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Abstract: Diesel fuel quality can be considered from many different points of view. Fuel producers,
fuel consumers, and ecologists have their own ideas. In this paper, a sensor of diesel fuel quality
type, and fuel condition that is oriented to the fuel’s consumers, is presented. The fuel quality types
include premium, standard, and full bio-diesel classes. The fuel conditions include fuel fit for use
and fuel degraded classes. The classes of fuel are connected with characteristics of engine operation.
The presented sensor uses signal processing of an optoelectronic device monitoring fuel samples that
are locally heated to the first step of boiling. Compared to previous works which consider diesel fuel
quality sensing with disposable optrodes which use a more complex construction, the sensor now
consists only of a capillary probe and advanced signal processing. The signal processing addresses
automatic conversion of the data series to form a data pattern, estimates the measurement uncertainty,
eliminates outlier data, and determines the fuel quality with an intelligent artificial neural network
classifier. The sensor allows the quality classification of different unknown diesel fuel samples in less
than a few minutes with the measurement costs of a single disposable capillary probe and two plugs.

Keywords: capillary sensor; diesel fuel quality; diesel fuel user; outlier data; feature vector of diesel
fuel; sensor automation; artificial neural network classifier

1. Introduction

With the use of diesel fuel come considerations of its quality, cost, and type. All these factors
are directly connected with the composition of the diesel fuel which consists of the fuel base, fuel
improvers, and impurities. The composition of modern diesel fuel is not constant; it changes in storage
due to the presence of chemically active components [1].

The type of diesel fuel may be described by the fuel base origin or the dominant technological
process. Standard fuel base components may include petroleum diesel (petro-diesel), synthetic diesel
(syn-diesel), fatty-acid methyl esters (FAME), and hydrogenated oils (HVO). Petro-diesel is produced
in a refinery as a blend of different oils. Syn-diesel can be produced from any carbonaceous material,
by gasification, purification, and conversion processes [2]. FAME is obtained from vegetable oil or
animal fats with the use of transesterification reaction. HVO is a composition of alkanes obtained in
the refining and hydrogenation process of vegetable oil and animal fats. Non-esterified vegetable oil
was also considered as fuel a bio-component [3].

Modern petro-diesel fuel is composed of about 74% saturated hydrocarbons—primarily alkanes,
25% aromatic and acyclic unsaturated hydrocarbons which are chemically active and 1% of impurities
and additives. The bio-diesel fuel, beside petro-diesel components, has to contain FAME or HVO
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components. The FAME component concentration in diesel fuel is limited, as FAME is a chemically
active component.

The diesel fuel quality is an important and complex issue [4,5]. It may be considered from different
points of view. Fuel producers, fuel traders, fuel users, ecological organizations, and public health
points of view and economic interests may differ [6–9].

On the diesel fuel user’s side, low cost and high quality of the fuel sold at fuel stations are
important [10]. The quality of diesel fuel impacts diesel engine operating characteristics, such as
starting ease, lack of engine stalling at low speeds, sufficient power, low-temperature operability, low
engine noise, and low engine wear [11]. The set of parameters including starting ease, engine stalling
at low speeds, and sufficient power may be associated with fuel ignition quality described by fuel
producers as the cetane number [12,13]. Low-temperature operability of diesel fuel is important in
winter conditions, and it directly depends on the main fuel component’s composition and concentration
of FAME [14]. Low engine noise may be connected with fuel lubricity [15].

On the fuel traders’ side, fuel storage stability and fuel quality are important. The fuel quality
is here understood as consumer satisfaction, while fuel storage stability still impacts the actual fuel
quality [16]. On the fuel producer’s side, the quality of diesel fuel is determined by quality standards.
These quality standards differ for petro-diesel and bio-diesel fuels. The most popular standards of
petro-diesel fuels are ASTM D 975 introduced by the American Society for Testing and Materials and
EN 590 introduced by the European Committee for Standardization [17]. Respectively, the standards
for bio-diesel fuels are the ASTM D 6751 in the USA and the EN 14, 214 in Europe. In this approach,
the quality of fuel can be defined as a coincidence of a set of laboratories measured fuel parameters
with defined standards ranges. It should be noted that the mentioned set of parameters is extensive
and measurement methods are expensive and time-consuming. For example, the basic parameters set
includes cetane number, density, viscosity, the fractional composition of distillation, and induction time
as well as bio component contents in fuel composition. The accurate measurement of the basic fuel
quality parameter, the cetane number, requires examination according to American Society for Testing
and Materials (ASTM) standard D 613. It involves burning of fuel at a constant speed in a rare diesel
engine called a Cooperative Fuel Research (CFR) engine for 47 minutes. Moreover, the mentioned
fuel parameters ranges are the result of different administration regulations adopted by different
countries [18]. Therefore, a formal exploration of diesel fuel quality is a complex task. Fortunately,
in the EU, according to Directive 98/70/EC and 2003/17/EC on petrol and diesel fuels quality, all the
Member States are committed to scrutinizing the quality of fuels sold at the filling stations in their
respective countries [19].

Novel sensing concepts of diesel fuel quality propositions base on infrared spectroscopy [20,21] and
dielectric spectroscopy [22,23] are mainly oriented to petro-diesel/bio-diesel blends’ content assessment.
It is worth noting that infrared spectroscopy measurement results may cover the concentration
composition of hydrocarbons in diesel fuel, but the identification method of fuel quality that is based on
a measured profile of hydrocarbon concentrations, is still under investigations. Fluorescence sensing
methods are also under investigations. Ultraviolet excitation and emission analysis may lead to the
classification of fuel type [24], indications of fuel degradation stage [25], and fuel stability [26].

Measurements of a bio-component presence in diesel fuel may be performed with the use of
viscometer [27]. Furthermore, the density measured at a range of temperatures can be used to provide
a concentration percentage of binary solutions [28]. Therefore, some sensor producers assume that
diesel fuel is a binary solution of petro- and bio-components and propose sensors for diesel fuel
measurements accordingly [29]. In fact, diesel fuel is not a binary solution; the petro-component
includes a significant number of different subcomponents.

The multiparametric sensing concept leads to a commercially valid proposition of fuel sensors
where viscosity, dielectric constant, temperature, and density are measured at the same time and are
used for fuel type classification [30]. However, it should be noted that some sensor producers postulate
that their products, working on the mentioned rule, are oriented to measure fuel quality, while these
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products are mainly adapted to sense FAME concentration in fuel. Against that background, the
examination of the capillary action, that introduces viscosity, density, and surface tension information
to fuel type classification, enables simplified fuel fit-for-use inspection [31].

New propositions of sensors oriented at diesel fuel parameters are under investigation, as, for
example, an electronic nose for the discrimination of weathered petroleum products [32]. However,
diesel fuel quality, in simplification, can be considered as ignition quality and low volatility at
standard environment temperatures [33]. The ignition quality can be characterized by spray formation
parameters during fuel injection in the engine chamber [34]. The spray formation, considered as a
fuel parameter, depends mainly, at a selected temperature, on viscosity, surface tension, low boiling
temperature, and volatility of fuel [35]. However, the spray formation, considered on the engine
hardware side, depends on injection pressure, injection vessel diameter, and chamber parameters [36,37].
Meanwhile, the core findings of diesel fuel quality sensor development that is based on a capillary
optrode are characterized by a set of interesting features:

• A capillary sensor with a principle of operation close to the measurement of fuel injection
parameters enables time of examinations below a few minutes [38].

• Diesel fuel examination with local sample heating, which is positioned in a smart photonic
capillary, show the possibility of precise fuel type classification [39]. The biggest drawbacks of
such capillary sensors are complications in the technology of the capillary optrode preparation
and positioning in the head bed.

• Capillary sensor operation with a disposable optrode sometimes generates outlier data [40] as a
result of improper measurements.

• Capillary sensors with forced local sample heating are fit to automatically collect the characteristics
of signal features [41].

Thus, the main aim of this work is the proposition of a capillary sensor that is oriented to the
fuel user and the fuel trader, providing information on the fuel quality in less than few minutes with
reasonable costs of the examination.

2. The Idea of the Head of the Capillary Sensor with Disposable Optrode for Diesel Fuel
Quality Examination

The sensor head idea was inspired by one of the most critical elements of the diesel engine from
fuel quality point of view; that is the fuel injector. Modern direct injection diesel engines operate
through the injection of liquid diesel fuel into the engine combustion chamber. The liquid fuel is
subjected to large pressure and temperature gradients inside the injector and the nozzle. The actual
dimensions of the typical nozzle diameters can vary from 50 to 200 µm [42]. The character of the fuel
flow through the nozzle depends strongly on the temperature and pressure difference. The input
pressure can vary from 15 MPa to 110 MPa, while the output pressure is of the order of 6 MPa. Typical
temperatures inside the fuel injection nozzle are from 235 to 275 ◦C. Therefore, fuel passage is often
associated with local boiling of the fuel that results in local creation of bubbles of fuel vapor. The flow
can be described as a gas and liquid phase spray in which thermodynamic transformation occurs.
The fuel enters the cylinder in about a few milliseconds [43]. After the injection of fuel into the cylinder,
the spray vaporizes and inflames. The quality of fuel ignition is often correlated to spray formation [44].
The low-quality fuel is injected in the form of a stream or gas phase. The flame temperatures in
the cylinders are about 1500 ◦C, and the wall temperatures are under 350 ◦C. Therefore, the direct
replication of the mentioned phenomena occurring in the nozzle in a small portable sensor is very
difficult. On the other hand, while the thesis that heated to boiling point fuel sample flow characteristics
in a vessel similar to the injector can be used for fuel characterization seems right. The practical
application of the sensor requires a simplification of the previously presented optrode construction [39].
The simplest vessel that can be used for monitoring of forced by temperature and pressure fuel flow is
a capillary. When the capillary is partially filled with a fuel sample and closed from both ends, locally
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increased temperature of the diesel fuel sample results in vapor phase creation and expansion in one
defined direction, as presented in Figure 1. It should be noted, that repeatable local heating of the
diesel fuel sample to the low boiling point can be realized with a specific and properly positioned
micro-heater [45]. The capillary used in experiments is a Polymicro TSP700850. A thickness of the
capillary glass wall is about 50 µm (±15 µm), while the thickness of the polyimide coating is 24 µm. It
should be noted also, that capillary coating is made of standard type of polyimide (TSP) with thermal
stability that reaches up to 350 ◦C, and whose capillary coating is transparent optically at 780 nm.
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Figure 1. Diesel fuel vapor phase creation and expansion in one defined direction as a result of local
sample heating.

The fuel heating to low boiling point generates a vapor phase of the fuel with parameters
characterized by fuel vapor phase pressure at the specified temperature. The fluid flow type may be
turbid or laminar. It depends on viscosity, the surface tension of the liquid phase as well as of the gas
phase vapor pressure. It is worth noting that these parameters are used to model spray formation
during fuel injection to the ignition chamber. The liquid and gas phase movement can be achieved
with the use of optical fibers. The point for observation is located in the capillary on the right side
of the micro-heater. The position of the capillary is presented in Figure 1. The observation of the
capillary from one side is based on the refractive index differences between gas and liquid phases.
The simplified scheme of the important, from sensing point of view, light beam paths in the capillary
head is presented in Figure 2. The main simplification is the two-dimensional presentation of the
cylindrical structure of capillary; the minor simplification is the assumption of the low thickness of
capillary wall comparing to the diameter of the capillary hole.
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The light beam from a large core fiber lights the optrode’s outer wall at 45 degrees. In this wall, the
first light beam fragmentation happens due to Fresnel reflection. Next, similar beam fragmentations
occur at the contact of different optrode wall materials—the polymer coating and glass wall as well
as in the capillary wall and inner substance contact. These beams form parasitic signals. The main
optical beam enters the capillary hole. When the hole is filled with the liquid fuel sample, significant
refraction of the light beam occurs, as shown by the green line on Figure 2. A similar situation occurs
for the light beam that leaves the capillary hole. When the capillary hole is filled with the gas phase of
fuel, such refraction of light, in the proposed optical configuration, is too small to direct signal into
detection fiber. The difference in refractive indexes of the gas and liquid phase results in an offset of
reflected beams that are directed to the head of the large core optical fiber which is connected to the
optoelectronic interface.

Converting of quite a complex sensing idea into a working sensor requires a structured
development methodology. Obtained intermediate results of the development are grouped together in
Section 3. As the subject of the sensor is diesel fuel quality testing, first, the diesel fuels to be used in
experiments have been selected and tested which is presented in Section 3.1. Details of capillary sensor
construction and the basic principle of operation are presented in Section 3.2. Necessary initial data
processing is presented in Section 3.3. As the developed sensor is person operated, the principles of
outlier data generation and rejection are presented in Section 3.4. The diesel fuels classification with
the use of artificial neural network assumptions and results are presented in Section 3.5. Obtained
results referred to accessible, on the internet, data discussion announced in Section 4. The conclusions
are gathered in Section 5.

3. Capillary Sensor with Disposable Optrode Development

3.1. Diesel Fuels for Experiments

The commercial diesel fuels samples of different qualities were subject to examination with the
developed sensor. We defined the fuel quality types as premium, good, and conditionally acceptable.
As the premium quality fuel, we evaluated the clear and fresh petro-diesel that met EU standards.
The standard quality fuel was a petro-diesel mixture with seven bio-components. The conditionally
acceptable fuel base consisted of 100% FAME. The fuel condition can be good when the fuel is fresh
or bad when the fuel is out of date or damaged. In the analyzed case, bad fuel consisted of the
conditionally acceptable fuel that was degraded by storage for three years in a standard polymer
container filled to 50% of its volume. The parameters of the fresh fuels according to EU standards are
presented in Table 1. The damaged fuel was characterized by the presence of sediment; therefore, it did
not meet the EU standards. However, diesel fuel, even under standard storage conditions, is subject
to sedimentation. Therefore, the fuel samples, before filling of a capillary, were shaken in a standard
container and then mixed in a laboratory vessel.

Table 1. Fuels type and condition versus basic petrochemical parameters of fuels used to
sensor development.

Fuel Quality
Type

Fuel
Condition CN

Min Density
at 15 ◦C
[kg/m3]

Kinematic
Viscosity at 40 ◦C

[mm2/s]

Fractional
Composition of

Distillation % [V/V]

Bio
Component

% [V/V]

Induction
Time [h]

min min min max up to
250 ◦C

up to
350 ◦C

premium good, fresh 55 820 2.0 4.5 65 85 0 20
standard good, fresh 51 820 2.0 4.5 65 85 7 20

conditional
acceptable good, fresh 51 860 3.5 5.0 0 90 97 8

conditional
acceptable

bad, out of
date characterized by sediment; not meets EU standards
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3.2. Capillary Sensor Construction and Basic Principle of Operation

The examination described in this paper was performed with the hardware set-up presented in [40].
The sensor set-up view is presented in Figure 3. It is a laboratory set-up consisting of in-house-made
components as the head base, the power control board, optoelectronic interface and of commercial
modules of a basic laboratory power supply, fiber coupled light emitting diode (LED), high power
LED controller, acquisition card, and a personal computer with software. As the light source, the LED
Controller 2100 and LED M780F2 were used. The nominal wavelength of applied LED is 780 nm. To
improve the rejection of ambient light influence on the experimental results we used light electrically
modulated with 1 kHz frequency. The optoelectronic detection unit is of our own construction in which
the S8745-01 (integrated optical sensor consisting of Si photodiode, operational amplifier, feedback
resistance, and capacitance), AD8253 (instrumentation amplifier with digitally programmable gains),
UAF42 (universal configurable active filter), AD536 (true root mean square to direct current converter)
and AD8250 (instrumentation amplifier with digitally programmable gain) are the key components.
The opto-electronic interface had a sub-miniature version A (SMA) fiber input. The sensitivity of the
optoelectronic module is 2 mV/nW. Limited by electromagnetic noise the proposed setup enables to
measure signals with 0.01 s time resolution, in the range from 10 nW up to 500 nW with 2 nW accuracy.
The optoelectronic interface was connected to a personal computer through an analog input IOtech
personal Daq 3000 16 bit/1 MHz USB data acquisition system [46]. We fed the micro-heater from a
laboratory power supply by an in-house-made relay board controlled by the digital output from Daq.
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Figure 3. Examined sensor view, based on [40].

The sensor’s head consists of two separate main elements: the base and the disposable capillary
optrode. The micro-heater and optical fibers are integrated with the base. The base is also used to
position the optrode. The schematic drawing of the optrode used in this work is presented in Figure 4.
The optrode capillary is a Polymicro TSP700850 with printed three red markers. The most important
marker, placed in the middle part of the capillary, is used as a pointer of fuel filling range and as a
pointer of optrode position in the head base. The two other markers are used as pointers of the proper
length of insertion of elastic polymer corks. During experiments, the capillary optrode was filled by
the open z-end, to the central marker with capillary force use. Then, the x-end of optrode, which was
in the air, was closed by a finger. The z-end of capillary was removed from a vessel with a sample
and was pushed into a polymeric mass layer of 5 mm height positioned in the container. Then the
x-end of the capillary was closed in the same way. Next, the capillary was positioned in the head base.
The measurement cycle was started with running the software script.
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Figure 4. Capillary optrode properly prepared for fuel examination, based on [40].

The schematic drawing of the sensor head used in this work is presented in Figure 5. The base
of the sensor head is made of 5 mm height alumina roller. In this roller, v-grooves used for optical
elements adjustment were milled. The top and bottom of the roller were cut off to simplify capillary
optrode positioning. In the middle of the base a window was cut off. This way the micro-heater
mounted to the bottom of the base could locally heat the optrode. The micro-heater is a hybrid
construction of a monolithic silicon carbide heating element positioned on the plate made of ceramics.
This ceramic plate is partially covered with metal contacts pads that are covered with thin films of
BaTiO3 [47]. An additional function of the ceramic plate connected to the head base is cooling of the
electrical connection. The lower edge of the window in the head base was used to positioning the
capillary optrode.
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The step-index multimode fiber optic patch cable with SMA connectors M37L02 from Thorlabs
cut in half was used to prepare two probes. This patch cable was made using FG550LEC fiber with
the outer coating diameter of 630 µm, while buffer outer diameter was 1040 µm. The ends of fibers,
with the buffer removed, were inserted into 2 cm sections of TSP700850 capillary to allow matching
the planes of the optical axes. The optical axes cross point was in the middle of capillary optrode.
The optical fibers were positioned as close to the capillary optrode as possible. Thus, the light beams
of the signals crossed and reflected at the filled optrode, and entered the detection fiber. When the
capillary was filled with gas, the mentioned signal beam offset resulted in proper decoupling of the
beam from the detection fiber, as presented in Figure 2. The parasitic reflected signals presented in
Figure 2 were not coupled to the detection fiber in the head. In the described construction of the sensor
the optical signal average power reflected on an empty capillary was at a level of 0.25 V, while the
signal for a capillary filled with fuel was at the level of 4.5 V. The variation in LED intensity over time



Sensors 2019, 19, 1980 8 of 18

and capillary optrode imperfections were corrected with applied calibration procedure that acts with
measured initial values. The calibration principle led, the measured value of the initial point, to fit in
the range from 4.0 V to 4.5 V.

The sensor provided information that was represented by the dynamic changes of the signal
during local heating and cooling of the sample in the forced measurement cycle. In this work, the
micro-heater power was set to 10 W. The measuring procedure was started with switching on the
micro-hearer power and registration of signal. The micro-heater was automatically switched off when
the amplitude of the monitored signal crossed from above 2.0 V.

The raw data, micro-heater control signal, and calculated first derivatives for a sample of premium
diesel fuel in a measurement cycle collected with 100 Hz acquisition frequency are presented in
Figure 6a. The first derivative calculated with the five point’s method, presented in Figure 6b.
The forced measurement cycle contains, according to Figure 6, three phases: I—local sample heating
up to observed gas phase creation, II—gas phase movement, cooling and reabsorption, III—liquid
sample cooling.
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(b) The first derivative.

The simplest description of these situations may be as follow. The first phase is represented
by the optical signal’s slow decrease as the refractive index of oils decreases as a function of the
temperature [48]. The second phase is represented by a sudden depression of the signal as the gas
vapor expanded from the micro-heater area is present in the optically monitored area for some time.
Then, the gas phase is cooled by the surrounding environment and reabsorbed by liquid fuel. The third
phase is represented by a slow signal increase as the liquid fuel is cooled down. It is worth noting,
that the fuel parameters are correlated with these phases and phases’ transition. Specific heat and
lower boiling point are correlated with the duration of the first phase. The heat of vaporization, vapor
pressure, and viscosity are linked with the transition speed from phase I to II. The heat of vaporization,
vapor pressure, and liquid fuel bubble parameters as surface tension as well as viscosity are associated
with the duration of the second phase. The signal damping is correlated with fuel lubricity, as for
monitored gas phase presence a residual fuel remains on inner capillary walls. The signal in phase III
may indicate a turbid or laminar flow of fluid in the capillary. The turbid flow results in a low-level
signal as mixed air bubbles are not absorbed in the liquid fuel.

3.3. Initial Data Processing

The detection of signal levels and measurement phases’ transitions are not perfectly accurate due
to the presence of noise in the signal and the first derivative. The noise can be cleaned with the use
of exponential filtering of raw data signals, which has an influence on analyzed signal and the first
derivative. Data analysis results in the observation of a minimal reduction of signal noises for the
damping factor set to 0.2, while the 4.0 V/s noises of the first derivative are observable for damping
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factor set to 0.5 and 2.5 V/s for damping factor set to 0.8. The implementation of exponential filtering
with 0.8 damping factor of measured data of premium fuel, results in the ratio of the value of the
second peak of the first derivative versus noise increases to 3.0 from 1.5 observed for not filtered data.
Thus, the detection of phase II and the transition from phase II to III with exponential filtering becomes
more reliable.

The first derivative also can be filtered. The characteristics of the first derivative of premium diesel
fuel data filtered with damping factor set to 0.9, calculated with the five points method, and processed
with a different level of filtration are presented in Figure 7. The influence of the filtration level on the
first derivative is visible. The noise level and peak values of the derivative decrease with the increase
of the filtration level. It can be observed, that use of filtration with the damping factor set to 0.9 can be
positive in the case of visualization of measurement data, while filtration with such damping factor
used on of the first derivative can have negative influences on measuring rapid signal changes.
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The measurement data of 100% bio-diesel fuel, prepared on a FAME base, obtained from the sensor
located in an area of saturated WiFi communications are presented in Figure 8a. The measurement
data show the presence of two saddles. The first initial saddle is small. The dominant saddle is
characterized by a relatively slow drop in the signal.
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Figure 8. Signals and the first derivative of the measurement cycle obtained for 100% bio-diesel fuel for
the sensor located in an area with saturated WiFi transmission: (a) Raw signal; (b) The first derivative
of the raw signal.

Significantly, the electromagnetic noise inducted by WiFi results in a high level of noise presented in
the first derivative of the raw signal as presented in Figure 8b. This level of noise and the measurement
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data of bio-diesel fuel prepared from FAME made the first derivative of raw data useless, as noise
covers the negative peak of the derivative at the dominant saddle. For such case results of the heavy
filtration of the signal with the use of exponential filtering with the damping factor of the signal set to
0.9 are presented in Figure 9. In the presented case, the unfiltered first derivative of filtered signal
can be applied to determine the slope of the dominant saddle. It is worth noting that the orders of
dominant peak’s absolute values are different for premium diesel and for bio-diesel based on FAME.
The conclusion of the presented analysis is that measured raw data for further analysis will be filtered
with a damping factor of 0.9 while the first derivative will be calculated with the five point’s method.
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3.4. Outlier Data Rejection

The evaluated capillary sensor is not equipped with automatic optrode filling and positioning
utilities. Therefore, an untrained operator may introduce an improperly prepared optrode to the
examination or perform examinations with the optrode improperly positioned in the base. Such
procedure imprecisions result with outlier data generations.

The example of measurement series and their first derivatives for the optrode properly filled and
for the optrode filled with gas phase introduced to the fuel sample from the cork side are presented in
Figure 10. Unwanted air phase forms a micro-bubble. This micro-bubble moves during local heating
of the optrode. This movement results in the peak of the signal that appears before the local transition
from liquid to gas phase of the fuel sample. This data can be optically classified as an outlier. The first
peak of the signal is formed in the opposite direction to the typical initial signal of the saddle. Therefore,
the sign of the first peak of the first derivative can be used as an outlier data pointer.
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Examples of measurement series and their first derivatives for the optrode properly filled, in
comparison with the optrode filled with gas phase and for the optrode improperly positioned in the
base are presented in Figure 11. The unwanted air phase forms a micro-bubble as in the previous
case. The improperly positioned optrode there is represented by the optrode of which one side was
elevated by an additional 100 µm compared with the proper position. The outlier data generated by
micro-bubble of air look similar to the previous case presented in Figure 10.
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Figure 11. Measurement series of standard fuel for optrode properly prepared for examination and for
optrode improperly filled and improperly located in the base: (a) Signal; (b) The first derivative.

The typical saddle of proper measurement differs in shape and time position from that for the
improperly positioned optrode. The saddle is present, but the speed of its developing is somehow
slow. The peak with a negative sign is fuzzy.

Basing on the obtained results the first derivative of properly measured data is characterized with
the first dominant peak of negative sign and the second dominant peak of positive sign. Outlier data
classification can be based on the presence of two dominant peaks of the first derivative where the first
peak is positive and the second negative. Uncertain data classification can be based on the absence of
the dominant negative peak of the first derivative; instead of the peak a valley may be present. In the
following examination of fuels classification the outlier and uncertain data were rejected using the
mentioned method. Data from random selected five samples of the same premium diesel fuel are
presented in Figure 12.
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This data shows that the course of the measured time series has the same character. However, the
classical data analysis with the use of time window should require a basic method adaptation. In this
paper, we have reached 95% of correct data, as a result of accurate laboratory work.

3.5. Fuels Classification with the Use of Artificial Neural Network

The fuels classification was done with Qnet software oriented to the development of artificial
neural network (ANN) and working with multilayer perceptron as a classifier. We examined two
cases. The first case refers to the output of ANN set to inform of fuel quality type. The second case
refers to the output of ANN set to fuel condition. Our numerical experiments indicate that multilayer
perceptron with seven inputs, one hidden layer with five neurons and an output layer with one neuron,
all equipped with sigmoid transfer functions performs the classification task better than more complex
or simpler artificial neural networks. In both cases of the ANN experiment, the input data parameters
presented in Figure 13 were processed to the form presented in Table 2.
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Table 2. Input vector processing for artificial neural networks classifier.

Vector Collected Vector Passed for ANN Input

A0 -
Amin Amin/A0
Amax Amax/A0
Dmin Dmin
Tdmin Tdmin
Tdmax Tdmax-Tdmin
Dmax Dmax
A60 A60/A0

The ANN experiment input data consist of 45 vectors collected for fuels samples presented in
Table 2. The ANN classifiers tests were prepared with premium, fresh fuel samples that came from a
different origin than samples used for ANN learning.

In the first case the output of ANN was assumed as 1—for conditionally acceptable fuel, 2—for
standard fuel, and 3—for premium fuel. The ANN learning process is illustrated in Figure 14.
The assumed output values versus calculated output values of ANN classifier of fuel quality type are
presented in Figure 15. These data confirm the proper preparation of vectors passed to ANN and of
proper ANN selection.

The contribution of inputs to the output of ANN classifier is presented in Figure 16. These data
confirm the complex structure of the sensor. All input vector signals contribute to the classifier output.
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The most important contributions are the time of vapor phase creation, time of vapor phase presence,
and the minimum of the signal. This minimum is linked with lack of thin films of fuel that remain of
the capillary’s inner walls during vapor phase presence.
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The ANN classifiers output of fuel quality type tested with premium, fresh fuel samples that were
from a different origin than samples used for ANN learning, shows the proper classification of eight
samples and one missing. In our opinion, such classification results of unknown samples are quite
satisfactory, as the learning set is not big compared to the testing set.

In the second case, the output of ANN was assumed as 1—for good fuel state and 0—for a
damaged state. The ANN learning process is illustrated in Figure 17. The learning process was, in
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that case, faster, and results were more precise than in the previous case. The assumed output values
versus calculated output values of ANN classifier of fuel state were almost the same when presented
on the chart. The contribution of inputs to the output of classifier of fuel state is presented in Figure 18.
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In the analyzed case the most important contribution is the time of vapor phase presence.
That validates the construction and the principle of work of the sensor, which bases on local vapor
phase creation.

In addition, this classifier of fuel state has been tested with premium, fresh fuel samples that are
from a different origin that samples used for ANN learning. The results show the proper classification
of all nine samples.

4. Results Discussion

It is interesting that diesel fuel level sensors are the main answer in commercial sensors’ domain
for an internet query with “diesel fuel sensor”. There are set of sensors suitable for diesel fuel level
measurement, for example, PT124B-224 is a capacitive sensor, QTYB QT is a radar level meter, GUT810
is an ultrasonic sensor, and HL200306 is a mechanical sensor. The first item that appears after query
“diesel fuel quality sensor” is the LH-BW-180807-16 sensor used to AdBlue presence indicator. There
are a few commercial sensors that can be oriented to measure, in-situ, selected fuel parameter as, for
example, density or viscosity.

The commercial sensor MEAS FPS 2800 and fuel quality sensor from SCI enable multiparametric
measurement of density, viscosity, dielectric constant, temperature of sample, and level or water
interface of fuel, [30]. The density, viscosity, and dielectric constant may lead to liquid fuel type
classification as gasoline, petro-diesel, and biodiesel or jet fuel. This sensor also may point the
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petro-diesel fuel contamination with water, urea, FAME, glycerol, and methanol. The presented results
are in agreement with data accessible in [49] where sensor MEAS FPS 2800 examination results are
presented. Comparisons of sensors oriented to diesel fuel examination accessible in literature and
described in this paper are presented in Table 3.

Table 3. Comparisons of sensors oriented to diesel fuel examination accessible in literature and
described in this paper.

Sensor Type Sensor Ref. Sensing Parameters Fuel under
Analysis

Main Sensor
Answer

Additional Sensor
Answer

fluorescence sensor [24]
time-resolved

fluorescence with time
of fluorescence decay

diesel, gasoline fuel type:
diesel, gasoline

gasoline type: E95,
E98; diesel type:

petro, bio
capillary sensor

with UV–VIS
reading

[25]
light scattering at UV,
fluorescence emission

at VIS
diesel diesel fuel

dated/outdated

pointing fuel
storage over

2 years
capillary sensor
with UV-forced

degradation
[26] fluorescence reading

and UV degradation diesel diesel fuel stability pointing fuel
degradation

SCI fuel quality
sensor and MEAS

FPS 2800
[30] viscosity, density,

dielectric constant liquid fuels

fuel type:
petro-diesel,

bio-diesel, gasoline,
jet fuel

falsification of fuel,
water pollution

presence

dynamical
capillary rise

sensor
[31] viscosity, density,

surface tension diesel diesel fuel
dated/outdated

pointing fuel
storage over

2 years

fiber optic capillary
sensor with smart

optrode
[39]

initial distillation point,
vapor pressure at

distillation start, heat
of evaporation

diesel
diesel fuel volume

ratio of
bio-component

falsification of fuel
with edible oils

capillary sensor
with local heating

and data
processing

This paper

initial distillation point,
vapor pressure at

distillation start, heat
of evaporation surface
tension, viscosity, heat

of condensation

diesel

diesel fuel quality
oriented to fuel
user: premium

fuel, standard fuel,
acceptable fuel

pointing fuel
storage over

3 years

5. Conclusions

The proposed capillary sensor with disposable optrode of diesel fuel quality shows its ability
to classify known and unknown fuel samples in a few minutes including one minute of sample
examination in the sensor. The measured dynamic parameters of fuel vapor phase creation and
presence proved to be crucial to fuel classification. The automatic outlier data elimination reduces
classification errors to an acceptable minimum of less than 1/9. Initial digital signal filtering with
proper data acquisition sampling time and use of five point’s first derivative calculation enables proper
automatic conversion of data series to vector form required for classification. The optoelectronic circuit
construction including initial signal filtering provides the possibility of fuel samples examination in
an environment with saturated electromagnetic noise generated by WiFi networks. The local heating
technology enables fast examination of fuel samples. The disposable capillary with marked points
enables proper fuel sampling. All parts of the proposed hardware and software solutions are together
essential for obtaining the presented results.

The aim of the first set of planned future works is an extension of the test fuels set and carrying
out extensive tests for the classification of fuels to which the sensor was not directly prepared. The next
future works are aimed in the integration of sensor head with optoelectronics units. Thus, the fuel
customer may have in the future a tool for correct and accurate assessment of diesel fuel quality.
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