channels; they can only extract features in low-dimensional space,
limiting its potential performance. To solve this issue, we use the 1 × 1 convolution layer to ensure that
the DW convolutional layers are performing in a relatively higher dimension. As shown in Figure 4b,
we use t to represent the expansion factor, which is the multiple of the input channel expansion.

The left branch consists of 3 × 3 depth-wise (DW) convolution and the 1 × 1 point-wise (PW)
convolution, also known as Depth-Wise Separable Convolution: The DW convolution is responsible for
filtering the inputs channels, and the PW convolution is responsible for combining the results of the
DW convolution. It separates the calculation of regions and channels into two steps while the standard
convolution considers their calculation simultaneously. Many efficient neural networks [38,39] used the
Depth-Wise Separable Convolution widely. We can intuitively see the difference between these two
types of convolutions in Figure 5.

Figure 4. (a) Initial block; (b) RT-Seg encoder block, where k is the number of input channels, t is the
channel expansion factor (t > 1) and n represents the serial number of our encoder blocks, we mark the
number of filters at each layer.

In our encoder block, the 2-way branch is applied to get different scales of receptive fields. One
way of the branch uses a 3 × 3 kernel size, the other way uses a 5 × 5 kernel size to learn visual
patterns for large objects. Therefore, the RT-Seg is a “wider” architecture that makes efficient use of its
minimized number of layers to achieve accurate segmentation in real time.

The first 1 × 1 convolution is the “expansion” layer, in order to increase the number of channels
and obtain more features, which is important for next operations. If the latter DW, convolutional layers
receive a small number of input channels; they can only extract features in low-dimensional space,
limiting its potential performance. To solve this issue, we use the 1 × 1 convolution layer to ensure that
the DW convolutional layers are performing in a relatively higher dimension. As shown in Figure 4b,
we use t to represent the expansion factor, which is the multiple of the input channel expansion.

The left branch consists of 3 × 3 depth-wise (DW) convolution and the 1 × 1 point-wise (PW)
convolution, also known as Depth-Wise Separable Convolution: The DW convolution is responsible
for filtering the inputs channels, and the PW convolution is responsible for combining the results of the
DW convolution. It separates the calculation of regions and channels into two steps while the standard
convolution considers their calculation simultaneously. Many efficient neural networks [38,39] used
the Depth-Wise Separable Convolution widely. We can intuitively see the difference between these
two types of convolutions in Figure 5.

Moreover, the computational complexity of Depth-Wise Separable Convolution can be greatly
reduced. Suppose that the size of our input feature map is H ×W × Cin, the convolutional kernel size
is k × k, and the number of filters is Cout. The calculated amount after standard convolution is:

H ×W × Cin × k × k × Cout (1)

Sensors 2019, 19, 1985 6 of 17

The amount of calculation after Depth-Wise Separable Convolution is:

H ×W × Cin × k × k + Cin × Cout × H ×W (2)

In our encoder block, when k is set to 3, we can conclude that the calculation of the Depth-Wise
Separable Convolution is reduced to about 1/9 of the standard convolution and when k is set to 5, we
can conclude that the calculation of the Depth-Wise Separable Convolution is reduced to about 1/25 of
the standard convolution.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 18

(a)

(b)

Figure 5. Comparison of two different convolution operations, supposing the input size is 64*64 with
3 channels, and the number of filters is 4. (a) The standard convolution; (b) Depth-Wise Separable
Convolution which consists of DW convolution and PW convolution.

Moreover, the computational complexity of Depth-Wise Separable Convolution can be greatly
reduced. Suppose that the size of our input feature map is H × W × Cin, the convolutional kernel size
is k × k, and the number of filters is Cout. The calculated amount after standard convolution is:

H × W × Cin × k × k × Cout (1)

The amount of calculation after Depth-Wise Separable Convolution is:

H × W × Cin × k × k + Cin× Cout ×H×W (2)

In our encoder block, when k is set to 3, we can conclude that the calculation of the Depth-Wise
Separable Convolution is reduced to about 1/9 of the standard convolution and when k is set to 5, we
can conclude that the calculation of the Depth-Wise Separable Convolution is reduced to about 1/25
of the standard convolution.

We placed batch normalization [40] and Rectified Linear Unit (ReLU) after the DW convolution
layers. The mathematical expression for the activation function ReLU is as follows:

),0max()(xxf = (3)

When the input signal x is negative, the output is 0; when x is positive, the output is equal to the
input. We found that ReLU only needs a threshold to get the activation value. In order to ensure the
expression ability of the model and prevent information loss, we replace the ReLU with linear
activation after the PW convolution layers. Although the activation function can effectively increase
nonlinear classification in high-dimensional space, it will destroy features in low-dimensional space.
Meanwhile, for the negative input of the ReLU function, the output is all zero, since the original
feature has been “compressed”, and then through ReLU, it will inevitably “lose” some features.
Therefore, it is not appropriate to use ReLU after dimension reduction.

The right branch in Figure 4b is also a Depth-Wise Separable Convolution, but we adopt a 5 × 5
DW convolution, which will increase the receptive field. The larger the receptive field, the wider
range of original input the DW convolution can deal with. Moreover, the high-level feature maps are
generated by a larger receptive field, allowing to obtain richer semantic information.

Instead of merging the 2-way branch with an element-wise addition like in inverted residual
block, we use shortcut for filter concatenation in our encoder block as a concatenation of channels.
This is heavily inspired by [41]. On the one hand, it increases the width of the network rather than
the depth. The deeper the network, the easier the backpropagation gradient disappears (vanishing
gradient problem) and the more difficult to optimize the model. Balancing the width and depth of
the network can improve the performance of deep neural networks. On the other hand, it combines
features of different scales, we can more effectively utilize the features and enhance the transfer
between features.

The last layer of the encoder block is the max-pooling layer with non-overlapping 2 × 2 windows,
which downsamples the feature maps of the convolutional layer by calculating the maximum value

Figure 5. Comparison of two different convolution operations, supposing the input size is 64*64 with
3 channels, and the number of filters is 4. (a) The standard convolution; (b) Depth-Wise Separable
Convolution which consists of DW convolution and PW convolution.

We placed batch normalization [40] and Rectified Linear Unit (ReLU) after the DW convolution
layers. The mathematical expression for the activation function ReLU is as follows:

f (x) = max(0, x) (3)

When the input signal x is negative, the output is 0; when x is positive, the output is equal to the
input. We found that ReLU only needs a threshold to get the activation value. In order to ensure
the expression ability of the model and prevent information loss, we replace the ReLU with linear
activation after the PW convolution layers. Although the activation function can effectively increase
nonlinear classification in high-dimensional space, it will destroy features in low-dimensional space.
Meanwhile, for the negative input of the ReLU function, the output is all zero, since the original feature
has been “compressed”, and then through ReLU, it will inevitably “lose” some features. Therefore, it is
not appropriate to use ReLU after dimension reduction.

The right branch in Figure 4b is also a Depth-Wise Separable Convolution, but we adopt a 5 ×
5 DW convolution, which will increase the receptive field. The larger the receptive field, the wider
range of original input the DW convolution can deal with. Moreover, the high-level feature maps are
generated by a larger receptive field, allowing to obtain richer semantic information.

Instead of merging the 2-way branch with an element-wise addition like in inverted residual
block, we use shortcut for filter concatenation in our encoder block as a concatenation of channels. This
is heavily inspired by [41]. On the one hand, it increases the width of the network rather than the depth.
The deeper the network, the easier the backpropagation gradient disappears (vanishing gradient
problem) and the more difficult to optimize the model. Balancing the width and depth of the network
can improve the performance of deep neural networks. On the other hand, it combines features of
different scales, we can more effectively utilize the features and enhance the transfer between features.

The last layer of the encoder block is the max-pooling layer with non-overlapping 2 × 2 windows,
which downsamples the feature maps of the convolutional layer by calculating the maximum value
of each window. The purpose is to retain key features while reducing parameters and calculations.
We only store the max-pooling indices, the locations of the maximum feature value in each pooling

Sensors 2019, 19, 1985 7 of 17

window, and use it to upsample the feature maps for recovering spatial information. We will introduce
the details in Section 3.2.

The calculation process of our encoder block implementation is shown in Table 1, where t is the
expansion factor and k represents the number of input channels. Our experiments show that when t
equals 6, we will get the best segmentation performance as shown in Section 5.

Table 1. The encoder block implementation.

Branch Input Operator Output

h×w× k ×1, conv, BN, ReLU h×w× (tk)

Left branch
h×w× (tk) 3 × 3, DWconv, BN, ReLU h×w× (tk)

h×w× (tk) 1 × 1, PWconv, BN, Linear h×w× k

Right branch
h×w× (tk) 5 × 5, DWconv, BN, ReLU h×w× (tk)

h×w× (tk) 1 × 1, PWconv, BN, Linear h×w× k

h×w× k Filter Concatenate h×w× (2k)

h×w× (2k) Max-pooling (h/2) × (w/2) × (2k)

3.2. Decoder Architecture

As shown in Figure 6, the input of our decoding block consists of two parts: One from the encoder
information and the other upsamples its input feature map using the memorized max-pooling indices
from the corresponding encoder feature map. The decoder combines the channels of these two parts
instead of adding them.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 18

of each window. The purpose is to retain key features while reducing parameters and calculations.
We only store the max-pooling indices, the locations of the maximum feature value in each pooling
window, and use it to upsample the feature maps for recovering spatial information. We will
introduce the details in Section 3.2.

The calculation process of our encoder block implementation is shown in Table 1, where t is the
expansion factor and k represents the number of input channels. Our experiments show that when t
equals 6, we will get the best segmentation performance as shown in Section 5

Table 1. The encoder block implementation.

Branch Input operator Output

 kwh ×× ×1, conv, BN, ReLU)(tkwh ××

Left branch)(tkwh ×× 3 × 3, DWconv, BN, ReLU)(tkwh ××

)(tkwh ×× 1 × 1, PWconv, BN, Linear kwh ××

Right branch)(tkwh ×× 5 × 5, DWconv, BN, ReLU)(tkwh ××

)(tkwh ×× 1 × 1, PWconv, BN, Linear kwh ××

 kwh ×× Filter Concatenate)2(kwh ××

)2(kwh ×× Max-pooling)2()2/()2/(kwh ××

3.2. Decoder Architecture

As shown in Figure 6, the input of our decoding block consists of two parts: One from the
encoder information and the other upsamples its input feature map using the memorized max-
pooling indices from the corresponding encoder feature map. The decoder combines the channels of
these two parts instead of adding them.

Figure 6. Our decoder block structure.

First, we can see the implementation of max-unpooling layer from Figure 7. We use the pooling
indices from encoder feature maps to perform upsampling its input feature maps in decoder block.
This operation does not involve deconvolution, which greatly speeds up the training time and allows
to reduce the memory requirement. Still, it will hurt accuracy. Then we transfer the entire feature
maps from encoder blocks to the corresponding decoder blocks and concatenate them to upsampled
(using pooling indices) decoder feature maps. This operation can effectively preserve the edge detail
information from the original image. Since the decoder can access the knowledge learned by the
encoder at each layer, the decoder can use fewer parameters and get better recovery of image feature

Figure 6. Our decoder block structure.

First, we can see the implementation of max-unpooling layer from Figure 7. We use the pooling
indices from encoder feature maps to perform upsampling its input feature maps in decoder block.
This operation does not involve deconvolution, which greatly speeds up the training time and allows
to reduce the memory requirement. Still, it will hurt accuracy. Then we transfer the entire feature
maps from encoder blocks to the corresponding decoder blocks and concatenate them to upsampled
(using pooling indices) decoder feature maps. This operation can effectively preserve the edge detail
information from the original image. Since the decoder can access the knowledge learned by the
encoder at each layer, the decoder can use fewer parameters and get better recovery of image feature
information. This decoding method can make the overall network more effective compared to existing
segmented networks for real-time operations. Furthermore, with little modification, this decoding
method can be embedded in any encoder-decoder network architecture.

Sensors 2019, 19, 1985 8 of 17

Sensors 2019, 19, x FOR PEER REVIEW 8 of 18

information. This decoding method can make the overall network more effective compared to
existing segmented networks for real-time operations. Furthermore, with little modification, this
decoding method can be embedded in any encoder-decoder network architecture.

Our decoder block is illustrated in Figure 6. We combine Xn (n=1,2,3,4) from Encoder block in
Figure 4b and the upsampled max-unpooling layer. Then low-dimensional output is obtained by the
convolutional layers of 1 × 1, 3 × 3.

Figure 7. The implementation of the max-unpooling layer.

4. Implementation Details

In this section, we present the details of implementation of the datasets and network training for
SSS images.

The overall experimental process is shown in Figure 8. We obtain the sonar data in XTF format
from the sonar sensor mounted on an AUV, these data are stitching together in one single image after
being parsed and then saved as a georeferenced grayscale image at high resolution. We collected
sonar data from two locations, and then used the patch-wise strategy to divide the high-resolution
sonar images into two datasets, one of which contains coral reef images (Dataset-1) from the South
China Sea region, and the other one consists of sand wave images (Dataset-2) from Tuandao Bay in
Qingdao, China.

Figure 8. The experimental process for network training and testing.

4.1. Patch-Wise Strategy and Datasets

The high-resolution sonar images are shown in Figure 9a,b, where the average image size is
10000 × 7200 pixels (after interpolation). The pixel values in the image are determined by the reflected
strength of the echo and the distance from objects. The maximum pixel value is 255 as black color and
the minimum value is 0 as white color. The black area in the middle of the image is a blind spot called

Figure 7. The implementation of the max-unpooling layer.

Our decoder block is illustrated in Figure 6. We combine Xn (n = 1,2,3,4) from Encoder block in
Figure 4b and the upsampled max-unpooling layer. Then low-dimensional output is obtained by the
convolutional layers of 1 × 1, 3 × 3.

4. Implementation Details

In this section, we present the details of implementation of the datasets and network training for
SSS images.

The overall experimental process is shown in Figure 8. We obtain the sonar data in XTF format
from the sonar sensor mounted on an AUV, these data are stitching together in one single image after
being parsed and then saved as a georeferenced grayscale image at high resolution. We collected
sonar data from two locations, and then used the patch-wise strategy to divide the high-resolution
sonar images into two datasets, one of which contains coral reef images (Dataset-1) from the South
China Sea region, and the other one consists of sand wave images (Dataset-2) from Tuandao Bay in
Qingdao, China.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 18

information. This decoding method can make the overall network more effective compared to
existing segmented networks for real-time operations. Furthermore, with little modification, this
decoding method can be embedded in any encoder-decoder network architecture.

Our decoder block is illustrated in Figure 6. We combine Xn (n=1,2,3,4) from Encoder block in
Figure 4b and the upsampled max-unpooling layer. Then low-dimensional output is obtained by the
convolutional layers of 1 × 1, 3 × 3.

Figure 7. The implementation of the max-unpooling layer.

4. Implementation Details

In this section, we present the details of implementation of the datasets and network training for
SSS images.

The overall experimental process is shown in Figure 8. We obtain the sonar data in XTF format
from the sonar sensor mounted on an AUV, these data are stitching together in one single image after
being parsed and then saved as a georeferenced grayscale image at high resolution. We collected
sonar data from two locations, and then used the patch-wise strategy to divide the high-resolution
sonar images into two datasets, one of which contains coral reef images (Dataset-1) from the South
China Sea region, and the other one consists of sand wave images (Dataset-2) from Tuandao Bay in
Qingdao, China.

Figure 8. The experimental process for network training and testing.

4.1. Patch-Wise Strategy and Datasets

The high-resolution sonar images are shown in Figure 9a,b, where the average image size is
10000 × 7200 pixels (after interpolation). The pixel values in the image are determined by the reflected
strength of the echo and the distance from objects. The maximum pixel value is 255 as black color and
the minimum value is 0 as white color. The black area in the middle of the image is a blind spot called

Figure 8. The experimental process for network training and testing.

4.1. Patch-Wise Strategy and Datasets

The high-resolution sonar images are shown in Figure 9a,b, where the average image size is
10,000 × 7200 pixels (after interpolation). The pixel values in the image are determined by the reflected
strength of the echo and the distance from objects. The maximum pixel value is 255 as black color and
the minimum value is 0 as white color. The black area in the middle of the image is a blind spot called
water column, indicating that the sound wave propagates in the water. When the sound wave first
reaches the sea floor and returns signal, the black area disappears and the seafloor echo signal begins
to appear in the image. The proportion of the black area in the sonar image depends on the height of
the sonar sensor from the sea floor. Since it interferes with our SSS image segmentation, we need to
remove the water column area from the image as shown in Figure 9c.

Sensors 2019, 19, 1985 9 of 17

Sensors 2019, 19, x FOR PEER REVIEW 9 of 18

water column, indicating that the sound wave propagates in the water. When the sound wave first
reaches the sea floor and returns signal, the black area disappears and the seafloor echo signal begins
to appear in the image. The proportion of the black area in the sonar image depends on the height of
the sonar sensor from the sea floor. Since it interferes with our SSS image segmentation, we need to
remove the water column area from the image as shown in Figure 9c.

Due to the limitations of GPU memory, the networks cannot deal with such large images directly.
Resizing images is a common way for network training but causes the loss of image detail information.
Therefore, we use patch-wise strategy to solve this problem, which is shown in Figure 9d.

(a)

(b)

(c)

(d)

Figure 9. The high-resolution sonar image process. (a) The coral reef image at high-resolution; (b) The
sand wave image at high-resolution; (c) sonar image after removing water column; (d) patch-wise
strategy.

We split the high-resolution sonar image (the water column removed image) into local patches
(500 × 500 pixels) with a stride in the order of 50 (a stride of 500 for test set). A certain degree of
overlap can reduce image loss caused by splitting and increase the adequacy of the training set. We
obtained 20 high-resolution images of coral reefs and 20 high-resolution images of sand waves
respectively. After performing the patch-wise strategy, we got two datasets (Dataset-1 and Dataset-
2), each of which contains 11,300 images for training and 9670 images for testing. Each image is
divided into two classes: target and background. In addition, these two datasets are trained and
tested separately in order to verify the generalization performance of our network.

For providing ground truth images to the datasets, we use LabelMe, an open access image
annotation tool. It was developed by the Computer Science and Artificial Intelligence Laboratory
(CSAIL) of Massachusetts Institute of Technology (MIT) that allows users to perform image
annotation manually. The project source code is open.
(https://github.com/CSAILVision/LabelMeAnnotationTool). Performance comparison of different
networks when the inputs are of size 500*500 is illustrated in Figure 10.

Figure 9. The high-resolution sonar image process. (a) The coral reef image at high-resolution;
(b) The sand wave image at high-resolution; (c) sonar image after removing water column;
(d) patch-wise strategy.

Due to the limitations of GPU memory, the networks cannot deal with such large images directly.
Resizing images is a common way for network training but causes the loss of image detail information.
Therefore, we use patch-wise strategy to solve this problem, which is shown in Figure 9d.

We split the high-resolution sonar image (the water column removed image) into local patches
(500 × 500 pixels) with a stride in the order of 50 (a stride of 500 for test set). A certain degree of overlap
can reduce image loss caused by splitting and increase the adequacy of the training set. We obtained
20 high-resolution images of coral reefs and 20 high-resolution images of sand waves respectively.
After performing the patch-wise strategy, we got two datasets (Dataset-1 and Dataset-2), each of which
contains 11,300 images for training and 9670 images for testing. Each image is divided into two classes:
target and background. In addition, these two datasets are trained and tested separately in order to
verify the generalization performance of our network.

For providing ground truth images to the datasets, we use LabelMe, an open access image
annotation tool. It was developed by the Computer Science and Artificial Intelligence Laboratory
(CSAIL) of Massachusetts Institute of Technology (MIT) that allows users to perform image annotation
manually. The project source code is open. (https://github.com/CSAILVision/LabelMeAnnotationTool).
Performance comparison of different networks when the inputs are of size 500*500 is illustrated
in Figure 10.

4.2. Details of Training

4.2.1. Loss Function

We denote raw input image (h ×w) by Xn =
{
x(n)i j , i = 1, . . . , h, j = 1, . . . , w

}
, the corresponding

ground truth for image Xn is Yn =
{

y(n)i j , i = 1, . . . , h, j = 1, . . . , w
}
, y(n)i j ∈ {0, 1}. Our training dataset is

T =
{
(Xn, Yn), n = 1, . . . , N

}
.

For a typical SSS image, the distribution of background/target is heavily biased, there is large
variation in the number of pixels in each class in the training set. To solve this problem, we use the

https://github.com/CSAILVision/LabelMeAnnotationTool

Sensors 2019, 19, 1985 10 of 17

balanced cross entropy (Balanced CE) as the loss function for training networks. We introduce a
weighting factor.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 18

It is worth noting that the error of manual labeling will slightly affect the accuracy of network
training. For example, in Figure 10(d4), the prediction result looks more like the image corresponding
label, rather than the manually labeled ground truth in Figure 10(b4).

 sand wave sand wave coral reef coral reef

Original
image

(a)

(a1)

(a2)

(a3)

(a4)

Ground

truth

(b)
(b1)

(b2)

(b3)

(b4)

RT-Seg-t-4

(c)

(c1)

(c2)

(c3)

(c4)

RT-Seg-t-6

(d)

(d1)

(d2)

(d3)

(d4)

RT-Seg-t-8

(e)

(e1) (e2)

(e3)

(e4)

Figure 10. The segmentation results of SSS images, in which the first two columns are sand wave
images from Dataset-1, the last two are coral reef images from Dataset-2. (a) original SSS image with
a size of 500 × 500; (b) ground truth; (c–e) the segmentation results of RT-Seg-t-4, RT-Seg-t-6 and RT-
Seg-t-8, respectively.

5.2. Quantitative Results and Analysis

Evaluating the generalization capabilities of the model and dataset demonstrates its utility for
applications. Tables 2 and 3 show the quantitative comparison of different networks for semantic

Figure 10. The segmentation results of SSS images, in which the first two columns are sand wave
images from Dataset-1, the last two are coral reef images from Dataset-2. (a) original SSS image with
a size of 500 × 500; (b) ground truth; (c–e) the segmentation results of RT-Seg-t-4, RT-Seg-t-6 and
RT-Seg-t-8, respectively.

First, Cross Entropy (CE) based on binary classification is calculated as follows:

LCE = − log(P) (4)

P =

{
p if y = 1

1− p if y = 0
(5)

While y = 1 represents the target and y = 0 the background, p is the predicted probability for the target
class, p ∈ [0, 1].

Sensors 2019, 19, 1985 11 of 17

For Balanced CE, we introduce a weighting factor for each class. The weighting factor is:

αw =

{
α if y = 1

1− α if y = 0
(6)

αw ∈ [0, 1], where α = |Y-|/(|Y+|+|Y-|),1−α = |Y+|/(|Y+|+|Y-|). |Y-| and |Y+| denote the background and
target ground truth label sets, respectively.

LBalancedCE = −αw log(P) (7)

4.2.2. Optimization

We trained our RT-Seg using stochastic gradient descent (SGD) with a batch size of 100 examples,
momentum of 0.9, fixed learning rate of 0.001 and weight decay of 0.0005. We found that this small
amount of weight decay is important for model learning, which reduces the training error of the model.

The update rule for weight w is:

vi+1 := m · vi −wd · α ·wi − α ·

{
∂L
∂w

∣∣∣∣∣Wi

}
Di

(8)

wi+1 := wi + vi + 1 (9)

where i is the iteration index, m is a hyper-parameter of momentum, vi is the momentum variable, α is
the learning rate, wd is the weight decay,

{
∂L
∂w

∣∣∣wi

}
Di

is the average value over the i-th batch Di of the
objective derivative of w, evaluated at wi. We train the variants until the training loss converges, after
then we select the model which performs the highest accuracy on our training datasets.

4.3. Evaluation Metrics

Semantic segmentation has four common metrics, introduced below. Let kij be the number of
pixels of class i predicted to belong to class j, where there are c different classes, and let ki =

∑
j ki j be

the total number of pixels of class i. The four metrics are calculated as follows:

PA =

∑
i kii∑
i ki

(10)

MPA = (1/c)
∑

i

kii/ki (11)

MIoU = (1/c)
∑

i

kii

(ki +
∑

j k ji − kii)
(12)

FWIoU = (1/
∑

t
kt)

∑
i

kikii

(ki +
∑

j k ji − kii)
(13)

Pixel Accuracy (PA), which is the simplest metric, computes the ratio of the correctly predicted
pixels to the total pixels. Mean Pixel Accuracy (MPA), calculates the proportion of correctly classified
pixels in each class, then finds the average for all classes. Mean Intersection-Over-Union (MIOU), a
standard measure for semantic segmentation, calculates the ratio of intersection to union between the
prediction and ground truth. Frequency Weighted Intersection-Over-Union (FWIOU) is an improved
version of MIOU, which sets weights for each class based on their frequency in images.

5. Experimental Results and Analysis

In our experiments, all the training networks were performed on NVIDIA Quadro M5000 card
using Pytorch framework. We trained the networks for roughly 200 epochs, which took about eight days

Sensors 2019, 19, 1985 12 of 17

on two NVIDIA Quadro M5000 GPUs. The well-trained model was then tested on an NVIDIA Jetson
AGX Xavier embedded system module. We compare RT-Seg with the existing network architectures
on different indicators.

5.1. Qualitative Results and Analysis

Figure 10 contains various segmentation results produced by our architecture where the t is set to
different values, where purple color represents the background and yellow color represents the target.
The parameter t is the channel expansion factor in our encoder block, introduced in Section 3.1.

We can observe that RT-Seg-t-4 gives the coarsest predictions, which means if the number of
channels after expansion is small, the encoder part cannot extract features well enough and the network
cannot learn sufficiently complex equations to reach the expected performances in applications. These
unclear edge problems are progressively corrected with the increase of expansion factor. RT-Seg-t-6
yields superior performance, particularly with its ability to delineate boundaries. When we continue
to increase t (e.g., t is 8), on the one hand, it will lead to a large increase of network parameters,
influencing the network computational time. On the other hand, simply expanding the number of
network channels cannot significantly improve the network accuracy as shown in Tables 2 and 3.
However, from the visual segmentation results, RT-Seg-t-8 shows a stronger adaptability of SSS images
in both datasets. Although it means better learning ability, it also become easier to predict what is not
needed or wrong as in Figure 10(e3).

Table 2. Quantitative comparison on sand wave test set (The best result is bold).

Network PA MPA MIOU FWIOU

SegNet 90.09 80.77 59.54 83.24
UNet 92.79 83.11 67.70 85.77
ENet 89.23 79.12 57.23 82.11

RT-Seg-t-4 86.53 76.24 53.46 79.36
RT-Seg-t-6 91.33 82.32 65.78 83.46
RT-Seg-t-8 91.42 82.13 66.32 86.38

Table 3. Quantitative comparison on coral reef test set (The best result is bold).

Network PA MPA MIOU FWIOU

SegNet 91.56 83.76 50.72 84.57
UNet 93.88 85.62 66.62 88.12
ENet 90.10 80.15 60.48 81.59

RT-Seg-t-4 85.64 85.93 56.82 85.15
RT-Seg-t-6 92.43 84.32 63.17 86.10
RT-Seg-t-8 92.67 85.13 63.45 86.97

It is worth noting that the error of manual labeling will slightly affect the accuracy of network
training. For example, in Figure 10(d4), the prediction result looks more like the image corresponding
label, rather than the manually labeled ground truth in Figure 10(b4).

5.2. Quantitative Results and Analysis

Evaluating the generalization capabilities of the model and dataset demonstrates its utility for
applications. Tables 2 and 3 show the quantitative comparison of different networks for semantic
segmentation with class balancing, performed on the test datasets. We can see that UNet provides
best results in accuracy on both datasets while it is not computationally time-efficient. Meanwhile,
RT-Seg-t-8 is slightly worse than UNet but achieves better performance compared with other networks.
Moreover, RT-Seg-t-6 can greatly reduce the number of parameters and floating point operations to
realize real-time processing without a significant drop in accuracy compared with RT-Seg-8.

Sensors 2019, 19, 1985 13 of 17

5.3. Inference Time

We report the inference time for a single input frame with different resolutions and the number of
frames that can be processed per second on the Nvidia Xavier embedded system module in Table 4.
As evidenced from Table 4, RT-Seg-t-6 can process 25 frames per second, meeting the real-time
requirements and providing high frame rates for real-time applications and allowing the actual use of
deep neural network models with encoder-decoder architecture.

Table 4. Processing time comparison (The best result is bold).

Model

NVIDIA Jetson AGX Xavier

224 × 224 500 × 500
ms fps Ms fps

SegNet 72.9 13.717 316.2 3.162
UNet 68.2 14.662 320.1 3.124
ENet 54.4 18.382 80.5 12.422

RT-Seg-t-6 25.6 39.063 38.9 25.678
RT-Seg-t-8 60.4 16.547 87.4 11.435

Figure 11 shows the trade-off between accuracy and speed at resolution of 500 × 500. The UNet
has the advantage of accuracy, but its inference time for a single image input is much longer than other
networks as shown in Figure 11a,c. We can also clearly see that the number of frames that RT-Seg-t-6
can be processed per second is much more than for RT-Seg-t-8. Meanwhile, there is no significant
accuracy drop for RT-Seg-t-6 as shown in Figure 11b,d. However, during the testing of SSS image
datasets, SegNet and ENet have no obvious advantages, neither in terms of accuracy nor speed.Sensors 2019, 19, x FOR PEER REVIEW 14 of 18

(a)

(b)

(c)

(d)

Figure 11. The trade-off between accuracy and speed. (a) The trade-off between the inference time for
a single input frame and accuracy of different networks in sand wave test set; (b) The trade-off
between the number of frames that can be processed per second and accuracy of different networks
in sand wave test set; (c) The trade-off between the inference time for a single input frame and
accuracy of different networks in coral reef test set; (d) The trade-off between the number of frames
that can be processed per second and accuracy of different networks in coral reef test set.

5.4. Hardware Requirements

A comparison of computational time and hardware resources required for various network
architectures shown in Table 5. RT-Seg-t-6 is superior to other networks in Giga Floating-point
Operations Per Second (GFLOP), but it is on par with it in accuracy. RT-Seg-t-6 is very efficient, it can
fit the entire network in the embedded processor with relatively few parameters and offer real-time
performance on embedded devices, even meet the extremely strict memory limits.

Table 5. Hardware requirements (The best result is bold).

Network GFLOPs Parameters Model size (fp16)
SegNet 286.0 29.5M 58.9M
UNet 328.1 31.03M 62.04M
ENet 3.83 0.35M 0.7M

RT-Seg-t-6 2.14 0.46M 1.4M
RT-Seg-t-8 4.96 1.4M 2.5M

Figure 11. The trade-off between accuracy and speed. (a) The trade-off between the inference time for
a single input frame and accuracy of different networks in sand wave test set; (b) The trade-off between
the number of frames that can be processed per second and accuracy of different networks in sand
wave test set; (c) The trade-off between the inference time for a single input frame and accuracy of
different networks in coral reef test set; (d) The trade-off between the number of frames that can be
processed per second and accuracy of different networks in coral reef test set.

Sensors 2019, 19, 1985 14 of 17

5.4. Hardware Requirements

A comparison of computational time and hardware resources required for various network
architectures shown in Table 5. RT-Seg-t-6 is superior to other networks in Giga Floating-point
Operations Per Second (GFLOP), but it is on par with it in accuracy. RT-Seg-t-6 is very efficient, it can
fit the entire network in the embedded processor with relatively few parameters and offer real-time
performance on embedded devices, even meet the extremely strict memory limits.

Table 5. Hardware requirements (The best result is bold).

Network GFLOPs Parameters Model Size (fp16)

SegNet 286.0 29.5M 58.9M
UNet 328.1 31.03M 62.04M
ENet 3.83 0.35M 0.7M

RT-Seg-t-6 2.14 0.46M 1.4M
RT-Seg-t-8 4.96 1.4M 2.5M

5.5. Real-Time Process and Analysis

The experiment of real-time sonar data processing was carried out on our AUV through its
GPU module (NVIDIA Jetson AGX Xavier). According to the above analysis, RT-Seg-t-6 achieves a
significant trade-off between accuracy and speed, so we use it for real-time test. The experimental
process of real-time test is shown in Figure 12.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 18

5.5. Real-Time Process and Analysis

The experiment of real-time sonar data processing was carried out on our AUV through its GPU
module (NVIDIA Jetson AGX Xavier). According to the above analysis, RT-Seg-t-6 achieves a
significant trade-off between accuracy and speed, so we use it for real-time test. The experimental
process of real-time test is shown in Figure 12.

Figure 12. The real-time test processing experiment.

We will receive 60 pings sonar data per second from the sonar sensor. The time t1 for parsing
the raw sonar data is about 0.2 s. When the slant range is set to 120 m (the maximum range), there
are 7200 samples per ping, which corresponds to 7200 pixels. We got an SSS image of 60*7200 pixels
after data parsing. Then we interpolate it to 500*7200. In total, we will get an SSS image with 500 ×
7200 pixels per second. The interpolation time is completed by a CUDA parallel programming, so
this time can be ignored. We use a patching strategy to split the high-resolution sonar image into
500*500 size of 15 local patches for 0.1s. In Table 4, we can see that the inference time of RT-Seg-t-6
for a single input of 500*500 pixels is 38.9 ms. The total inference time t3 for 15 images is 0.583 s. The
total processing time of sonar data is 0.883 s, which means that the semantic segmentation of sonar
data takes less time than the arrival of new sonar data to process.

Therefore, the RT-Seg-t-6 has good generalization performance and can be used in the tasks
requiring the real-time segmentation performances on SSS images.

The experimental results show that RT-Seg-t-6 performs better accuracy and faster, but still has
similar resources consumption with ENet. Although it requires less GFLOPs in real-time
segmentation tasks, its number of parameters and model size remain larger than the ones from ENet.
For further study, it would be interesting to study the small model size and number of parameters of
ENet and search for adapting them to our network in order to reduce their relative experimental
performances. Moreover, due to the noise interference of SSS images, the segmentation results are
not ideal. In the future, we will preprocess the SSS images before network training to improve the
accuracy, such as median filtering, contrast enhancement or histogram equalization.

6. Conclusions

In this work, we have proposed a novel neural network architecture designed specifically for
real time semantic segmentation of SSS images. We achieved that by proposing the novel encoder
architecture and decoder methods. Experiments show an excellent trade-off between the speed and
accuracy of our network. Meanwhile, we use a patch-wise strategy to process high-resolution sonar
images which avoids the loss of useful image information. Due to the particularity of the SSS images,
our work provides tremendous benefits in this task, while surpassing the existing baseline models,
which have an order of magnitude greater computational and memory requirements. RT-Seg-t-6 runs
primarily on embedded mobile devices, and NVIDIA Jetson AGX Xavier can be placed in AUVs to
process sonar data in real time. We hope that our approach can be applied with any segmentation
network of other SSS image datasets in the future.

Figure 12. The real-time test processing experiment.

We will receive 60 pings sonar data per second from the sonar sensor. The time t1 for parsing the
raw sonar data is about 0.2 s. When the slant range is set to 120 m (the maximum range), there are 7200
samples per ping, which corresponds to 7200 pixels. We got an SSS image of 60*7200 pixels after data
parsing. Then we interpolate it to 500*7200. In total, we will get an SSS image with 500 × 7200 pixels
per second. The interpolation time is completed by a CUDA parallel programming, so this time can be
ignored. We use a patching strategy to split the high-resolution sonar image into 500*500 size of 15
local patches for 0.1s. In Table 4, we can see that the inference time of RT-Seg-t-6 for a single input of
500*500 pixels is 38.9 ms. The total inference time t3 for 15 images is 0.583 s. The total processing time
of sonar data is 0.883 s, which means that the semantic segmentation of sonar data takes less time than
the arrival of new sonar data to process.

Therefore, the RT-Seg-t-6 has good generalization performance and can be used in the tasks
requiring the real-time segmentation performances on SSS images.

The experimental results show that RT-Seg-t-6 performs better accuracy and faster, but still has
similar resources consumption with ENet. Although it requires less GFLOPs in real-time segmentation
tasks, its number of parameters and model size remain larger than the ones from ENet. For further
study, it would be interesting to study the small model size and number of parameters of ENet and
search for adapting them to our network in order to reduce their relative experimental performances.

Sensors 2019, 19, 1985 15 of 17

Moreover, due to the noise interference of SSS images, the segmentation results are not ideal. In the
future, we will preprocess the SSS images before network training to improve the accuracy, such as
median filtering, contrast enhancement or histogram equalization.

6. Conclusions

In this work, we have proposed a novel neural network architecture designed specifically for
real time semantic segmentation of SSS images. We achieved that by proposing the novel encoder
architecture and decoder methods. Experiments show an excellent trade-off between the speed and
accuracy of our network. Meanwhile, we use a patch-wise strategy to process high-resolution sonar
images which avoids the loss of useful image information. Due to the particularity of the SSS images,
our work provides tremendous benefits in this task, while surpassing the existing baseline models,
which have an order of magnitude greater computational and memory requirements. RT-Seg-t-6 runs
primarily on embedded mobile devices, and NVIDIA Jetson AGX Xavier can be placed in AUVs to
process sonar data in real time. We hope that our approach can be applied with any segmentation
network of other SSS image datasets in the future.

Author Contributions: Conceptualization, B.H., Q.W. and C.F.; Methodology, Q.W., Y.Z. and M.W.; Validation
and formal analysis, Q.W., M.W. and F.Y.; Investigation, K.L.; Writing and editing, Q.W.; Review and editing,
M.W., F.Y., B.H. and E.R.

Funding: The work is partially supported by the National Key Research and Development Program of China
(Project No. 2016YFC0301400) and the National Natural Science Foundation of China (Project No. 51379198).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bryant, R. Side scan sonar for hydrography: An evaluation by the Canadian hydrographic service. Int. Hydrogr.
Rev. 2015, 52, 43–56.

2. Bucci, G. Remote Sensing and Geo-Archaeological Data: Inland Water Studies for the Conservation of
Underwater Cultural Heritage in the Ferrara District, Italy. Remote Sens. 2018, 10, 380. [CrossRef]

3. Healy, C.A.; Schultz, J.J.; Parker, K.; Lowers, B. Detecting submerged bodies: Controlled research using
side-scan sonar to detect submerged proxy cadavers. J. Forensic Sci. 2015, 60, 743–752. [CrossRef] [PubMed]

4. Huang, S.W.; Chen, E.; Guo, J. Efficient seafloor classification and submarine cable route design using an
autonomous underwater vehicle. IEEE J. Ocean. Eng. 2017, 43, 7–18. [CrossRef]

5. Fallon, M.F.; Kaess, M.; Johannsson, H.; Leonard, J.J. Leonard. Efficient auv navigation fusing acoustic
ranging and side-scan sonar. In Proceedings of the 2011 IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 2398–2405.

6. Petrich, J.; Brown, M.F.; Pentzer, J.L.; Sustersic, J.P. Side scan sonar based self-localization for small
Autonomous Underwater Vehicles. IEEE J. Ocean. Eng. 2018, 161, 221–226. [CrossRef]

7. Chabane, A.N.; Islam, N.; Zerr, B. Incremental clustering of sonar images using self-organizing maps
combined with fuzzy adaptive resonance theory. Ocean. Eng. 2017, 142, 133–144. [CrossRef]

8. Huo, G.; Yang, S.X.; Li, Q.; Zhou, Y. A robust and fast method for sidescan sonar image segmentation using
nonlocal despeckling and active contour model. IEEE Trans. Cybern. 2017, 47, 855–872. [CrossRef] [PubMed]

9. Mignotte, M.; Collet, C.; Pérez, P.; Bouthemy, P. Three-class markovian segmentation of high-resolution sonar
images. Comput. Vis. Image Underst. 1999, 76, 191–204. [CrossRef]

10. Celik, T.; Tjahjadi, T. A novel method for sidescan sonar image segmentation. IEEE J. Ocean. Eng. 2011, 36,
186–194.

11. Liu, G.Y.; Bian, H.Y.; Shen, Z.Y. Research on level set segmentation algorithm for sonar image. Transducer
Microsyst. Technol. 2012. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-CGQJ201201029.htm
(accessed on 26 April 2019).

12. Zhu, B.; Wang, X.; Chu, Z.; Yang, Y.; Shi, J. Active Learning for Recognition of Shipwreck Target in Side-Scan
Sonar Image. Remote Sens. 2019, 11, 243. [CrossRef]

13. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]

http://dx.doi.org/10.3390/rs10030380
http://dx.doi.org/10.1111/1556-4029.12671
http://www.ncbi.nlm.nih.gov/pubmed/25684166
http://dx.doi.org/10.1109/JOE.2017.2686558
http://dx.doi.org/10.1016/j.oceaneng.2018.04.095
http://dx.doi.org/10.1016/j.oceaneng.2017.06.061
http://dx.doi.org/10.1109/TCYB.2016.2530786
http://www.ncbi.nlm.nih.gov/pubmed/26978840
http://dx.doi.org/10.1006/cviu.1999.0804
http://en.cnki.com.cn/Article_en/CJFDTotal-CGQJ201201029.htm
http://dx.doi.org/10.3390/rs11030243
http://dx.doi.org/10.1038/nature14539

Sensors 2019, 19, 1985 16 of 17

14. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 3431–3440.

15. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 1925–1934.

16. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep
convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062.

17. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach.
Intell. 2018, 40, 834–848. [CrossRef]

18. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image
segmentation. arXiv 2017, arXiv:1706.05587.

19. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

20. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of
the IEEE International Conference on Computer Vision, Boston, MA, USA, 7–12 June 2015; pp. 1520–1528.

21. Yang, J.; Liu, Q.; Zhang, K. Stacked hourglass network for robust facial landmark localisation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017;
pp. 79–87.

22. Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
robust semantic pixel-wise labelling. arXiv 2015, arXiv:1505.07293.

23. Liu, Y.; Ren, Q.; Geng, J.; Ding, M.; Li, J. Efficient Patch-Wise Semantic Segmentation for Large-Scale Remote
Sensing Images. Sensors 2018, 18, 3232. [CrossRef]

24. Liu, G.; Bian, H.; Ye, X.; Shi, H. An improved spectral clustering sonar image segmentation method. In
Proceedings of the The 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin,
China, 22–25 May 2011; pp. 474–477.

25. Ye, X.F.; Zhang, Z.H.; Liu, P.X.; Guan, H.L. Sonar image segmentation based on gmrf and level-set models.
Ocean Eng. 2010, 37, 891–901. [CrossRef]

26. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 886–893.

27. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

28. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Schiele, B. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

29. Xu, H.; Gao, Y.; Yu, F.; Darrell, T. End-to-end learning of driving models from large-scale video datasets.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 June 2017; pp. 2174–2182.

30. Wong, J.M.; Wagner, S.; Lawson, C.; Kee, V.; Hebert, M.; Rooney, J.; Johnson, D. Segicp-dsr: Dense semantic
scene reconstruction and registration. arXiv 2017, arXiv:1711.02216.

31. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
CoRR. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer:
Cham, Switzerland, 2015.

32. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC)
challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

33. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution
for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV),
Munich, Germany, 8–14 September 2018; pp. 801–818.

34. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time
semantic segmentation. arXiv 2016, arXiv:1606.02147.

http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.3390/s18103232
http://dx.doi.org/10.1016/j.oceaneng.2010.03.003
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1007/s11263-009-0275-4

Sensors 2019, 19, 1985 17 of 17

35. Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation.
In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL,
USA, 10–13 December 2017.

36. Nekrasov, V.; Dharmasiri, T.; Spek, A.; Drummond, T.; Reid, I. Real-Time Joint Semantic Segmentation and
Depth Estimation Using Asymmetric Annotations. arXiv 2018, arXiv:1809.04766.

37. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Inverted residuals and linear bottlenecks:
Mobile networks for classification, detection and segmentation. arXiv 2018, arXiv:1801.04381.

38. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 1251–1258.

39. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake, UT, USA, 18–23 June 2018; pp. 6848–6856.

40. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

41. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 27–30 June 2016; pp. 2818–2826.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	SSS Images Segmentation
	Semantic Segmentation
	Real-Time Semantic Segmentation

	Network Architecture
	Encoder Architecture
	Decoder Architecture

	Implementation Details
	Patch-Wise Strategy and Datasets
	Details of Training
	Loss Function
	Optimization

	Evaluation Metrics

	Experimental Results and Analysis
	Qualitative Results and Analysis
	Quantitative Results and Analysis
	Inference Time
	Hardware Requirements
	Real-Time Process and Analysis

	Conclusions
	References

