
sensors

Article

Streaming Data Fusion for the Internet of Things

Klemen Kenda 1,2,* , Blaž Kažič 1,2 , Erik Novak 1,2 and Dunja Mladenić 1,2

1 Artificial Intelligence Lab, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; blaz.kazic@ijs.si (B.K.);
erik.novak@ijs.si (E.N.); dunja.mladenic@ijs.si (D.M.)

2 Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
* Correspondence: klemen.kenda@ijs.si; Tel.: +386-1-477-3127

Received: 31 March 2019; Accepted: 22 April 2019; Published: 25 April 2019
����������
�������

Abstract: To achieve the full analytical potential of the streaming data from the internet of things,
the interconnection of various data sources is needed. By definition, those sources are heterogeneous
and their integration is not a trivial task. A common approach to exploit streaming sensor data
potential is to use machine learning techniques for predictive analytics in a way that is agnostic to the
domain knowledge. Such an approach can be easily integrated in various use cases. In this paper,
we propose a novel framework for data fusion of a set of heterogeneous data streams. The proposed
framework enriches streaming sensor data with the contextual and historical information relevant for
describing the underlying processes. The final result of the framework is a feature vector, ready to be
used in a machine learning algorithm. The framework has been applied to a cloud and to an edge
device. In the latter case, incremental learning capabilities have been demonstrated. The reported
results illustrate a significant improvement of data-driven models, applied to sensor streams. Beside
higher accuracy of the models the platform offers easy setup and thus fast prototyping capabilities in
real-world applications.

Keywords: data fusion; stream mining; machine learning; incremental learning; time-series analysis

1. Introduction

The scientific community has been discussing the rising amount of data originating from the
internet of things (IoT) for more than a decade. The IoT reached the mass market in early 2014 and its
ubiquitous influence and challenges are still permeating the scientific literature. The field of big data
processing has improved drastically and a plethora of solutions for various IoT problems have reached
their production stage [1].

The volume of the data keeps rising and as the technology is penetrating new markets
(i.e., water management), new challenges are put in front of the industry and academia. The need
for efficient and accurate analysis of these data is still an issue [2]. Stream processing [3] has been
established as a potential answer to the analysis of big data and incremental learning has been
rediscovered to answer some of the challenges (like concept drift [4] or learning efficiency [5]).
While the field of incremental learning has matured through the last decade and a wide variety of
algorithms have been described, tested and implemented in various software libraries, the applications
of methodologies from a laboratory to the real world have been scarce. Throughout our work in
various applications within the environmental domain, water management, traffic, energy efficiency
and smart grid modeling, we have identified the following shortcomings: (i) the most comprehensive
software library [6] for stream mining methods is an academic project and therefore requires an
additional effort when migrating to production, (ii) modern stream mining frameworks (like Apache
Spark, Flink and others) do not implement the state-of-the-art incremental learning methodologies or
on-line data fusion strategies; it is also extremely difficult to find an operational implementation of an

Sensors 2019, 19, 1955; doi:10.3390/s19081955 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4918-0650
https://orcid.org/0000-0002-1335-7960
https://orcid.org/0000-0002-7010-314X
https://orcid.org/0000-0002-0360-6505
http://dx.doi.org/10.3390/s19081955
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/8/1955?type=check_update&version=2


Sensors 2019, 19, 1955 2 of 27

advanced incremental learning regression, (iii) most of the scientific work on incremental learning has
taken place inside the lab, emulating unreal (ideal) conditions, which are rarely encountered in the real
world; mostly this remark applies to the data preparation step (including data fusion and generation
of machine-learning-ready rich data streams).

Lack of on-line data pre-processing techniques also reduces the possibility of using hybrid
approaches, where data pre-processing is done on-line and prediction models are implemented
using traditional machine learning (ML) approaches. McKinsey has established that up to 40% of
the data value emerging from the IoT is hidden within the synergy effects of different systems [7].
With the exception of the IoT Streaming Data Integration (ISDI) framework [8] which solves time
alignment issues of data integration, a generic methodology for generation of feature vectors for
machine learning approaches in the IoT scenario does not yet exist and this paper aims to fill this
gap. The proposed framework offers a complete streaming methodology for building rich vectors,
describing important process characteristics (or features), suitable for traditional or incremental
machine learning algorithms. Throughout this document, we will refer to such rich vectors as feature
vectors. The proposed methodology is able to merge data from a set of heterogeneous streaming data
sources (i.e., from the IoT, weather forecasts and data about human behaviour) in a real-world setting.
Our experiments show that this enables machine learning models to yield more accurate and thus
more useful results.

In this paper we show use cases related to energy management and traffic, however,
the methodology could be useful also in other scenarios such as: algorithmic trading, health care,
production line monitoring, intrusion and fraud detection, traffic monitoring, vehicle and wildlife
tracking, sports analytics, context-aware promotions and advertising, computer systems and network
monitoring, predictive maintenance, geospatial data processing, public transport, public health
management, efficient and cost-effective services.

Motivation and Contributions

For almost two decades the review papers on stream mining [9–14] have been identifying the
need for proper pre-processing of the data for the needs of stream mining techniques. According to
the related work mentioned above, this still remains an open issue. There are systems that enable fast
processing or automated data retrieval or single-stream enrichment, however, ensuring semantically
correct generation of rich feature vectors from multiple heterogeneous data sources in a streaming
scenario has only been partially solved.

Based on our research experience with various applications of stream mining techniques,
including prediction of energy consumption in public buildings and smart grids, traffic prediction,
prediction of public train energy consumption, spot market price prediction, groundwater levels
prediction and others, we have developed a novel approach to be implemented in real-world scenarios.
Contributions of our work are as follows:

1. A formal definition of heterogeneous data streams fusion. We provide a rigorous mathematical
definition of the problem, where we define data streams and operators needed to provide final
results—rich feature vectors to facilitate accurate predictive modeling.

2. A generic streaming data fusion framework for heterogeneous data streams. To the best of
our knowledge, we provide the first generic framework for generation of feature vectors from
heterogeneous data streams which supports applications of machine learning techniques in a
streaming scenario.

3. A conceptual architecture for real-world application of stream mining techniques on heterogeneous
multi-sensor data streams. Our experiments extend beyond the laboratory environment and are
integrated into real-world scenarios. We propose embedding of the stream fusion framework
within big data lambda architecture and its use in the cloud and edge infrastructure.



Sensors 2019, 19, 1955 3 of 27

4. An improvement of modeling capabilities of the real-world IoT systems. We demonstrate
that the proposed approach improves modeling accuracies in various scenarios. We provide
a result-based methodology for evaluation of stream fusion frameworks.

The rest of the paper is structured as follows. Related work is described in Section 2, which is
followed by a rigid mathematical problem definition in Section 3. Architecture and methods, used
to solve the identified problems, are described in Section 4, integration scenarios are presented in
Section 5. Results from real-world use cases are reported and discussed in Section 6. Finally, the paper
is concluded in Section 7, where also possible future work directions are presented.

2. Related Work

In this section we present a selection of recent use cases, where streaming data fusion has
been applied with success. We differentiate between common streaming data fusion methodologies,
which integrate domain-knowledge into models, from domain agnostic methodologies, like ours.
Streaming data fusion is naturally extended with incremental learning techniques, where we give a
basic overview of the state-of-the-art. Finally, we conclude the section with a presentation of academic
and production-grade stream processing engines and an overview of comparable streaming data
fusion platforms.

Sensor fusion is helpful for improving certain functionalities and model accuracy in various
domains, i.e., in positioning and navigation [15–17], in activity recognition [18,19], in system
monitoring and fault diagnosis [20–25], in transport [26], in health care [27] and in others.

In health care, for example, data fusion is used in IoT-enabled settings such as remote patient
monitoring systems. Here, the patient is monitored with different body and environmental sensors,
whose signals are processed and used to inform the doctors of the patients condition. Data fusion is used
to combine the different signals on three distinct levels: raw level (fusion of raw sensor data), feature
level (combining features provided by different methods), and decision level (combining decisions or
confidences of medical experts). The fusion is also used for computing context awareness, which is
among others used for assigning dynamic roles to doctors. Use of fuzzy logic in context awareness is
discussed in [27]. Integration of our framework in a remote patient monitoring system could provide
additional improvements (i.e., inclusion of historical data in combination with current values).

Most of the mentioned sensor fusion methodologies expect all the data to be coherent, available
immediately and arriving in the correct order. In many localized systems this is the case, however,
in the IoT scenarios, the availability of the data contributes to most of the problems. Access control
plays an important issue in data management and is a vivid topic in the recent literature [28–30].
Our platform builds on top of mechanisms, described in the literature and can take advantage of
recent findings, especially those related to streaming platforms. Rare contributions discuss handling
of delayed or out-of-sequence measurements [31]. Many of the systems also incorporate significant
domain knowledge (model-driven approaches) into the data fusion model (mainly into the Kalman
filter’s transition matrix) [32], by which the models lose their generalization potential. Frameworks
that have the potential to be applied in various use cases need to be domain knowledge agnostic
(purely data-driven), at least with the modeling algorithm [33]. In this sense, any machine learning
algorithm acts as a data fusion model since it combines multiple indicators into a single prediction.
The idea has been developed further by heterogeneous feature fusion machines [15] that consider
mapping multidimensional feature vectors into 1-dimensional output by using classic kernel functions,
such as linear, polynomial and Gaussian with different regression methods. With these approaches,
the challenge of generating correct and expressive feature vectors to support accurate modeling
remains unsolved.

Big data and stream pre-processing. In large data sets, where stream mining is the approach
of choice, data pre-processing and reduction are becoming critical methodologies for knowledge
discovery [14,34]. The authors identify the essential role of such methodologies in efficient machine
learning systems. Crucial pre-processing functionalities include concept drift detection and adaptation,



Sensors 2019, 19, 1955 4 of 27

missing data imputation, noise treatment, data reduction and efficient and accurate stream discretization
algorithms (we refer to these operators as stream aggregators in this paper) and imbalanced learning.
Automated data analysis is of no use if data pre-processing requires manual intervention [35]. The
authors present adaptive pre-processing which benefits the final prediction accuracy on real sensory
data. We also use the same evaluation strategy for our methodology, however, our methodology focuses
on building rich feature vectors, whereas the paper addresses adaptation to concept drift in the input
data stream.

Stream mining and incremental learning. Stonebraker and co-authors [36] have identified eight
requirements of a stream processing engine (SPE) already in 2005. Among them are a requirement
to handle stream imperfections (i.e., delayed or missing data), a requirement to integrate stored and
streaming data as well as requirements to keep the data moving and process the data and respond
instantaneously. Stream processing engines often base their modeling capabilities on incremental
learning methodologies [3,37]. The most popular method for incremental learning is still the Very Fast
Decision Tree (VFDT) [38], which has been improved numerous times over the years. An interesting
alternative, which is able to learn faster (achieve better accuracy sooner) and converges to batched
decision tree form, is the Extremely Fast Decision Tree (EFDT) [39]. Vertical Hoeffding Trees (VHT)
are the first distributed streaming algorithm for decision trees and offer significantly improved
computation speed in comparison to VFDT and EFDT [40]. A lot of effort has also been dedicated to
incremental learning in the deep learning domain [41]. With network architectures that include long
short-term memory (LSTM) modules, the problems of heterogeneous data fusion might be at least
partially solved already within the learning method. Evaluation of incremental learning techniques
is usually achieved with the prequential evaluation approach [42]. Our framework supports such
evaluation of incremental learning methods.

Frameworks for stream processing. Several architectures and solutions have arisen from the
wave of distributed processing engines originating at Hadoop. A couple of generations of Apache
domain projects have arisen in the last decade like Apache Spark [43], Apache Samza [44], Apache
Flink [45] and Apache Apex [46]. In addition, message distribution systems (like Apache Kafka)
have evolved, providing infrastructure for fast stream processing. Some of the systems support the
enrichment of data streams with aggregations, some even offer to merge data streams based on the
premise, that the most recent data is available immediately in the stream. More complex data fusion
strategies are up to the user. Our methodology does provide those missing strategies as well as it
implements aggregation operators. All described Apache Software Foundation’s top-level projects
take into account distributed processing of data streams, which is not the focus of our research. As we
will describe in the following sections, within the IoT, the distributed processing emerges naturally as
most often we have to process data from many IoT devices, where each device offers a limited problem,
that can be handled within one processing unit.

No efficient production targeted tool mentioned above implements state-of-the-art incremental
learning methods. These implementations are still limited to academic community. The most
well-known tool for stream mining are MOA (Massive Online Analysis) [6] and its clones in
other languages (i.e., streamDM-cpp [47] and scikit-multiflow [48]). While these tools provide
implementations of the state-of-the-art stream learning algorithms, they completely ignore the need
for on-line data pre-processing and streaming data fusion.

QMiner [49] is a stream processing engine (SPE). It offers operators for aggregating data streams
as well as operators for merging and resampling multiple streams. We have built our methodology
on top of QMiner infrastructure and extended its functionality to support heterogeneous streaming
data fusion.

Streaming data fusion platforms. A conceptual platform [50] for the usage of stream mining in
the domain of big data is describing a lambda architecture [51] approach. While the authors list all the
relevant technologies and mention methods for a summary of streaming data, the platform does not
present any details on data fusion implementation.



Sensors 2019, 19, 1955 5 of 27

Real-time probabilistic data fusion for the large-scale IoT applications [26] demonstrates the
usage of multi-modal data streams (the IoT data, weather and social media data streams) for efficient
prediction of traffic congestions. The method implements a two-level architecture, where the first level
analytics derives events from data streams and the second level is essentially a probabilistic complex
event processor. They generate the rules with efficient batch processing. They also expose the problem
of using a common time scale for heterogeneous data sources but exclude the possibility of delayed
measurements. A similar approach is described in [52], where the authors formalize the position of
machine learning/analytics within the hut architecture, where it is used to support event processing
by providing rules through batch analytics. Both approaches, however, perform this operation in the
batch processing part. On the contrary, our approach includes machine learning methodologies in
the streaming part of the architecture and introduces incremental learning approach, which can work
without the support of the batch processing part.

Autonomous discovery of high-level knowledge from ubiquitous data streams [16] is one of the
rare works that does not focus only on combining specific information with well-defined meaning,
but rather tries to provide a general framework, agnostic to a specific problem. The authors use
data aggregation over time to summarize detailed data streams (and their derivatives) and provide
fixed feature vectors based on n uniformly sampled data streams. In addition, we provide a general
framework that is able to ingest multiple heterogeneous (non-uniformly sampled) data streams and is
able to provide user-defined feature vectors based on current as well as historical aggregates over the
data and their derivatives.

Multiple streams data fusion is presented in [53]. The methodology exploits multiple sensors
measuring the same property to predict anomalies and does not attack the issue of heterogeneous
streams data fusion. The IoT streaming data integration (ISDI) paradigm is introduced in [8] and the
proposed ISDI framework solves real-time data integration using the generic window-based algorithm.
The work addresses the crucial timing alignment issue in the IoT setting. While both, ISDI and our
framework, solve similar issues, our proposal includes a solution that works in a truly streaming
manner (using a single-pass over data records), includes integration of historical values and provides
a more direct interface for generation of stream aggregates.

Data fusion is one of the central research topics within the IoT, however, rare domain agnostic
platforms for the fusion of the heterogeneous streaming data sources which support machine learning
techniques have been presented in the scientific literature so far. Related contributions have, however,
increased noticeably over the last couple of years.

3. Problem Definition

One of the exploitation scenarios for the vast IoT data is to take advantage of its predictive
potential through machine learning methods. For example, based on historical data from a smart
grid we can build a model that is capable of predicting energy consumption profiles for the next day,
which will help better planning of the energy distribution and thus provide cheaper energy for the
end user. In order to create the best possible predictions we need to be able to not only work with
the current power consumption values, but also with historical data, different stream aggregates and
derivatives and, what is even more important, we need to be able to expand the data streams with
relevant contextual information, such as weather data, human behaviour data and weather forecasts.
Moreover, an on-line algorithm for creating rich feature vectors for machine learning methodologies
is needed in order to provide new feature vectors as soon as possible and to support incremental
learning scenarios. Our framework builds such feature vectors and exposes them to machine learning
methods. Incremental learning methods are well tailored to the needs of the IoT since the models are
computationally cheaper and since they usually capture concept drift (change of statistical properties
of the target variables), which often appears in the IoT scenarios.

The two dominant reasons why this kind of data fusion task is not trivial are the heterogeneity of
the IoT data and its time incoherence.



Sensors 2019, 19, 1955 6 of 27

According to [54], heterogeneity is an intrinsic property of big data. Many definitions of
heterogeneous data can be found in the literature and there is no common agreement on the definition
among various authors. Among the properties that illustrate the issue are: Multi-modality of the data
(even considering a mixture of continuous and categorical features and structured and unstructured
data) and the technical aspects (i.e., format of the data), rate of independence, concept drift and
dynamics of change, and privacy. In this work we consider data coming from different sources and
focus on heterogeneity based on the discrepancies in the time component [55,56], which is, in our
opinion, the most important in the IoT data streams. It is manifested through the following properties:
(i) sampling frequency, (ii) time delay, and (iii) data availability. Sampling frequency differs from
sensor to sensor. Some sensors implement constant sampling frequency. Different sensors within
a setup could implement constant, but different sampling frequencies. Many sensors implement
approximately constant sampling frequency. he readings happen approximately in the prescribed
interval, but due to different effects, the reading might be slightly early or late. Some sensors might
use arbitrary sampling frequencies (i.e., they might only report an event). Time delay is introduced
with transmission latencies, legacy systems and privacy/access issues. Measurements might be late
from a few milliseconds up to one day (i.e., when data is transmitted from a legacy system via FTP
connection). Delay is closely related to data availability.

A data stream is a sequence of values with a corresponding timestamp (in IoT a timestamp denotes
the time when the measurement was taken). We define a coherent time series to be such a sequence,
where each subsequent measurement in a series has been taken later than the previous. The most
obvious data source which breaks time coherence is the weather forecast data stream. The forecasting
models update their predictions regularly, usually every hour. With every update, older forecasts are
updated with more accurate values, based on recent data.

Based on the issues arising from heterogeneity of the data we define a harmonic set of data
streams. A harmonic set of data streams consists of a set of data streams, where each stream has a
matching sampling frequency (and phase), at least one matching timestamp, and all the data that is
needed for the successful generation of a feature vector.

The following subsections (Sections 3.1–3.7) present different types of data sources and their main
characteristics as well as a thorough mathematical formulation of the basic concepts and approaches
used in our methodology.

3.1. Types of Data Sources

Modeling in the IoT scenarios is based on the three different types of data sources. (1) Sensor
data. Sensor data most often originates from IoT devices but can be obtained also by crawling a
particular web resource. The data is usually obtained close to real-time. However, different lags can be
introduced due to various reasons. The data fusion system should be able to handle these time-related
inconsistencies and build correct feature vectors, based on the most recent available data. (2) Weather
forecasts. Weather forecasts are available for the future (usually we need them up until the time of our
prediction horizon). The forecasts represent an incoherent data stream (as the values are updating with
time), which needs to be handled appropriately in the stream fusion system. (3) Static data. This is the
data that by definition does not change in time. Values are known for the indefinite future. The data
includes attributes like: day of the week, day in the year, hour of the day, holiday, day before the
holiday, working hour, etc. For simplicity reasons, we handle static data as a stream.

Availability of the three different types of data differs as depicted in Figure 1. Depending on the
delivery mechanisms, sensor data arrives to the stream processing components with different lags.
Figure 1 also introduces the available data horizon which is the latest timestamp for which all sensor
data streams are available. It represents the latest timestamp for which feature vector generation can
be triggered. Feature vectors are built for calculating predictions at the prediction horizon. Static and
weather forecast data are therefore usually considered for that timestamp within feature vectors.



Sensors 2019, 19, 1955 7 of 27

sensor 1
sensor 2
sensor 3

weather forecast
static data

current timestamp

prediction horizon

available data horizon

Figure 1. Data availability of different types of data sources. Sensor data is delivered in (almost)
real-time. However, some legacy systems might introduce longer lags. Weather forecasts are available
for a particular time in the future, while static data (i.e., date/time features and human behaviour data)
are usually always available.

3.2. Data Streams

In most literature a data stream is represented by a sequence of values x1, x2, . . . , xn where xi ∈ R
is an observation for all i ∈ {1, 2, . . . , n}. We recognize that this notation has a drawback: it does not
contain any information about when a particular value has been provided. Time is an important
factor in deciding when to start a particular process on the data stream. To that end, we present a new
definition of a data stream that includes time.

A data stream On
x is an ordered set of value-time observation pairs provided by a sensor or some

other source of data and is described as

On
x =

{
(x1, t(1)x ), (x2, t(2)x ), . . . , (xn, t(n)x )

}
,

where t(k)x is the time of observation xk and t(i)x ≤ t(j)
x for all i ≤ j. A data stream window Oi,j

x is
a subset which contains observations between the i-th and j-th entries of a data stream On

x and is
described as

Oi,j
x =

{
(xi, t(i)x ), (xi+1, t(i+1)

x ), . . . , (xj, t(j)
x )
}

.

In addition, we will write O1,n
x = On

x .

Remark 1. A data stream can also be defined as an ordered set of vector-time observation pairs, e.g., by replacing
the values with vectors in the definition above. By doing so we would allow an observation to contain multiple
values and thus generalize the data stream. For the sake of simplicity, we will use the value-time data stream
definition in the rest of the document and will reference this remark when required.

3.3. Static Data Stream

Data streams are dynamic in nature; they are created by retrieving signals from sensors which are
then transformed and added to the stream. In some cases, we know what data will come at a particular
timestamp. One such case is the day-of-the-week data stream where for a given timestamp we know
which day of the week it corresponds to. This type of data streams is defined as static data streams Sn

w
and is described as

Sn
w =

{
(w1, t(1)w ), . . . , (wn, t(n)w )

}
.

Returning to the day-of-the-week static data stream, it contains values wi ∈ [1, 2, . . . , 7] where the
number corresponds to a particular day of the week associated with its timestamp (1 corresponding
to Monday, 2 to Tuesday etc.). Another example is the weekend static data stream which contains
information weather a timestamp is in a weekend interval. Its values are wi = 1 if the timestamp t(i)w is
inside a weekend interval and wi = 0 otherwise. Similarly, a holiday static data stream is a static data
stream which contains information if a timestamp falls in a holiday. Notice that some data streams
depend on the context (e.g., culture, country).



Sensors 2019, 19, 1955 8 of 27

3.4. Data Stream Aggregate

When we process data streams we might want to group observations together to form a new value
that summarizes the data stream. To do this, we require a data stream aggregate function which is
able to combine the data stream observations and returns the summarized (aggregated) value. A data
stream aggregate can also be applied on a data stream window Oi,j

x . Generally, a data stream aggregate
function is defined as

aggr(On
x) = X,

where X is the aggregated value of the provided observations. The most common data stream aggregate
functions are (a comprehensive list is available in [57,58]):

• Count. Counts the number of observations in a data stream: X = n,
• Maximum. Returns the maximum value in a data stream: X = max{w1, . . . , wn},
• Minimum. Returns the minimum value in a data stream: X = min{w1, . . . , wn},
• Sum. Sums up all values in a data stream: X = ∑n

i=1 wi.

A more complex example of a data stream aggregate is the moving average (MA). This aggregate
is used to smooth out short-term fluctuations and highlight longer-term trends. It calculates the
average of the observations within a data stream window Oi,j

x and is defined as

MA(Oi,j
x ) =

1
j− i + 1

j

∑
k=i

xk.

When the data stream window moves the new MA can be calculated by using the previous
MA value:

MA
(
Oi+1,j+1

x

)
=

(j− i + 1) ·MA(Oi,j
x )− wi + wj+1

j− i + 1

The second more complex aggregate function is the exponential moving average (EMA). It is
similar to MA only that it incorporates a decaying factor; giving the more recent observations
greater importance. This aggregate inputs the data stream On

x and is calculated with the following
recursive function:

EMA(On
x) =

{
xn, for n = 1,
α(n) · xn +

(
1− α(n)

)
· EMA(On−1

x ), for n 6= 1,

where α(n) = ∆t(n)
T , ∆t(n) = t(n)x − t(n−1)

x represents the rate of the decay and T is the user defined
split time constant.

Once we decide on the aggregate functions to use in processing, we can create an aggregated data
stream. An aggregated data stream On

x,aggr is a data stream containing the sequence of aggregated
values of On

x by using the aggregate function “aggr”.

On
x,aggr =

{(
aggr(O1

x), t(1)x
)
, . . . ,

(
aggr(On

x), t(n)x
)}

.

We will now look at two aggregated data stream examples:
Moving average data stream. This aggregated data stream is created by using the MA aggregate

and is described as

On
x,MA =

{(
MA(O1,k+1

x ), t(1)x
)
, . . . ,

(
MA(On−k,n

x ), t(n)x
)}

,

where k < n is the user defined data stream window size.



Sensors 2019, 19, 1955 9 of 27

Exponential moving average data stream. This aggregated data stream is created by using the
EMA aggregate and is described as

On
x,EMA =

{(
EMA(O1

x), t(1)x
)
, . . . ,

(
EMA(On

x), t(n)x
)}

.

More complex stream aggregates can require interpolation over the time-series and calculation of
values such as: number of extremes in a particular data stream window, highest n-th derivative in the
data stream window, duration of the largest maximum, etc. Such derivatives are, for example, useful
for modeling of crop types in earth observation scenarios.

3.5. Data Stream Resampler

One of the properties of data streams is that observations might not come at a constant rate.
This can cause problems when multiple data streams need to be synchronized. To handle this issue we
define a sampling function which takes a data stream On

x and a timestamp T as an input and returns
a sample value. The function can be described as

sampler(On
x , T) = Xi,

where Xi is the sampled value generated from the input parameters. The sample value can be generated
using different functions:

• Last value. This function returns the last observation that appeared before the provided time: xk,
where t(i)x < T for all i ≤ k and T ≤ t(j)

x for k < j.
• First value. This function returns the first observation that appears after the provided time: xk,

where t(i)x < T for all i < k and T ≤ t(j)
x for k ≤ j.

• Linear interpolation. This function returns the sample value by using a linear interpolation
between observations around the provided time, e.g.,

lin(On
x , T) =

xk − xk−1

t(k)x − t(k−1)
x

(
T − t(k)x

)
+ xk,

where t(k−1)
x ≤ T ≤ t(k)x .

Once we decide on the sampling function f and a constant time period T we can create a data
stream of sampled data. This type of data streams is defined as a resampled data stream containing
the sampled values of a provided data stream On

x and is described as

Om
x, f = {(X1, T(1)

X ), . . . , (Xm, T(m)
X )},

where Xi = f
(
On

x , T(i)
X
)

is the sampled value returned by the sampling function f performed at time

T(i)
X . In addition, the difference of consecutive time values is equal to the constant time period T, i.e.,

T = T(i+1)
X − T(i)

X ,

for all i ∈ {1, . . . , m− 1}.

3.6. Data Stream Merger

Sometimes we require to merge two or multiple data streams into a single data stream. We define
a merger function that is able to do just that. Suppose we have two data streams On

x and Om
y where

t(i)x = t(i)y for all i ≤ min{n, m}. A merger function takes On
x and Om

y as an input and returns the
merged data stream, i.e.,



Sensors 2019, 19, 1955 10 of 27

merger(On
x ,Om

y ) =
{
(x1, y1, t(1)), . . . , (xk, yk, t(k))

}
,

where k = min{n, m} and t(i) = t(i)x = t(i)y for all i ∈ {1, . . . , k}. If we adopt the view provided in
Remark 1, the output of the merger function is a data stream. Indeed, if we write the values xi, yi as
entries of a vector then the output will follow the generalized definition of a data stream.

3.7. Forecast Data Stream

Forecast data streams provide forecasted values for the future. The difference between the time of
the forecast and the time of the forecast generation is called a prediction horizon. A simple forecasting
model provides forecasts for a constant prediction horizon and can be described simply by On

p, where

pi is the forecasted value and t(i)p refers to a timestamp in the future. More complex forecasting streams
(i.e., weather forecasts) provide predictions for multiple time horizons at the same time. For example,
every hour new weather forecasts are being generated for the next 48-hour interval. This implies that a
forecast for a particular hour in a day gets updated 48-times during this process. At forecast generation
a new data stream window Oi,j

p is generated, thus the forecast data stream is defined as

Fn
x = {(O1,k

p , t(1)x ), (O2,k+1
p , t(2)x ), . . . , (On,k+n−1

p , t(n)x )}, (1)

where k is the number of time horizons and Oi,k+i−1
p is the data stream window generated at time t(i)x .

In the case of k = 1, the forecast data stream contains a simple forecasting model, which generates
only one prediction of a constant prediction horizon.

3.8. Feature Vector

In machine learning, a feature vector is a vector that contains data important for description and
modeling of a particular system. Together with a label of a particular data instance, it is used for
training of a machine learning model. If the label is unknown, the vector can be used to derive
predictions (or other results) from a trained model. An element in the vector is called a feature (in some
literature it is referred to as an attribute). A feature vector which includes contextually rich information,
derived from a set of data streams, will allow a machine learning model to achieve the best possible
results in modeling particular phenomena. Such a vector φfull should be the final result of a streaming
data fusion framework.

A feature vector φfull is a representation of a set of observation, static data and forecast data
streams On

x , Sn
y and Fn

z , where x ∈ {x1, . . . , xi}, y ∈ {y1, . . . , yj} and z ∈ {z1, . . . , zk}. We will focus on
feature vectors of the following form:

φfull =


F(1)

F(2)

...
F(q)

 ,

where q is the size of the feature vector and each feature F(r) is defined with:

F(r) =



x(j)
i , a (resampled) measurement extracted from On

xi

y(j)
i , a (resampled) forecast extracted from Fn

yi

z(j)
i , a (resampled) forecast extracted from Sn

zi

X(j)
i , a (resampled) stream aggregate extracted from On

xi

Y(j)
i , a (resampled) stream aggregate extracted from Fn

yi

Z(j)
i , a (resampled) stream aggregate extracted from Sn

zi



Sensors 2019, 19, 1955 11 of 27

Note that the index j ∈ {1, . . . , n} can refer to current or historical values of the measurements or
the aggregates. Additionally, each feature vector reflects the state of the observed system at resampled
timestamp T(n)

x .

4. Architecture and Methods

4.1. Architecture

The architecture of the proposed framework (http://github.com/klemenkenda/iot-fusion/)
is depicted in Figure 2. The framework is designed to be easily integrated into a speed layer of a
standard big data processing lambda architecture [51]. The proposed framework consists of three
main building blocks: pre-processing, fusion and modeling. Pre-processing includes data adapters
for various data streams. Data streams are enriched with stream aggregates, resampled to a common
timestamp (see Algorithm 1) and partial feature vectors are extracted in the partial fusion component
(see Algorithm 2). The data fusion block accepts partial feature vectors from a set of data sources
and merges them together into a full feature vector (see Algorithm 3). In this component, potentially
different timestamps are compensated and additional derivatives are calculated from partial feature
vectors (i.e., the difference between current and yesterday’s daily average electricity consumption).

ModelingPre-processing Fusion

D
at

a 
A

d
ap

te
r

Se
n

so
r

D
at

a 
A

d
ap

te
r 

W
ea

th
e

r
D

at
a 

A
d

ap
te

r 
St

at
ic

Stream
Aggregates Pa

rt
ia

l
Fu

si
o

n

Stream
Aggregates Pa

rt
ia

l
Fu

si
o

n

Stream
Aggregates Pa

rt
ia

l
Fu

si
o

n

Fu
ll

Fu
si

o
n

sensor

data

forecast

data

static

data

feature

vectors

Fusion management

Time 
Consoli-
dation

Derivatives

P
re

d
ic

ti
ve

 
m

o
d

el

p
re

d
ic

ti
o

n
s

Model management

Integrated stream
models or loosely
coupled batch
models

Figure 2. Data fusion framework architecture with added modeling component. The framework
consists of three main components: pre-processing, fusion and modeling. Pre-processing is dedicated
to the independent transformation of particular data streams, fusion merges them together into full
feature vectors, whereas modeling provides predictions from either generated batch models or from
incremental learning models.

The modeling component is also included in the framework since data-driven modeling methods
perform a kind of data fusion by mapping feature vectors into predictions. Two different modeling
components have been implemented: (a) based on a rich ecosystem of batch learning techniques and
(b) based on a sparse implementations of stream learning techniques. The latter component is useful in
the edge scenarios, where computational efficiency is paramount.

The whole process is controlled via a single configuration structure, which defines the input data
sources, data enrichment (a set of stream aggregates attached to a particular data stream), resampling
time, the particular elements of a full feature vector and even meta-data relevant for predictive analytics
(prediction horizon, selected modeling method and corresponding parameters).

4.2. Complex Forecast Transformation into a Coherent Data Stream

Forecasts usually represent important contextual information regarding the process we are trying
to model and can drastically improve the accuracy of our models. We have defined the forecast data

http://github.com/klemenkenda/iot-fusion/


Sensors 2019, 19, 1955 12 of 27

stream Fn
x in Equation (1). An attentive reader might observe that such a data stream is breaking the

basic rules of a coherent data stream [36]. A forecasted value pj at time t(j)
p gets updated with each

new received data stream window Oi,k+i−1
p , as long as j ∈ {i, i + 1, . . . , i + k− 1}. For such streams it

is impossible to use the majority of the stream mining algorithms, including stream aggregators.
We propose decomposing the complex stream from Equation (1) into a set of k streams, where each

stream represents forecast for a constant prediction horizon h and can, therefore, be simply denoted as
On

ph
. For example, a weather forecast stream which contains 48-hourly forecasts in each update would

decompose into 48 separate coherent data streams. With this transformation complex forecast streams
can be simply integrated into our framework.

4.3. Data Flow

Data flows within our system reflect the proposed architecture and the particularities of different
stream types. On the farther left side of Figure 3 is the forecast complex stream Fn

x . As this stream
breaks the definition of a coherent time series it is conformed to a set of simple streams within the
data adapter as described in the previous subsection. The second column of Figure 3 represent the
initial phase of data fusion. The depicted data streams share the same form but do not have a common
time denominator. Afterwards, all data streams are enriched with stream aggregates. Common time
denominator is established in streams EOn

x with resampling the data streams to to the master time
interval T. Data fusion is performed in two steps. Firstly, the enriched data streams are transformed
into partial feature vector streams POn

x by adding additional historical values or derivatives to the
data stream. Finally, these feature vector streams are merged into final feature vector data stream FOn

x .

Fn
x

-


On

p1
On

p2
...

On
ph


@
@
@R

On
x

-

Sn
x ‖ On

x

�
���

EOn
x

- POn
x

- FOn
x

Figure 3. Hierarchy of data streams in the stream fusion framework. Heterogeneous data streams are
consolidated and merged with every step of the stream fusion (depicted from left to right). Raw data
streams (Fn

x ,On
x and Sn

x) are transformed, enriched and resampled into coherent data streams EOn
x and

then fused through partial feature vector streams POn
x into a final full feature vector data stream FOn

x .

4.4. Enrichment of a Data Stream

Enrichment of a data stream is a process which takes a data stream On
x as an input and adds a set

of additional stream aggregates On
x,aggr to it. Our enrichment procedure is described in Algorithm 1.

Alongside the data stream On
x the algorithm also requires information about the configuration of the

stream aggregates (config). Based on the config the algorithm initiates a set of stream aggregates and
attaches them to the data stream, which enables stream aggregate operators to update their values with
every new element in stream On

x . Additionally, we initiate a resampler operator in this step. The task
of the resampler operator is to put the data stream On

x to a common time T(i)
x , which is shared among

all the data streams in the stream fusion process. Enrichment algorithm listens to the data stream
and triggers an action after every measurement is received. Firstly, all the attached stream aggregates
are updated with the new value. Next, an enriched vector bn consisting of the original measurement,
all of the stream aggregate values and the measurement timestamp is created. Finally, the enriched



Sensors 2019, 19, 1955 13 of 27

vector bn is inserted into the resampler and if a new resampled vector b′n is available it is pushed
into the resulting enriched resampled data stream EOn

x . Note: the data stream On
x only utilizes last

values, which means that historical values are not stored by the algorithm. Historical values needed
for the calculation of window based data stream aggregates are stored in buffers within the aggregate
mechanism [49]. The data stream EOn

x is stored as a buffer EOi,j
x , where the window’s right limit j is

increasing with each new measurement, and left limit i is increased after the cleanup of the obsolete
data in Algorithm 3. After the initial phase, when old measurements are being collected in order to
satisfy the needs of a feature vector generation, the size of the EOi,j

x buffer remains constant.

Algorithm 1: Enrichment of a data stream with stream aggregates.
Data: Data stream On

x ; configuration of stream aggregates config
Result: Enriched resampled data stream EOn

x based on On
x

init a set of j stream aggregators X(j) from config[On
x];

init resample (= tick) interval T from config;
start listening to stream On

x ;
while stream is active do

wait for next instance in (On
x);

update stream aggregates with observation (xn, t(n)x );

create enriched stream record bn ←− (xn, X(1), . . . , X(j), t(n)x );
if stream will yield next resampled value b′n = sampler(On

x , T) then
push b′n to stream EOn

x ;
end

end

The new stream EOn
x satisfies all the properties of a data stream from Section 3 and can be further

used in any stream mining algorithms within the pipeline. The new stream contains new enriched
data as well as conformed timestamp.

4.5. Data Fusion Algorithms

Streaming data fusion consists of two separate algorithms. The partial fusion algorithm (see
Algorithm 2) and full fusion algorithm (see Algorithm 3). The partial fusion algorithm transforms
an enriched data stream EOn

x into a partial feature vector based on the values from this data stream.
The full fusion algorithm merges all partial feature vectors together and forms the final full feature
vector, which is ready to be used for learning or prediction in any machine/stream learning method.

The purpose of the partial fusion algorithm is to add additional historical and derived features
(out of a single data stream) by using a data stream window EOi,j

x of recent values. Additionally,
the algorithm takes current feature generation time Tc and configuration of features (A) as input
data. Each feature is identified by an elementPosition (column) in an item of EOi,j

x as well as by its
relativeOffset from feature generation time in the stream (row). For example, a relevant feature for
most of the models, which predict human behaviour (i.e., energy consumption), is the value of the
phenomena we are trying to predict from a day before. For instance, if our resampling time T is equal
to 1 h, the relative offset would be −24. Partial fusion is an algorithm that is called by Algorithm 3.
The algorithm initiates an empty partial feature vector p. Then it transverses all the features from
a set of partial feature vector features A and inserts the appropriate values (according to position
and offset) into the partial feature vector. Algorithm 2 can easily be extended with additional feature
generators (i.e., time differences or averages over a set of features), which we have demonstrated in
the real-world use cases (see Section 6). If the data in the current enriched resampled stream window
EOi,j

x is inadequate (i.e., some historical data is missing), the algorithm throws an exception. Final
partial feature vector p ∈ POn

x is returned to the full fusion algorithm.



Sensors 2019, 19, 1955 14 of 27

Algorithm 2: Partial fusion algorithm in pre-processing step.

Data: Enriched data stream window EOi,j
x ; current timestamp for feature generation Tc; list of

features A
Result: Partial feature vector stream p ∈ POn

x
init empty feature vector p;
set feature vector timestamp←− Tc;
for f ∈ A do

e←− f .elementPosition;
init currentOffset in EOn

x that corresponds to Tc;
relativeOffset←− f .offset;
k←− currentOffset+ relativeOffset;
if k /∈ [i, j] then

throw error feature vector can not be generated;
end

push x(e)k ∈ EOi,j
x to p;

end
push p to data stream POn

x ;

Algorithm 3: Full data fusion algorithm.
Data: a set of data streams A relevant for full feature vector generation; master sensor m ∈ A,

which dictates the generation of the feature vectors
Result: Feature vector data stream FOn

x for master node m
start listening to data streams EOn

A, A ∈ A;
Tlc ←− 0; // init last time, when feature vector was generated
while all streams are active do

trigger the new fusion after receiving next instance from stream EOn
A;

if not all streams are available then continue;
set Tc to the smallest Tm > Tlc in master node enriched resampled data stream EOn

m;
if such Tc exists then

if partial feature vector generation is not possible for all streams from A then continue;
init empty feature vector φm with timestamp Tc;
for s ∈ A do

append partial feature vector p ∈ POn
s from sensor s to φm; // see Algorithm 2

cleanup obsolete data from stream s;
end
push φm to full feature vector data stream FOn

m;
Tlc ←− Tc;

end
end

The full data fusion algorithm collects all the partial feature vectors from set A and merges them
together in a single full feature vector, which is suitable for usage in various stream/machine learning
algorithms. The system requires initialization from a configuration of streams A, relevant for feature
vector generation, and information on the master sensor m ∈ A, which dictates the generation of
feature vectors. The result of the algorithm is a full feature vector φm ∈ FOn

m. The algorithm initiates
with the smallest possible time Tlc = 0, which indicates the last time of a feature vector generation.
Upon each new record from any of the data streams EOn

A the system checks if there is data already
available from all streams A ∈ A. The system tries to identify the smallest possible next feature



Sensors 2019, 19, 1955 15 of 27

generation time from master sensor m. This is the smallest timestamp for which a full feature vector
has not yet been successfully generated. If such a timestamp Tc exists, then the algorithm checks
whether there is enough data (historical and for the future) within the EOn

A buffers for successful
generation of partial feature vectors. Then the algorithm instantiates an empty feature vector p for
timestamp Tc and fills it with partial feature vectors from all the relevant sensors. In order to keep
the memory usage as low as possible, the algorithm checks for any obsolete data records in buffers
EOi,j

A and removes them. Finally, the final full feature vector φm for the master node m is pushed to the
appropriate stream FOn

m, where it is made available for any interested consumers, i.e., stream or batch
machine learning algorithms.

The methodology implements a fully streaming data fusion algorithm. The requirement for
historical data is satisfied with the usage of smallest possible buffers (i.e., internal buffers of
stream aggregates based on sliding window or resampled enriched data stream window EOi,j

x ).
The methodology is generic and can be initiated for any stream modeling scenario with a configuration
structure, which includes (a) a set of fusion meta-data like fusion id, tick time interval T and others,
(b) a set of stream aggregates for a particular sensor s, where each stream can implement a set of
tick-based (last value only) or sliding window-based aggregates, and (c) the definition of a feature vector,
which consists of partial feature vectors for a particular sensor. Each partial feature vector can include
an arbitrary set of features, which include current or historical sensor values, current and historical
aggregated values over different sliding windows and even derivatives of current and historical values.

5. Integration

Our methodology is suitable to be included in lambda and similar big data architectures [51,52].
These architectures define the role of 2-fold data processing layers: batch and speed. Speed layer
is dedicated to the processing of data streams. Quite often the speed layer is reduced to event
processing [52], however, we propose to use incremental learning techniques independently in the
speed layer (at least for edge processing applications) or to transfer the models from batch layer (where
they are learned) to the speed layer (where they are used to provide predictions on an almost real-time
data stream).

In the following subsections, we present two different integration scenarios: (1) integration in
the cloud infrastructure and (2) integration in the edge/fog infrastructure. Additionally, due to the
relatively low computational cost of streaming data fusion and modeling components, the system
would be ideal for deployment in dew architecture (low-end servers, deployed near IoT devices), as
proposed in [59].

5.1. Integration: Cloud Infrastructure

Integration in the cloud represents the usual implementation of our framework. We have used
this setup in smart grid power, power station demand, groundwater level, public buildings power
demand and other real-world scenarios. As depicted in Figure 4, such an integration consists of 4
different layers: Analytical Layer, Communication Layer, Data Layer and External Layer. The central
component of the system is the message queue system within the Communication Layer. In our
implementations, we have used Apache Kafka. Exposed through a single entry point Apache Kafka
can distribute extreme amounts of data via elastic, scalable and fault-tolerant infrastructure. As each
of the processing components (Preprocessing, Fusion and Modeling) only needs to access the message
queue, they can be distributed over the computational infrastructure and thus ensure scalability even
in the processing end.



Sensors 2019, 19, 1955 16 of 27

Apache Kafka

Preprocessing Fusion Modeling

GUI

Real-time flow 
simulator

DB

Real-time
measurementsHistorical 

logs

Data Layer

Communication 
Layer

Analytical Layer

External
datasources (weather, 

date-time)

QMiner QMiner ScikitLearn

External layer

Figure 4. Integration in the cloud infrastructure is based on the message queue in the Communication
Layer (in our applications this was Apache Kafka). Each component in the architecture is loosely
coupled to the system and receives/sends data to the system via the message queue using a predefined
data format. The system can receive simulated or real-time data (from sensors and from external data
sources). Results are stored in the monitoring database (DB) and finally shown to the user (GUI).

Data is provided in the Data and External Layers. The External Layer includes external data
sources, such as weather data, weather predictions and static data (data-time features, human behaviour
data, etc.) while the Data Layer includes the essential IoT data infrastructure. Before real-world systems
are deployed to the production, extensive testing is needed. This is ensured by real-time flow simulator
component, which is able to simulate conditions in the real-time (or faster) based on historical log
data files. The platform provides three types of results: (i) pre-processed feature vectors from the
pre-processing component, (ii) final feature vectors from the fusion component and (iii) predictions
from the modeling component. All the intermediate, as well as final results, are stored in the monitoring
database (DB) for further analysis and visualization in the Graphical User Interface (GUI).

We have implemented our stream fusion system in QMiner [49] stream processing engine,
which enables fast prototyping as well as production grade framework deployment and already
a rich ecosystem of implemented stream aggregate operators.

5.2. Integration: Edge/Fog Infrastructure

Stream mining systems are suitable for the implementation in the edge/fog infrastructure due to
their low computational demand. We have used this setup in energy demand prediction on a public
train. As depicted in Figure 5, the integration is simpler than in the cloud scenario. In this integration,
the loosely coupled architecture provides only additional overhead since the implementation is
to be achieved within a single node. A messaging queue system can be omitted in this scenario.
Data adapters can connect directly to the data sources (i.e., via HTTP API). Data is transferred between
pre-processing, fusion and modeling components directly—via internal interfaces. All the components,
including modeling, are implemented using QMiner framework. Incremental learning algorithms, like
recursive linear regression and VFDT, are used. Predictions are exposed via lightweight WebSocket
protocol and made available in the GUI. In another setup, we have used a lightweight message queue
solution based on the MQTT protocol.



Sensors 2019, 19, 1955 17 of 27

Lightweight MQ

GUI

Real-time flow 
simulator

Real-time
measurements

Historical 
logs

Preprocessing Fusion Modeling

QMiner

Stand alone (on-board) 
analytical component

DB

Figure 5. Data fusion framework integration in the edge/fog scenario. Message queue system
can be completely omitted in this scenario and all communication is achieved via HTTP API
or WebSockets (on the GUI part). Components are tightly coupled to ensure faster data transfer
between components. Modeling is included in the analytical component and implements lightweight
incremental learning algorithms.

6. Experimental Results

In this section we present experimental results on a selection of three different use cases from
smart cities domains, demonstrating integrations in cloud and edge scenarios. For each use case,
we have obtained a real-world dataset, i.e., sensor measurements from the actual testbed. We used
non-parametric, linear models (e.g., ridge regression), as well as nonlinear models (e.g., k-nearest
neighbours, decision trees, gradient boosting regression and random forests) of different complexities.
In the attempt to reach the best possible model performance, we added additional data sources to
the model and enriched it with various autoregressive derivatives. These additional data sources
are: seasonable date-time related variables (e.g., hour of the day, day of the week), meteorological
variables (current and forecasted weather), and additional static variables related to the use case
(such as holidays status). To incorporate also different short term trends from the sensor values, we
added various autoregressive features, computed for different rolling/sliding windows sizes. Relevant
aggregate functions are mean, minimum, maximum, sum, and variance. Time windows that we used
are: 1 h, 6 h, 1 day, 1 week and 1 month. Due to the cyclic behaviour, we know that the features from
yesterday, or from the same time in the previous week, can be similar to the current values, and are
therefore useful for the model. Therefore, some past feature values (1 day, 2 days, and 1 week back) were
also included as autoregressive features.

With respect to the data sources, there are the following universal denominations that we use in
the text (for example, data set with name M_AR_WC_WF means that measurements with autoregressive
derivatives, current weather and forecasted weather features are included in the dataset):

• M — Available sensor measurements (cleaned and resampled)
• AR—Autoregressive variables (measurements and their historical and aggregated values)
• WC — Current weather
• WF — Weather forecasts
• DT — Date-time (calendar) properties
• TOP_20 — 20 most important features (obtained with feature selection process)

Evaluation of data fusion algorithms is a topic that has not yet been addressed well even in the
traditional batch scenarios. The issue remains an open challenge [1,32]. The data fusion algorithms
are usually tested in a simulation environment with unclear performance benefits in a real-world
setting. It has been shown that only 1 in almost 20 research papers focuses on the evaluation, relevant



Sensors 2019, 19, 1955 18 of 27

to practical applications [60]. To the best of our knowledge, no standardized methodology exists for
comparing stream fusion techniques and this remains an open research challenge. Potential evaluation
methodology should assess the expressiveness of the feature vector description language (i.e., number
of available stream aggregates, ability to utilize historical values, derivatives and aggregates, ability
to generate new features by transforming existing ones, ability to include different types of data
sources, ability to perform feature selection on-line etc.) as well as how does it benefit the real world
applications (i.e., by improving the models, ease of use, number of hyper parameters to be defined,
ease of connectivity, initialization time, robustness etc.).

In our evaluation, we show that our methodology has helped to improve modeling capabilities,
which is an indirect measure of its benefits in the real world real-time systems. Our system includes six
different stream aggregate operators, it can use different historical values and aggregates, it is able to
generate new features by applying the difference between historical values and it can integrate three
different types of data streams. It can be implemented by a single JSON config file of data sources,
feature vectors and model parameters, and it supports connectivity via Apache Kafka, MQTT or REST
API. Initialization of the system is dependent on historical data needed for feature vector construction.
The system can not estimate historical data based on available data, which in the case of a requirement
to include a week old value, will not produce a feature vector until 1 week of viable measurements are
in the system.

In Section 6.3 we compare our framework against the ISDI framework [8]. Other methodologies
that use values and derivatives (i.e., Kalman filter based methods or other machine learning approaches)
can (in the best case) achieve the performance of autoregressive features (denoted with M_AR in the
subsections below).

6.1. Cloud Infrastructure Deployment for Smart Grid

In this section, we present results from two separate use cases related to electricity distribution.
The first case shows the application of our methodology in the smart grid, the second case shows the
modeling results from power stations supporting public trains.

The smart grid use case includes results on predicting measured power from smart meters at five
industrial consumer sites. Mean load at each smart meter was 10kW. Testing data set included two full
years of data with hourly resolution. We have tested the short-term load forecast scenario (as defined
by the energy domain) with a prediction horizon of 10 h. Results are depicted in Figure 6.

The learning curves compare the performance of a model on training and test data over a varying
number of training instances. In Figure 6, the red learning curves represent the training score and the
great learning curves represent the test score in terms of R2. Training score is calculated on a training
data set and test score (or cross-validation score) is calculated on a testing set by using cross-validation.
In the experiments, we use cross-validation with 10 iterations to get smoother mean test and train
score curves, each time with 20% data randomly selected as a testing set (i.e., 80:20 train-test ratio).
The shaded area around each curve represents the standard deviation from mean test scores of each
step in the cross-validation.

Learning curves offer a better overview of the trained models and allow a data analyst to diagnose,
whether the model is trained well or if it has some weakness. The latter can be improved by optimizing
method parameters, including more data or reducing the number of features. Such adjustments can
prevent overfitting or help models achieve optimal accuracy with the given data set. A tight fit between
training and cross-validation scores can indicate that the model suffers from high bias (is under-fitted).
Horizontal curve and a consistent gap between the scores indicate that a model has learned as much
as it can about the data (additional data would not help). We can see that this is the case for ridge
regression and gradient boosting regression. In such cases, one of the standard ways to improve
the performance of a model that is suffering from a high bias, is by adding additional informative
features or by optimising model parameters. Indeed we can observe that the score has increased using
more features (comparison between feature sets from first to the fourth column in Figure 6). A wide



Sensors 2019, 19, 1955 19 of 27

gap between training and cross-validation test scores usually indicates that the model is dealing
with high variance (over-fitting) problem. This is clear for decision trees, which completely reflect
the training data (an almost perfect score is depicted by the red curve), but do not generalize well.
In such cases, we might improve our model by obtaining more training examples, or by decreasing
model complexity (by decreasing number of features, or model parameter optimisation—i.e., by using
shallower trees). Ideally, we want to find a sweet spot that minimizes bias and variance, by finding
the right number of features and the right level of model complexity. Among all the possibilities we
chose random forests model. Its test scores are the highest (for both, training and cross-validation)
and they converged to a constant training score, with more or less all data sets. A tight gap between
the testing and training set also indicates that the model generalizes well with new data. Regarding
the features, we can observe that for most of the algorithms adding auto-regressive features of the
input measurements increased the model performance the most. Static date-time features additionally
increased the performance for most algorithms, while weather forecast features don’t seem to affect
the modeling results. Nevertheless, we have to take into account that these scores are averaged over
the entire testing set. Cases where special features such as bad weather or holidays help are rare.
The improvement of the test scores is modest in this case, but correct prediction in these rare cases is
valuable as it exposes a deviation from the normal behaviour.

Training examples0.0

0.2

0.4

0.6

0.8

1.0

Ri
dg

e 
Re

gr
es

sio
n

M

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR_DT

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR_DT_WF

Training examples

Ri
dg

e 
Re

gr
es

sio
n

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

K 
Ne

ar
es

t N
ei

gh
bo

rs

M

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR_DT

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR_DT_WF

Training examples
K 

Ne
ar

es
t N

ei
gh

bo
rs

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

De
cis

io
n 

tre
es

M

Training examples

De
cis

io
n 

tre
es

M_AR

Training examples

De
cis

io
n 

tre
es

M_AR_DT

Training examples

De
cis

io
n 

tre
es

M_AR_DT_WF

Training examples

De
cis

io
n 

tre
es

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR_DT

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR_DT_WF

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n TOP_20

2500 5000 7500 10000125001500017500
Training examples

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nd

om
 F

or
es

t

M

2500 5000 7500 10000125001500017500
Training examples

Ra
nd

om
 F

or
es

t

M_AR

2500 5000 7500 10000125001500017500
Training examples

Ra
nd

om
 F

or
es

t

M_AR_DT

2500 5000 7500 10000125001500017500
Training examples

Ra
nd

om
 F

or
es

t

M_AR_DT_WF

2500 5000 7500 10000125001500017500
Training examples

Ra
nd

om
 F

or
es

t

TOP_20

Training score
Cross-validation score

Learning curves

Figure 6. Learning curves on the smart grid use case. Columns depict five different feature
vector definitions: M—measurements, M_AR—measurements and autoregressive features, M_AR_DT—
measurements, autoregressive features and data-time features, M_AR_DT_WF—all of the features from
M_AR_DT and weather forecasts, TOP_20—best 20 features. The rows include results from different
learning algorithms: ridge regression, k-nearest neighbours, decision trees, gradient boosting and
random forest, respectively. Each sub-figure in the matrix presents a number of training examples on x
axis and R2 score in the y axis. The green line represents the learning curve on the test data. The red line
represents the learning curve on the train data. The darker band around the curves depicts standard
deviations of the R2 score.



Sensors 2019, 19, 1955 20 of 27

The second use case presents experiments with train substation feeder with a mean load of
approximately 50kW. The data set includes 2 months of measurements with hourly resolution. Again,
the prediction horizon has been set at 10 hours. Results are depicted in Figure 7.

Training examples0.0

0.2

0.4

0.6

0.8

1.0

Ri
dg

e 
Re

gr
es

sio
n

M

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR_DT

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR_DT_WF

Training examples

Ri
dg

e 
Re

gr
es

sio
n

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

K 
Ne

ar
es

t N
ei

gh
bo

rs

M

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR_DT

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR_DT_WF

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

De
cis

io
n 

tre
es

M

Training examples

De
cis

io
n 

tre
es

M_AR

Training examples

De
cis

io
n 

tre
es

M_AR_DT

Training examples

De
cis

io
n 

tre
es

M_AR_DT_WF

Training examples

De
cis

io
n 

tre
es

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR_DT

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR_DT_WF

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n TOP_20

200 400 600 800
Training examples

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nd

om
 F

or
es

t

M

200 400 600 800
Training examples

Ra
nd

om
 F

or
es

t

M_AR

200 400 600 800
Training examples

Ra
nd

om
 F

or
es

t

M_AR_DT

200 400 600 800
Training examples

Ra
nd

om
 F

or
es

t

M_AR_DT_WF

200 400 600 800
Training examples

Ra
nd

om
 F

or
es

t

TOP_20

Training score
Cross-validation score

Learning curves

Figure 7. Learning curves on the train substation feeder use case. The structure of the figure mirrors
the one from Figure 6.

Figure 7 clearly depicts that the ridge regression model was the worst model in this use case,
with high standard deviation and a large gap between training and cross-validation test scores,
which indicates high variance (over-fitting). A high gap between training and cross-validation test
scores can be observed in results for decision trees. We can observe that more training examples
improve the overall performance of the model, however, the gap does not converge. This indicates that
the model can still be improved using more training data. The more or less consistent gap between
training and testing scores can be observed with k-nearest neighbors (KNN) and random forest models,
but the score is still increasing with more data, which again shows the more data could improve
the overall results. But since KNN converged to much lower R2 score than random forest, the latter
would, of course, be the best choice. Regarding the features, we can observe the same pattern as with
previous experimental results in Figure 6. Each additional feature set (data source) slightly improved
the performance of the model, which suggests the benefits of our data fusion methodology for the
modeling. On the other hand, keeping only the 20 most important features worked very well, since
more or less all of the models deal with high variance (poor generalization).

Our framework provides out-of-the-box capabilities for the inclusion of different data sources (see
Algorithm 3) and of the corresponding historical (see Algorithm 2), aggregated and aggregated
historical values (see Algorithms 1 and 2). Inclusion of new features is possible with a single
line in the use-case’s configuration structure. Without extensive additional work, which would
implement particular aggregating functions and book-keeping capabilities, in most other systems
the modeling results would not exceed the ones, achieved with M or M_AR datasets. ISDI framework,
which is the closest to ours in terms of functionality, provides windowing and fusion of multiple data
streams, however, extraction of aggregated values is achieved with a custom user-defined function,
which is batch-based and not optimized to the incremental nature of the IoT data. Additionally, ISDI’s



Sensors 2019, 19, 1955 21 of 27

parformance deteriorates drastically with larger time windows. Our framework already provides
built-in mechanisms for the enrichment and generalized inclusion of historical values (without any
limitations on the size of windows).

6.2. Edge/Fog Infrastructure Deployment on Public Trains

The third use case demonstrates the usage of our methodology for stream data fusion, as well as
for incremental learning, directly on an edge device where the measurements were taken (we have
used Raspberry Pi 3) on board a public train. The main reason for this choice was because of the large
amount of streaming data at a relatively fast pace. The experiments have been conducted on a data
set containing 2 months of data with 1 second time resolution. The task was to predict the power
consumption of a train with a very short term prediction horizon (10 s). The results are depicted in
Figure 8.

Training examples0.0

0.2

0.4

0.6

0.8

1.0

Ri
dg

e 
Re

gr
es

sio
n

M

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR

Training examples

Ri
dg

e 
Re

gr
es

sio
n

M_AR_DT

Training examples

Ri
dg

e 
Re

gr
es

sio
n

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

K 
Ne

ar
es

t N
ei

gh
bo

rs

M

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

M_AR_DT

Training examples

K 
Ne

ar
es

t N
ei

gh
bo

rs

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

De
cis

io
n 

tre
es

M

Training examples

De
cis

io
n 

tre
es

M_AR

Training examples

De
cis

io
n 

tre
es

M_AR_DT

Training examples

De
cis

io
n 

tre
es

TOP_20

Training examples0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n M_AR_DT

Training examplesGr
ad

ie
nt

 B
oo

st
in

g 
Re

gr
es

sio
n TOP_20

50000 100000 150000 200000 250000
Training examples

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nd

om
 F

or
es

t

M

50000 100000 150000 200000 250000
Training examples

Ra
nd

om
 F

or
es

t

M_AR

50000 100000 150000 200000 250000
Training examples

Ra
nd

om
 F

or
es

t

M_AR_DT

50000 100000 150000 200000 250000
Training examples

Ra
nd

om
 F

or
es

t

TOP_20

Training score
Cross-validation score

Learning curves

Figure 8. Learning curves on the train autonomous node use case. The structure of the figure mirrors
the one from Figure 6, with the exception that weather data set (M_AR_DT_WF) is not included.

From Figure 8, we can observe that the positive trend of a test set score is rising in every subfigure.
It is obvious, that the learning data set has been too small in this case. The benefits of our methodology
are, however, apparent and can be observed in a general improvement of the test score with the number
of used features (see differences in columns 1 through 3). With the KNN learning method, one can also
observe drastic improvement with the data set with selected top 20 features. This exposes the need
for a good feature selection methodology, which we have not yet implemented. Decision trees (again)
show obvious overfitting to the training data set, however, the improvement of modeling is apparent.
In this case, gradient boosting (we used the implementation in scikit-learn) shows poor adaptation
to the data and exhibits that it can not be improved with more training data, only with better feature



Sensors 2019, 19, 1955 22 of 27

engineering. The method of choice in the experiments is random forest, which achieves the highest
test scores with any selected data set.

With the application of Algorithms 1 and 2 we improved the modeling results from the ones
depicted in the first (M) to the ones depicted in the second (M_AR) column of Figure 8. With Algorithm 3
we included additional sources and achieved even better modeling results (see column M_AR_DT in
Figure 8). With the simple configuration capabilities (https://github.com/klemenkenda/iot-fusion/
blob/master/conf/train.js) of the framework, custom feature sets like TOP_20 were implemented and
deployed to the production in a matter of minutes.

6.3. Performance Tests

Applicability of the stream fusion framework has been tested from the performance perspective.
The results are depicted in Figure 9. The first performance test has been conducted on a real-world
smart grid use case data set with 106 messages. The setup included streaming fusion of three different
types of sources (sensor, static and weather forecasts) and has generated a single feature vector (with
96 features based on current and historical aggregated values on 1-h to 1-month sliding windows)
for 24-h prediction horizon. Response times of the fusion component (without modeling) have been
measured and the results are depicted in the histogram in Figure 9a. We can observe three major peaks
in the histogram. Each of the peaks represents a data source. The peak with the lowest response time
corresponds to static data (the simplest data source), the middle one corresponds to weather data
(long message with more complex integration subtasks) and the last peak corresponds to sensor data,
which in some cases trigger the most computationally demanding fusion process. Median response
time of the fusion component is approximately 0.21 ms, which means that the system is able to process
approximately 5000 messages per second with a single thread process on an older high-end server
(Intel Xeon CPU E5-2667 v2—3.3 GHz, 128 GB RAM, Windows Server 2012 R2). Each process could
support the same performance. The measured throughput of Raspberry Pi 3 was approximately eight
times slower (700–800 messages per second).

0.0 0.2 0.4 0.6 0.8 1.0
Time (ms)

0

2000

4000

6000

8000

10000

(a)

2000 4000 6000 8000 10000 12000 14000
Load (messages)

2000

4000

6000

8000

10000

12000

14000

Ti
m

e 
(m

s)

Simulator/Kafka only
Fusion - 1 sensor
Fusion - 2 sensors
Fusion - 4 sensors

(b)
Figure 9. Performance results of data fusion in the smart grid scenario. (a) The histogram represents
the time used for processing a single message in the data fusion system. A message can be sensor,
static or weather forecast data. (b) Load graph represents measured processing time of the data fusion
system integrated into the Apache Kafka pipeline at different loads and numbers of sensors.

A typical frequency in the smart grid scenario is 15 min. This means that data fusion itself could
support a smart grid with up to 18× 106 messages per hour, which corresponds to 3× 106 smart grid
nodes per logical processor. ISDI [8] reports (in the best possible scenario) on the throughput of approx.
27× 106 messages per hour per logical processor. The reported throughput is 50% faster than of our
framework but it is computed for a single fixed time window (and the feature extraction function is
unknown in their evaluation). Also, ISDI encounters major throughput breakdown with larger time
windows (>10 days), which is not the case for our methodology. On the other hand, our methodology

https://github.com/klemenkenda/iot-fusion/blob/master/conf/train.js
https://github.com/klemenkenda/iot-fusion/blob/master/conf/train.js


Sensors 2019, 19, 1955 23 of 27

computes multiple window sizes at the same time (from 1 h up to 1 month) as well as uses multiple
aggregate functions. Window sizes can easily be expanded to 1 year with a very little performance cost.

The obvious bottleneck in such a setting is, however, not the fusion algorithm but the ML
prediction algorithm. Using the usual method of choice in energy/environment related scenarios
(RandomForest with 10 estimators) on the high-end server resulted in one prediction generated per
approx. 0.5 s, which roughly corresponds to 7000 smart grid nodes. According to presented integration
architectures, the capabilities can be scaled horizontally (over server cores and over other servers) and
the final throughput is limited by the state-of-the-art message distribution frameworks such as Apache
Kafka, which is apparent in Figure 9b.

7. Conclusions and Future Work

The paper describes a novel generic framework for building feature vectors for machine learning
from heterogeneous streaming data sources on-line. The main benefit of this methodology is its
universal applicability in real-world use cases. It also enables easy configuration of streaming data
fusion and modeling pipelines as well as horizontal scalability due to the design patterns used in
the architecture.

We have developed and used this methodology in a plethora of use cases, related mostly to
efficient energy use, where regressive predictive models have been implemented at the end of the
analytical pipeline. In the paper, we have demonstrated the usability of the methodology with three
applications in use cases related to smart grids and transport, which are implemented in the cloud
and in the edge computing device. The experimental results show that the proposed methodology
improves modeling capabilities of the real-world IoT systems.

Future work in this domain should be dedicated firstly to a definition of a thorough evaluation
methodology for streaming data fusion frameworks. In this paper, we have relied on an indirect
approach with modeling. However, as discussed at the beginning of Section 6, a more thorough
approach should be developed, which would take different aspects of data fusion into account.

We see several lines of possible extensions of the proposed framework as follows. Further
simplification of data streams might contribute to the easier implementation and faster computation of
results (i.e., static data, which is currently included as a stream, might be encoded with a function).
Feature selection, dimensionality reduction, instance selection, instance reduction and concept drift are
important research topics in the field and should be addressed in the framework. Some of the presented
algorithms offer further optimization in terms of performance and expressiveness of the language
for describing feature vectors. Stream discretization techniques (implemented via stream aggregates)
could be further expanded to match the richness of their batched counterparts. Deployment into
a large scale real-world use case states additional challenges related to the management of a large
number of data fusion components and models, communications, etc. An efficient deployment system
is crucial to ensure the practical scalability of the methodology. In many heterogeneous environments
access control is of the utmost importance. Integration of the framework with state-of-the-art methods
could be beneficial in various use cases (i.e., healthcare). Finally, the system’s usage depends on the
implemented incremental learning algorithms. As mentioned in the introduction, the implementations
of the state-of-the-art non-linear incremental learning algorithms are scarce.

Taking into account the shortcomings mentioned above, the framework should find its place in
the real-world applications within the IoT and bridge the current gap between academic achievements
and practice.

Author Contributions: Conceptualization, K.K. and D.M.; methodology, K.K., E.N.; software, B.K. and K.K.;
validation, B.K., D.M. and K.K.; formal analysis, K.K., E.N and B.K.; data curation, K.K. and B.K.; writing—original
draft preparation, K.K.; writing—review and editing, K.K., B.K., E.N. and D.M.; visualization, B.K. and K.K.;
supervision, D.M.; project administration, K.K.; funding acquisition, D.M. and K.K.



Sensors 2019, 19, 1955 24 of 27

Funding: This research was funded by European Union’s Horizon 2020 programme projects Water4Cities
(Research and Innovation Staff Exchange) grant number 734409 and PerceptiveSentinel (Research and Innovation)
grant number 776115.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
DB Database
EMA Exponential Moving Average
GUI Graphical User Interface
IoT Internet of Things
ISDI IoT Streaming Data Integration
JSON JavaScript Object Notation
KNN K-Nearest Neighbors (algorithm)
MA Moving Average
MQTT Message Queuing Telemetry Transport
REST Representational State Transfer
RF Random Forest
SPE Stream Processing Engine
VFDT Very Fast Decision Trees (also Hoeffding trees)
VHT Vertical Hoeffding Trees

References

1. Rodríguez-Mazahua, L.; Rodríguez-Enríquez, C.A.; Sánchez-Cervantes, J.L.; Cervantes, J.;
García-Alcaraz, J.L.; Alor-Hernández, G. A general perspective of Big Data: Applications, tools,
challenges and trends. J. Supercomput. 2016, 72, 3073–3113. [CrossRef]

2. Ahmed, E.; Yaqoob, I.; Hashem, I.A.T.; Khan, I.; Ahmed, A.I.A.; Imran, M.; Vasilakos, A.V. The role of big
data analytics in Internet of Things. Comput. Netw. 2017, 129, 459–471. [CrossRef]

3. Aggarwal, C.C. Data Streams: Models and Algorithms (Advances in Database Systems); Springer: Secaucus,
NJ, USA, 2006.

4. Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A Survey on Concept Drift Adaptation.
ACM Comput. Surv. 2014, 46, 44:1–44:37. [CrossRef]

5. Gepperth, A.; Hammer, B. Incremental learning algorithms and applications. In Proceedings of the European
Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 27–29 April 2016.

6. Bifet, A.; Holmes, G.; Kirkby, R.; Pfahringer, B. MOA: Massive Online Analysis. J. Mach. Learn. Res. 2010,
11, 1601–1604.

7. Manyika, J.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D. Unlocking the Potential of the
Internet of Things; McKinsey Global Institute: New York, NY, USA, 2015.

8. Tu, D.Q.; Kayes, A.; Rahayu, W.; Nguyen, K. ISDI: A New Window-Based Framework for Integrating
IoT Streaming Data from Multiple Sources. In Proceedings of the International Conference on Advanced
Information Networking and Applications, Matsue, Japan, 27–29 March 2019; Springer: Berlin, Germany,
2019; pp. 498–511.

9. Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. Models and Issues in Data Stream Systems.
In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, Madison, WI, USA, 3–5 June 2002; ACM: New York, NY, USA, 2002; pp. 1–16. [CrossRef]

10. Kandel, S.; Heer, J.; Plaisant, C.; Kennedy, J.; van Ham, F.; Riche, N.H.; Weaver, C.; Lee, B.; Brodbeck, D.;
Buono, P. Research directions in data wrangling: Visualizations and transformations for usable and credible
data. Inf. Vis. 2011, 10, 271–288. [CrossRef]

http://dx.doi.org/10.1007/s11227-015-1501-1
http://dx.doi.org/10.1016/j.comnet.2017.06.013
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/543613.543615
http://dx.doi.org/10.1177/1473871611415994


Sensors 2019, 19, 1955 25 of 27

11. Fan, W.; Bifet, A. Mining Big Data: Current Status, and Forecast to the Future. SIGKDD Explor. Newsl. 2013,
14, 1–5. [CrossRef]

12. Krempl, G.; Žliobaite, I.; Brzeziński, D.; Hüllermeier, E.; Last, M.; Lemaire, V.; Noack, T.; Shaker, A.; Sievi, S.;
Spiliopoulou, M.; et al. Open challenges for data stream mining research. ACM SIGKDD Explor. Newsl. 2014,
16, 1–10. [CrossRef]

13. Yang, Q.; Wu, X. 10 Challenging Problems in Data Mining Research. Int. J. Inf. Technol. Decis. Mak. 2006,
5, 597–604. [CrossRef]

14. Ramírez-Gallego, S.; Krawczyk, B.; García, S.; Woźniak, M.; Herrera, F. A survey on data preprocessing for
data stream mining: Current status and future directions. Neurocomputing 2017, 239, 39–57. [CrossRef]

15. Zhang, L.; Xiao, N.; Yang, W.; Li, J. Advanced Heterogeneous Feature Fusion Machine Learning Models and
Algorithms for Improving Indoor Localization. Sensors 2019, 19, 125. [CrossRef]

16. Bouguelia, M.R.; Karlsson, A.; Pashami, S.; Nowaczyk, S.; Holst, A. Mode tracking using multiple data
streams. Inf. Fus. 2018, 43, 33–46. [CrossRef]

17. Kong, J.L.; Wang, Z.N.; Jin, x.b.; Wang, X.Y.; Su, T.L.; Wang, J.L. Semi-Supervised Segmentation Framework
Based on Spot-Divergence Supervoxelization of Multi-Sensor Fusion Data for Autonomous Forest Machine
Applications. Sensors 2018, 18, 61. [CrossRef]

18. Wu, J.; Feng, Y.; Sun, P. Sensor Fusion for Recognition of Activities of Daily Living. Sensors 2018, 18, 4029.
[CrossRef]

19. Ma, M.; Song, Q.; Gu, Y.; Li, Y.; Zhou, Z. An Adaptive Zero Velocity Detection Algorithm Based on
Multi-Sensor Fusion for a Pedestrian Navigation System. Sensors 2018, 18, 3261. [CrossRef]

20. Zhou, Y.; Xue, W. A Multisensor Fusion Method for Tool Condition Monitoring in Milling. Sensors 2018, 18,
3866. [CrossRef]

21. Shi, P.; Li, G.; Yuan, Y.; Kuang, L. Data Fusion Using Improved Support Degree Function in Aquaculture
Wireless Sensor Networks. Sensors 2018, 18, 3851. [CrossRef]

22. Zhou, F.; Hu, P.; Yang, S.; Wen, C. A Multimodal Feature Fusion-Based Deep Learning Method for Online
Fault Diagnosis of Rotating Machinery. Sensors 2018, 18, 3521. [CrossRef]

23. Lu, K.; Yang, L.; Seoane, F.; Abtahi, F.; Forsman, M.; Lindecrantz, K. Fusion of Heart Rate, Respiration and
Motion Measurements from a Wearable Sensor System to Enhance Energy Expenditure Estimation. Sensors
2018, 18, 3092. doi:10.3390/s18093092. [CrossRef]

24. Hu, J.; Huang, T.; Zhou, J.; Zeng, J. Electronic Systems Diagnosis Fault in Gasoline Engines Based on
Multi-Information Fusion. Sensors 2018, 18, 2917. [CrossRef]

25. Wu, B.; Huang, T.; Jin, Y.; Pan, J.; Song, K. Fusion of High-Dynamic and Low-Drift Sensors Using Kalman
Filters. Sensors 2019, 19, 186. [CrossRef]

26. Akbar, A.; Kousiouris, G.; Pervaiz, H.; Sancho, J.; Ta-Shma, P.; Carrez, F.; Moessner, K. Real-Time Probabilistic
Data Fusion for Large-Scale IoT Applications. IEEE Access 2018, 6, 10015–10027. [CrossRef]

27. Kayes, A.; Rahayu, W.; Dillon, T.; Chang, E.; Han, J. Context-aware access control with imprecise context
characterization for cloud-based data resources. Future Gener. Comput. Syst. 2019, 93, 237–255. [CrossRef]

28. Colombo, P.; Ferrari, E. Fine-Grained Access Control Within NoSQL Document-Oriented Datastores.
Data Sci. Eng. 2016, 1, 127–138. [CrossRef]

29. Kayes, A.S.M.; Rahayu, W.; Dillon, T. Critical situation management utilizing IoT-based data resources
through dynamic contextual role modeling and activation. Computing 2018. [CrossRef]

30. Colombo, P.; Ferrari, E. Access Control Enforcement Within MQTT-based Internet of Things Ecosystems.
In Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies, Indianapolis,
IN, USA, 13–15 June 2018; ACM: New York, NY, USA, 2018; pp. 223–234. [CrossRef]

31. Zhang, K.; Li, X.R.; Zhu, Y. Optimal update with out-of-sequence measurements. IEEE Trans. Signal Process.
2005, 53, 1992–2004. [CrossRef]

32. Khaleghi, B.; Khamis, A.; Karray, F. Multisensor Data Fusion: A Data-Centric Review of the State of the Art
and Overview of Emerging Trends. In Multisensor Data Fusion: From Algorithms and Architectural Design to
Applications; Fourati, H., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 15–33.

33. Lahat, D.; Adali, T.; Jutten, C. Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects.
Proc. IEEE 2015, 103, 1449–1477. [CrossRef]

34. García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big data preprocessing: Methods and
prospects. Big Data Anal. 2016, 1, 9. [CrossRef]

http://dx.doi.org/10.1145/2481244.2481246
http://dx.doi.org/10.1145/2674026.2674028
http://dx.doi.org/10.1142/S0219622006002258
http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.3390/s19010125
http://dx.doi.org/10.1016/j.inffus.2017.11.011
http://dx.doi.org/10.3390/s18093061
http://dx.doi.org/10.3390/s18114029
http://dx.doi.org/10.3390/s18103261
http://dx.doi.org/10.3390/s18113866
http://dx.doi.org/10.3390/s18113851
http://dx.doi.org/10.3390/s18103521
http://dx.doi.org/10.3390/s18093092
http://dx.doi.org/10.3390/s18092917
http://dx.doi.org/10.3390/s19010186
http://dx.doi.org/10.1109/ACCESS.2018.2804623
http://dx.doi.org/10.1016/j.future.2018.10.036
http://dx.doi.org/10.1007/s41019-016-0015-z
http://dx.doi.org/10.1007/s00607-018-0654-1
http://dx.doi.org/10.1145/3205977.3205986
http://dx.doi.org/10.1109/TSP.2005.847830
http://dx.doi.org/10.1109/JPROC.2015.2460697
http://dx.doi.org/10.1186/s41044-016-0014-0


Sensors 2019, 19, 1955 26 of 27

35. Zliobaite, I.; Gabrys, B. Adaptive Preprocessing for Streaming Data. IEEE Trans. Knowl. Data Eng. 2014,
26, 309–321. [CrossRef]

36. Stonebraker, M.; Çetintemel, U.; Zdonik, S. The 8 Requirements of Real-time Stream Processing.
ACM Sigmod Rec. 2005, 34, 42–47. [CrossRef]

37. Gaber, M.M.; Zaslavsky, A.; Krishnaswamy, S. Mining Data Streams: A Review. ACM Sigmod Rec. 2005,
34, 18–26. [CrossRef]

38. Domingos, P.; Hulten, G. Mining high-speed data streams. In Proceedings of the KDD 2000—-Sixth ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, Boston, MA, USA, 20–23
August 2000; Volume 2, p. 4.

39. Manapragada, C.; Webb, G.I.; Salehi, M. Extremely Fast Decision Tree. In Proceedings of the KDD
2018—24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK,
19–23 August 2018; ACM: New York, NY, USA, 2018; pp. 1953–1962. [CrossRef]

40. Kourtellis, N.; Morales, G.D.F.; Bifet, A.; Murdopo, A. VHT: Vertical Hoeffding Tree. In Proceedings of
the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016;
pp. 915–922.

41. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks:
A review. Neural Netw. 2019, 113, 54–71. [CrossRef]

42. Gama, J.; Sebastião, R.; Rodrigues, P.P. On evaluating stream learning algorithms. Mach. Learn. 2013,
90, 317–346. [CrossRef]

43. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.;
Franklin, M.J.; et al. Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65.
[CrossRef]

44. Kleppmann, M.A.; Kreps, J. Kafka, Samza and the Unix philosophy of distributed data. IEEE Data Eng. Bull.
2015, 38, 4–14.

45. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache flink: Stream and batch
processing in a single engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2015, 36.

46. Pathak, H.; Rathi, M.; Parekh, A. Introduction to Real-Time Processing in Apache Apex. Int. J. Res. Advent
Technol. 2016, 19.

47. Bifet, A.; Zhang, J.; Fan, W.; He, C.; Zhang, J.; Qian, J.; Holmes, G.; Pfahringer, B. Extremely Fast Decision
Tree Mining for Evolving Data Streams. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; ACM: New York,
NY, USA, 2017; pp. 1733–1742. [CrossRef]

48. Montiel, J.; Read, J.; Bifet, A.; Abdessalem, T. Scikit-Multiflow: A Multi-output Streaming Framework.
J. Mach. Learn. Res. 2018, 19, 1–5.

49. Fortuna, B.; Rupnik, J.; Brank, J.; Fortuna, C.; Jovanoski, V.; Karlovcec, M.; Kazic, B.; Kenda, K.; Leban, G.;
Mladenić, D.; et al. QMiner: Data Analytics Platform for Processing Streams of Structured and Unstructured
Data. In Proceedings of the Software Engineering for Machine Learning Workshop, Neural Information
Processing Systems, Montreal, QC, Canada, 8–12 December 2014.

50. Yi, W.; Teng, F.; Xu, J. Novel Stream Data Mining Framework Under the Background of Big Data. Cybern. Inf.
Technol. 2016, 16, 69–77. [CrossRef]

51. Marz, N.; Warren, J. Big Data: Principles and Best Practices Of Scalable Real-Time Data Systems; Manning
Publications Co.: New York, NY, USA, 2015.

52. Ta-Shma, P.; Akbar, A.; Gerson-Golan, G.; Hadash, G.; Carrez, F.; Moessner, K. An Ingestion and Analytics
Architecture for IoT Applied to Smart City Use Cases. IEEE Internet Things J. 2018, 5, 765–774. [CrossRef]

53. Kolomvatsos, K.; Anagnostopoulos, C.; Hadjiefthymiades, S. Data Fusion and Type-2 Fuzzy Inference in
Contextual Data Stream Monitoring. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 47, 1839–1853. [CrossRef]

54. Wu, X.; Zhu, X.; Wu, G.Q.; Ding, W. Data Mining with Big Data. IEEE Trans. Knowl. Data Eng. 2014,
26, 97–107. [CrossRef]

55. Kenda, K.; Škrjanc, M.; Borštnik, A. Modelling of the complex data space: Architecture and use cases from
NRG4CAST project. In Proceedings of the 2015 6th International Conference on Information, Intelligence,
Systems and Applications (IISA), Corfu, Greece, 6–8 July 2015; pp. 1–4.

http://dx.doi.org/10.1109/TKDE.2012.147
http://dx.doi.org/10.1145/1107499.1107504
http://dx.doi.org/10.1145/1083784.1083789
http://dx.doi.org/10.1145/3219819.3220005
http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://dx.doi.org/10.1007/s10994-012-5320-9
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1145/3097983.3098139
http://dx.doi.org/10.1515/cait-2016-0053
http://dx.doi.org/10.1109/JIOT.2017.2722378
http://dx.doi.org/10.1109/TSMC.2016.2560533
http://dx.doi.org/10.1109/TKDE.2013.109


Sensors 2019, 19, 1955 27 of 27

56. Tekin, C.; Canzian, L.; van der Schaar, M. Context-adaptive big data stream mining. In Proceedings
of the 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton),
Monticello, IL, USA, 30 September–1 October 2014; pp. 483–490. [CrossRef]

57. Christ, M.; Kempa-Liehr, A.W.; Feindt, M. Distributed and parallel time series feature extraction for industrial
big data applications. arXiv 2016. arXiv:1610.07717.

58. Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time Series FeatuRe Extraction on basis of Scalable
Hypothesis tests (tsfresh—A Python package). Neurocomputing 2018, 307, 72–77. [CrossRef]

59. Gusev, M. A dew computing solution for IoT streaming devices. In Proceedings of the 2017 40th International
Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 22–26 May 2017; pp. 387–392.

60. van Laere, J. Challenges for IF performance evaluation in practice. In Proceedings of the 2009 12th
International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009; pp. 866–873.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ALLERTON.2014.7028494
http://dx.doi.org/10.1016/j.neucom.2018.03.067
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Problem Definition
	Types of Data Sources
	Data Streams
	Static Data Stream
	Data Stream Aggregate
	Data Stream Resampler
	Data Stream Merger
	Forecast Data Stream
	Feature Vector

	Architecture and Methods
	Architecture
	Complex Forecast Transformation into a Coherent Data Stream
	Data Flow
	Enrichment of a Data Stream
	Data Fusion Algorithms

	Integration
	Integration: Cloud Infrastructure
	Integration: Edge/Fog Infrastructure

	Experimental Results
	Cloud Infrastructure Deployment for Smart Grid
	Edge/Fog Infrastructure Deployment on Public Trains
	Performance Tests

	Conclusions and Future Work
	References

