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Abstract: Lower leg muscle activity contributes to body control; thus, monitoring lower leg
muscle activity is beneficial to understand the body condition and prevent accidents such as falls.
Amplitude features such as the mean absolute values of electromyography (EMG) are used widely
for monitoring muscle activity. Garment-type EMG measurement systems use electrodes and they
enable us to monitor muscle activity in daily life without any specific knowledge and the installation
for electrode placement. However, garment-type measurement systems require a high compression
area around the electrodes to prevent electrode displacement. This makes it difficult for users to wear
such measurement systems. A less restraining wearable system, wherein the electrodes are placed
around the ankle, is realized for target muscles widely distributed around the shank. The signals
obtained from around the ankle are propagated biosignals from several muscles, and are referred to
as distal EMG signals. Our objective is to develop a sock-type wearable sensor for estimating lower leg
muscle activity using distal EMG signals. We propose a signal processing method based on multiple
bandpass filters from the perspectives of noise separation and feature augmentation. We conducted
an experiment for designing the hardware configuration, and three other experiments for evaluating
the estimation accuracy and dependability of muscle activity analysis. Compared to the baseline
based on a 20-500 Hz bandpass filter, the results indicated that the proposed system estimates muscle
activity with higher accuracy. Experimental results suggest that lower leg muscle activity can be
estimated using distal EMG signals.

Keywords: wearable; distal EMG signal; muscle activity estimation

1. Introduction

Lower leg muscle activity is important for controlling the body. Relationships between lower leg
muscle activity and the risk of falls among the elderly have already been reported [1,2]; delayed plantar
flexion increases the risk of such falls. In addition, there is a certain amount of people in the young
group (20–45 years) that experience falling [3]. The ability to recover balance after a fall is related
to lower leg muscle activity [4]; further the time and volume of muscle activities are important for
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recovering balance. The relationship between the lower leg muscle activity and certain anomalies such
as the freezing of gait in Parkinson’s disease, has also been studied [5]. Training the lower leg muscles
contributes to improvements in terms of gait, such as velocity, cadence, step time and so on [6]. Thus,
monitoring lower leg muscle activity when walking is beneficial for understanding the body conditions
and preventing accidents. Currently, muscle activity analysis is conducted in specific facilities, such as
hospitals and universities owing to the requirement of specific knowledge of kinematics and anatomy.

Electromyography (EMG) is used widely for monitoring muscle activity. Biopotential signals
that activating muscle fibers propagate from the neuromuscular junction to the tendon along the
muscle fibers. An electrical field is created by the stimulation from the neuron activating the muscle
fiber’s chemical receptors [7]. By placing electrodes on the surface of the skin, biopotential signals
are measured as EMG signals. An EMG signal-based system has several applications [8–10].
The simplification of EMG signal measurement is considered important for further popularization;
however, it is necessary to select the muscle site to be measured, and to determine the position
where the electrode is to be placed, based on kinematic and anatomical knowledge. It is difficult for
users who have no kinematic and anatomical knowledge to place electrodes on specific muscles.
With garment-type measurement systems, electrodes placements are included in the action of
wearing socks. Therefore, garment-type measurement systems can be applied for daily use.
There have been studies on conductive fabric-type EMG measurement materials for garment-type
EMG measurement systems [11,12]. Myers et al. presented a silver nanowire (AgNW)-based dry
electrode for electrophysiological wearable monitoring [12]. They compared EMG signals measured
using AgNW dry electrodes and conventional Ag/AgCl wet electrodes, and they confirmed that there
were a few differences. Nippon Telegraph and Telephone Corporation and Toray developed “hitoe R©”,
which is made of electro-conductive polymer nanofibers [11]. Their technology can be applied to users
who have metal allergies because it is not made of metal. Some other types of conductive fabric have
also become commercially available [13].

To increase the opportunities for monitoring lower leg muscle activity, we focus on garment-type
measurement systems using conductive fabric. Users do not need to place electrodes themselves,
because conductive fabric electrodes are already implemented in garment-type measurement systems.
However, garment-type measurement systems need high compression around the electrodes for
preventing electrode displacement. If electrodes are distributed on a large area in a system, the area
that requires high compression also expands, which makes it difficult for users to wear the electrodes.
Considering the applications for daily use among a wide variety of users, including the elderly, it is
important that the measurement system be easy to wear.

Accurate and repeatable EMG signals can be used for the analysis of signal amplitude, spectral
variables and muscle fiber conduction velocity. Rainoldi et al. explored optimal electrode positions for
obtaining accurate and repeatable EMG signals [14]. It is common to measure EMG signals by placing
a sensor electrode at the center of each target muscle. Such signals propagate to and from neighboring
muscles [15]. Therefore, it should be possible to measure EMG signals by placing electrodes at the
distal positions close to the tendons of target muscles. We define biosignals not measured on the muscle
bellies as distal EMG signal. Using distal EMG signals, electrode positions can be designated for each
situation based on propagation characteristics. Some studies used distal EMG signals to estimate facial
expressions [16,17]. They revealed that distal EMG signals can be used for discriminating between
smiles, frowns, and neutral facial expressions. Independent component analysis and artificial neural
networks were used for separating signals and recognizing facial expressions, respectively. However,
studies on the distal EMG-based analysis of other muscles, such as the lower leg, are lacking.

Our objective is to develop a sock-type wearable sensor consisting of electrodes that are
implemented around the ankle for estimating lower leg muscle activity. Figure 1 shows the concept
for the proposed system. The proposed system requires high compression in the red area because
electrodes are placed around the ankle, while high compression is required in the blue area if electrodes
are positioned on each muscle belly. From a wearing pressure point of view, the proposed system is
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minimally restraining and easy to wear. The signals obtained from around the ankle are the distal
EMG signals; which are the propagated biopotential signals of target muscles. The time and volume
of muscle activity is a major target of muscle activity analysis [18,19]. We construct the EMG signal
estimation system based on the distal EMG signals for the temporal-spatial muscle activity analysis.

Conductive fabric

electrodes

Target EMG signals

Distal EMG signals Socks

Figure 1. Design of socks that measure distal EMG signals propagated target muscles.

Amplitude and spectral variables are the main features obtained from EMG signals [20].
Amplitude features contain information on muscle force ratio, muscle activation (ON/OFF) state,
and the timing of muscle contraction and relaxation. There are several gait analysis applications
based on the amplitude features of EMG signals [2,21]. It was reported that the mean absolute
values represent amplitude features more than other amplitude feature calculations [22]. Therefore,
mean absolute values are adopted as a muscle activity in this study.

The main contributions of this paper are:

• To verify that distal EMG signals can be used for estimating lower leg muscle activity
• To design low restrained electrodes positions for ease of wearing
• To implement the signal processing of mean absolute values estimation based on the distal

EMG signals

We outline our system’s configuration in Section 2. Three analyses from the data of one experiment
for evaluating the accuracy for estimating EMG signals based on distal EMG signals are described in
Section 3. We explain the experimental results in Section 4, and describe the discussion for results in
Section 5. The conclusion is described in Section 6.

2. System Configuration

Our proposed system estimates amplitude features by using distal EMG signals, while the
conventional system measures them directly. There are six target muscles that are focused on in many
studies to monitor lower leg muscle activity: tibialis anterior, gastrocnemius lateral, gastrocnemius medial,
soleus lateral, soleus medial, and peroneus muscle [1,2,4,23]. This section describes the construction of the
sock for measuring distal EMG signals and the estimation algorithm.

2.1. Construction of Distal EMG Signal Measurement Sock

Socks are an appropriate medium to implement our EMG measurement system for daily
measurement as people usually wear socks every day for many types of activities, and therefore,
resistance to wearing socks is low. Moreover, socks, especially around the ankle, are tight and do not
slide down. This makes them effective for measuring signals because they allow electrodes to remain
in contact with the skin without significant displacement.
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2.1.1. Electrodes Position Design

To develop our system for estimating lower leg muscle activity based on distal EMG signals,
the position and number of electrodes are important. Previously, we explored the placement of
electrodes using the Trigno EMG system (Delsys, Inc., Natick, MA, USA) [24]. We conducted
an experiment using four male participants before developing the socks. As shown in Figure 2,
sensors were placed on the target muscles of the lower right leg. The relationships between the sensor
labels and the muscles are summarized in Table 1. Position A1 was located on the tendon of the
tibialis anterior, A3 and A4 were arranged so that the Achilles tendon would be between them, A2 was
located between A1 and A3, and A5 was located between A4 and A1. Each subject conducted plantar
flexion and dorsiflexion for 30 s, and biopotential signals were measured. This experiment described
in this section was conducted with approval from the ethics committee of the University of Tsukuba
(2017R157) and NTT Service Evolution Laboratories (ERP-Ethics-17-013).

Left viewpointFront viewpoint

Proposed Method

Conventional Method

Right viewpoint

A3 A5

L4
L5 L5

L6

L6

A1

A1
A1

A2

A2 A4

A5

L1 L1

L2

L1

L3

Figure 2. Sensors positions for the right lower leg. A1-A5 are the proposed positions. EMG signals
from targeted muscles are obtained from L1-L6.

Table 1. Relationships between sensor labels and muscles.

Label Muscle

L1 Tibialis anterior
L2 Gastrocnemius lateral muscle
L3 Gastrocnemius medial muscle
L4 Soleus lateral muscle
L5 Soleus medial muscle
L6 Peroneus muscle

A notch filter was applied to all signals for reducing the power-supply noise. It has been
reported that the bandwidth of usable energy for surface EMG signals is between 20–500 Hz [25].
Further, this bandwidth is used in clinical research [26]. The sampling rate is in accordance with the
Nyquist theorem, which states that the sampling rate must be greater than twice the highest frequency
component of the analog signal. The sampling rate of the sensors was set to 2 kHz which is the
default setting of the Trigno EMG system. A frequency of 2 kHz is sufficient from the Nyquist theorem
point of view. A high-pass filter with a cut-off frequency of 20 Hz is recommended for general noise
reduction [27]. All signals were filtered with a bandpass filter with passing frequencies from 20 to
500 Hz. The mean absolute values were calculated with the following equations.

SLi (k) =
1
τ

τ−1

∑
j=0

(|li(k− j)|) (1)
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SAi (k) =
1
τ

τ−1

∑
j=0

(|ai(k− j)|) (2)

L(k) = [SL1(k), SL2(k), SL3(k), SL4(k), SL5(k), SL6(k)]
T (3)

A(k) = [SA1(k), SA2(k), SA3(k), SA4(k), SA5(k)]
T (4)

where i is the number of the position label in Figure 2, li and ai are the vectors of samples measured
from Li and Ai, li(k) and ai(k) are the k-th samples of li and ai; SLi (k) is the k-th mean absolute value
of li, SAi (k) is the k-th mean absolute value of ai. L(k) and A(k) are the vectors of mean absolute
values of SL1(k), SL2(k), SL3(k), SL4(k), SL5(k), and SL6(k) and SA1(k), SA2(k), SA3(k), SA4(k),
and SA5(k). τ is the width of the mean absolute value. In this paper, the time width of the mean
absolute value calculation was set to 0.1 s. Then, τ was set to 200 based on the sampling rate and
the time width of the mean absolute value. We calculated a linear regression model, which is a basic
machine learning approach that satisfies the following equation [28].

L(k) = MA(k) + b (5)

where M, which is composed of 6 × 5 dimensions, is the array of the weights of each explanatory
variable for the objective variable; b is a bias; and L and A contain all samples of L(k) and A(k),
respectively. Regression signals L̂ are calculated using M, A, and b. We used the correlation coefficient
between the measured mean absolute values L and the estimated mean absolute values L̂ as a metric
for comparing estimation accuracy.

Each L and A of each subject were split into two: training data and test data. Splitting data for
obtaining the training and test data is a general machine learning approach [29]. Each L and A of each
subject comprises 60,000 samples (2 kHz× 30 s). The first half of every data point consists of 1–30,000-th
samples, and it is used as the training data. The second half consists 30,001–60,000-th samples, and it is
used as test data. In this experiment, four training data and four test data were extracted from four
subjects. Training data and test data were concatenated individually. Concatenated training data were
used for model training and the concatenated test was used for regression. Estimated data that contain
6 channels signals of target muscle was calculated. In consideration of training data dependency,
same estimation was performed by replacing the training data and the test data. L̂ data were obtained
by concatenating two estimated data. Correlation coefficients were calculated using L and L̂.

In order to determine the number and position of sensors, all combinations of the number and
positions of sensors were tested. At each number of sensors, the sensor combination was calculated.
In the case of one sensor, the number of sensor combinations was five: [A1], [A2], [A3], [A4], and [A5].
In the case of two sensors, the number of sensor combinations was 10: [A1-A2], [A1-A3], [A1-A4],
[A1-A5], [A2-A3], [A2-A4], [A2-A5], [A3-A4], [A3-A5], and [A4-A5]. The number of sensors was up
to five. Six correlation coefficients for six target muscles were calculated from one combination.
We determined the combination whose correlation coefficients are the highest as the appropriate
combination. All p-values were less than 0.05. Figure 3 shows the correlation coefficients of five
combinations whose median value of correlation coefficients was the highest in each number of
sensors. The correlation coefficients of [A1-A2-A3-A4-A5] combination was the highest from those
of other combinations in all muscles. Our results indicated that five channels around the ankle are
appropriate for measuring distal EMG signals and estimating the activity of the lower leg muscles.

2.1.2. Materials

To implement our measurement system into socks, electrodes should be made of fabric. In this
study, we used a conductive knit fabric made of silver-plated nylon available from SparkFun [13].
Figure 4 shows an example of a conductive fabric electrode. Electric signals are measured through
snaps located at the center of the electrodes. The conductive fabric and snaps are used to obtain
biopotential signals. The snaps are made of brass.
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Figure 3. Correlation coefficients between the measured signals and the estimated signals.
Five combinations whose median value of correlation coefficients was the highest in each number of
sensors. The correlation coefficients of [A1-A2-A3-A4-A5] combination was the highest from those of
other combinations in all muscles.

Figure 4. Conductive fabric electrodes where electrode surface contacts skin (right) and electrode
surface contacts socks (left). Electric signals are measured through snaps located at center of electrodes.

The left side in Figure 5 shows the configuration of a sock-type wearable sensor for estimating
lower leg muscle activity. The electrode surface on the inner surface of the sock contacts the skin.
Ten conductive fabric electrodes are placed around the ankle to measure five channels. A conductive
fabric electrode is placed on the medial malleolus for a ground signal. There are 11 snaps, and signals
are obtained through these snaps from the outer surface. The right side shows an image of a person
wearing the socks. Each snap is connected to the data logger via wires. The data logger accumulates
all signals, the signal data are extracted from the logger after measurements, and they are analyzed.
Each side of the sock estimates the activity of each side of lower leg muscles.

Inside

Electrodes

Outside Data Logger

Figure 5. (Left): configuration of sock-type wearable sensor for estimating lower leg muscle activity
with 10 conductive-fabric electrodes around the ankle to measure five channels; a conductive-fabric
electrode placed on medial malleolus, acting as the ground. (Right): patient wearing socks; each side
of the sock estimates activity of each lower leg muscle and each snap is connected to the data logger
via wires.
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Position A1 was located on the tendon of the tibialis anterior, A3 and A4 were arranged so that
the Achilles tendon would be between them, A2 was located between A1 and A3, and A5 was located
between A4 and A1. Wet type electrodes were placed on L1-L6, as shown in Figure 6.

Left viewRight viewBack view Front view

Proposed Method

Conventional Method

L3

L3

L4 L4

L2L2

L5L5

A2

A3 A3 A4A4

A5

A1 A1 A1

L1 L1

L6L6

Figure 6. Electrode positions for the right lower leg. A1-A5 are proposed positions. EMG signals from
targeted muscles are obtained from L1-L6.

2.2. Activity Estimation

Distal EMG signals contain the EMG signal of the target muscle, crosstalk derived from EMG
signals of other muscles, and artifacts derived from movements. Extracting effective features is
important to estimate target EMG signal at high accuracy; therefore, signal processing for noise
separation and various features extraction is needed. We adopted the multiple band-pass filter for
signal processing. Figure 7 shows the EMG processing. The proposed system involves calibration and
estimation phases to estimate the target muscle activity from the distal EMG signals.

Target EMG Signal Processing

Distal EMG Signal Processing

Notch filter

Raw
bio-potential

signal
(5 channels)

Mean absolute value

(35 signals x 5 channels )

Raw
bio-potential

signal
(6 channels)

Notch filter Band-pass filter (20 - 500 [Hz])
Mean absolute value

(6 channels )

Band-pass filter (20 - 500 [Hz])

Band-pass filter (20 - 170 [Hz])

Band-pass filter (30 - 180 [Hz])

Band-pass filter (350 - 500 [Hz])

...

Multiple band-pass filter (35 filters)

E
stim

ate

Figure 7. Diagram of EMG processing.

2.2.1. Calibration

The goal of this phase is to construct the estimation model. First, target EMG signals (l1, l2, l3, l4,
l5, and l6) and distal EMG signals (a1, a2, a3, a4, and a5) for specific tasks are measured in parallel.
The li is measured from Li, as shown in Table 1. The distal EMG signals are measured using the
conductive fabric electrodes placed in the socks, and the EMG signals of target muscles are measured
using wet-type electrodes. Choosing calibration tasks depends on target tasks because the activity
of the target muscles, crosstalk, and artifacts of the calibration tasks need to cover those of the target
tasks. For removing the power-supply noise, the notch filter was applied. For removing general
motion artifacts, target EMG signals (l1, l2, l3, l4, l5, l6) are filtered with a bandpass filter with passing
frequencies from 20–500 Hz. As for noise separation and feature augmentation, we propose a feature
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extraction method based on multi-bandpass filters. The array of Ai from the following equation. The
first component in the array is the signal filtered with a 20–500 Hz bandpass filter to remove motion
artifacts. The following components are the signal filtered with a 150 [Hz] window bandpass filter
shifted 10 [Hz] at a time. These parameters were experimentally determined. We then obtain the Ai
array from the following equation.

S(Ai , 20–500 Hz)(k) =
1
τ

τ−1

∑
j=0
{|BPF(ai, 20–500 Hz)(k− j)|} (6)

Ai(k) = [S(Ai , 20–500 Hz)(k), S(Ai , 20–170 Hz)(k), S(Ai , 30–180 Hz)(k),

S(Ai , 40–190 Hz)(k), . . . , S(Ai , 340–490 Hz)(k), S(Ai , 350–500 Hz)(k)]
(7)

where ai is the distal EMG signal measured from Ai, i is the position label, and BPF(ai, p-q Hz) is the
signal filtered with a p-q [Hz] bandpass filter of ai. Eventually, 35 signals are calculated from each
of the five channels around the ankle. L(k) = [SL1(k), SL2(k), SL3(k), SL4(k), SL5(k), SL6(k)]

T is
calculated as Equation (3). A(k) is calculated as follows.

A(k) = [A1(k), A2(k), A3(k), A4(k), A5(k)] (8)

As mentioned, distal EMG signals contain not only target EMG signals but also crosstalk and
artifacts. These crosstalk and artifacts mix into the distal EMG signals nonlinearly. We adopted a
nonlinear regression model and chose a gradient boosting regressor as a nonlinear estimating approach.
The key property of linear regression models is that it is a linear function of the parameters to input
values [28]. Nonlinear models are those that cannot be described by linear models. The gradient
tree boosting algorithm follows an approach wherein new regression trees are added for reducing
the residual error against the true values [30]. The gradient tree boosting algorithm is described as
Algorithm 1. Algorithm 1 shows the case to construct the estimation model MLi against Li.

Algorithm 1 Gradient Tree Boosting Algorithm.

1. Initialize M(0,Li)
(x) = arg minγ ∑N

k=1 Q(SLi (k), γ)

2. For h = 1 to H:

(a) For k = 1, 2, . . . , N compute

rkh = −
[

∂Q(SLi (k), M(A(k)))
∂M(A(k))

]
M=M(h−1,Li)

(b) Fit a regression tree to the targets rkh giving terminal regions Rvh, v = 1, 2, . . . , Vh

(c) For v = 1, 2, . . . , Vh compute

γvh = argminγ ∑
A(k)∈Rvh

Q(SLi (k), M(h−1,Li)
(A(k)) + γ)

(d) Update M(h,Li)
(x) = M(h−1,Li)

(x) + ∑Vh
v=1 γvh I(x ∈ Rvh)

3. Finalize M(H,Li)
as MLi

where x is any one sample from the array A = A(k), k = (1, . . . , N), Vm is the division number of
regions at the m-th iteration, I is an indicator function, and Q is a loss function.
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Biopotential signals, which are measured from the surface of the skin, vary depending on muscle
masses, skin impedance, and coordination of muscle activity [31]. Muscle masses and skin impedance
are different among individuals. Therefore, the estimation model is required for each user.

2.2.2. Estimation

In the estimation phase, the goal is to estimate the mean absolute values of target muscles.
Users put on socks and set up the measurement system. Five channels of distal EMG signals
(a1, a2, a3, a4, and a5) are measured during tasks. Ai is calculated, where i is the position label,
from Equation (7). The band and moving widths are the same as those from the calibration phase.
The mean absolute values S(Ai) and A array are calculated the same as they were in the calibration
phase. The estimated signals L̂ = [l̂1, l̂2 , l̂3, l̂4, l̂5 , l̂6] are calculated using A and the estimation
models ML1 , ML2 , ML3 , ML4 , ML5 , ML6 from the following equation.

L̂(k) = {ML1 [A(k)], ML2 [A(k)], ML3 [A(k)], ML4 [A(k)], ML5 [A(k)], ML6 [A(k)]}T (9)

where k is the sampling index, and L̂(k) and A(k) are the k-th samples of L̂ and A.

3. Experiment

3.1. Electrode Size Test

Conductive-fabric electrodes have higher impedance than wet-type electrodes. Therefore,
electrodes size is important for stable measurement. We conducted a pre-experiment for defining
electrode size using one participant. Three sizes, 1 × 1 cm, 2 × 2 cm, and 3 × 3 cm, were tested.
The participant wore a sock with conductive fabric electrodes attached on the right foot. Six sensors
(L1-L6) were placed on muscle bellies, as shown in Figure 6. All electrodes were connected to a data
logger. BioLog DL-2000 (S&ME Corp., Nakano, Japan) was used for data logging. The resolution was
16 bits. DL-2000 can measure signals from eight channels at a sampling rate of 1 [kHz]. Therefore,
two DL-2000 data loggers were used. The EMG signals and distal EMG signals were measured in
parallel when the participant conducted plantar flexion and dorsiflexion for 30 s for each electrode
size. The signal processing was the same as in Section 2.1.1. The obtained L and A were split into
two. One was used for model generation and the other for regression. We compared the correlation
coefficients obtained using L and L̂ for each electrode size.

3.2. Muscle Activity Estimation

As mentioned in Section 2.2, the mean absolute value of the target muscles is estimated
based on distal EMG signals obtained using the proposed system. The accuracy of mean absolute
value estimation is important for muscle activity analysis such as active phase analysis. Therefore,
the estimation accuracy of the mean absolute value was evaluated. Electrodes might be displaced
owing to body movements, and the displacement might affect the estimation accuracy. The effects of
body movements on the estimation accuracy were also evaluated. In addition to the evaluations of
signal estimation accuracy, the accuracy of spatio-temporal muscle activity analysis was evaluated.

There are six target muscles: tibialis anterior, gastrocnemius lateral muscle, gastrocnemius medial
muscle, soleus lateral muscle, soleus medial muscle and peroneus muscle. Several walking situations
(speed/load) occur according to the situations of people in daily life. In this experiment, four tasks were
chosen as fundamental situations: “Walk (2 km/h)”, “Walk (3 km/h)”, “Walk (4 km/h)”, and “Walk
(2 km/h) with load” for 60 s. In “Walk (2 km/h) with load”, participants carried a 7.5 kg bag on their
shoulder. We obtained signals for four tasks from ten participants. Data loggers were attached on
the subject’s waist, all electrodes were connected to the logger via wires. The electrodes placed on
the target muscles were wrapped by tape. We recruited participants who had no problems walking;
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all participants were men with an average age of 25.0 years (std: 3.9), the average circumference of the
ankle was 22.9 cm (std: 2.2 cm).

Ambu R©Bluesensor Electrodes were used as wet-type electrodes, and they were placed at L
positions, as shown in Figure 6. BioLog DL-2000 (S&ME Corp.) were used for measuring signals.
The resolution was 16 bits. DL-2000 can measure signals from eight channels at a sampling rate of
1 [kHz]. We used sets of DL-2000 and one Windows PC to measure one side of the leg. The DL-2000
and PC were connected through USB. Both legs were measured at the same time. Each DL-2000
was synchronized based on digital triggers. After the wiring was complete, the lower leg was
wrapped with a bandage to prevent movement artifacts. “Electric Walker AFW3309”, provided from
ALINCO, was the treadmill used for the walking tasks. In this experiment, the estimation models
ML1 , ML2 , ML3 , ML4 , ML5 , and ML6 satisfying Algorithm 1 were calculated using the library of
“xgboost” [32]. Subjects wore the experimental instruments even between different tasks.

3.2.1. Mean Absolute Values Estimation Accuracy

The purpose of this experiment was to evaluate the accuracy of muscle activity estimation based
on mean absolute value using the proposed method. The distal EMG signals and EMG signals of the
target muscles were measured at the same time for each task. The data of L and A were calculated
using the measured signals. In this experiment, one estimation model was made for one subject.
To construct the estimation model for one target subject, training data was constructed by combining
the data of the target subject and other subjects. Each task data of the target subject was divided into
two. One was used as training data and the other was used as test data. All data of other subjects was
used for training. For data dependency, the same calculation was performed by replacing the training
data and the test data of the target subject. Each of the two estimated data in each task for each subject
were concatenated. The root mean squared error (RMSE) was used for evaluating the accuracy of each
muscle as shown below.

RMSE =

√√√√ 1
N

N

∑
i=1

(y(i)− ŷ(i))2 (10)

where N is the length of data, y(i) is the i-th sample of the measured data, and ŷ(i) is the i-th sample
of the estimated data. To compare the proposed method, estimation based on the features extracted
from a simple bandpass filter with passing frequencies from 20 to 500 Hz was used as a baseline.

3.2.2. Dependability

The purpose of this experiment was to evaluate the effects of body movements on the estimation
accuracy. In order to evaluate the impacts of body movements, the data of each task of each subject
was split into two. The first half of the split data was used as the training data with low impacts of
body movements compared to the second half of the data. The second half of the split data was used as
the training data with high impacts of body movements compared to the first half of the data. In each
task of each subject, two models were trained by using the first half and second half of the data of
the task of the subject. All data of other subjects were combined with each split data of target subject.
We calculated the accuracies of the two models in each task of each subject. Root mean squared errors
were calculated from the estimated two data individually.

3.2.3. Spatial and Temporal Analysis

A threshold-based muscle activation analysis is a simple approach to analyze muscle
activity [33–35]. In this paper, we adopted a threshold-based temporal-spatial muscle activation
analysis, as shown in Figure 8. A specific percentage of the amplitude of the signal was set as a threshold
value. The specific percentage was defined as 20% arbitrarily. The time lengths exceeding the thresholds
were calculated as Tm, Te from the measured and estimated EMG values, respectively. Maximum EMG
values exceeding the thresholds were calculated as Vm, Ve from the measured and estimated EMG.
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Tc, Vc are the time and volume, respectively, where Tm, Te and Vm, Ve overlap. Temporal accuracy and
spatial accuracy were calculated by

Temporal accuracy =
Tc

Tm + Te − Tc
(11)

Spatial accuracy =
Vc

Vm + Ve −Vc
(12)

If there are multiple sections that exceed the threshold values, Tm, Te, Vm, Ve, Tc and Vc are
calculated in each section and their total values are used for the accuracy calculation. This analysis
was conducted by using the estimated data obtained in Section 3.2.1. Temporal and spatial analyses
are based on the detection of muscle activities. According to Godho et al., if the percentage decreases,
the true positive rate of the muscle activity increases and the true negative rate of muscle activity
decreases. In addition, if the percentage increases, the true positive rate of muscle activity decreases
and the true negative rate of muscle activity increases [36]. It is supposed that lower percentages
make the results better if analysis data contains many positives (muscle activities) and a few negatives
(noises and estimation errors and so on). It is also supposed that higher percentages make the results
better if analysis data contains a few positives and many negatives.

This experiment described in this section was conducted with approval from the ethics committee
of the University of Tsukuba (2017R157) and NTT Service Evolution Laboratories (ERP-Ethics-17-013).
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Figure 8. Tm and Te are the times at which EMG values were measured and estimated over the
thresholds. Vm and Ve are the maximum values for the measured and estimated EMG values over the
thresholds, respectively. Tc and Vc are the time length and volume, respectively, where Tm and Te and
Vm and Ve overlap. †: A threshold for the measured EMG, ††: A threshold for the estimated EMG.
Both thresholds are calculated based on a specific percentage.

4. Results

4.1. Electrode Size Test

Table 2 shows the correlation coefficients for each electrode size. All p-values were less than 0.05.
The 3 × 3 cm electrode size had the most stability compared to the other two sizes. Therefore,
we adopted 3 × 3 cm as the electrode size.
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Table 2. Correlation coefficients under electrode size conditions.

Size Tibialis Anterior Peroneus Gastrocnemius Lateral

1 × 1 cm 0.449 0.740 0.777
2 × 2 cm 0.932 0.834 0.943
3 × 3 cm 0.946 0.889 0.950

Size Gastrocnemius Medial Soleus Lateral Soleus Medial

1 × 1 cm 0.755 0.736 0.756
2 × 2 cm 0.916 0.930 0.901
3 × 3 cm 0.952 0.962 0.956

4.2. Muscle Activity Estimation

4.2.1. Mean Absolute Value Estimation Accuracy

The signals for only eight of the participants were used for analysis because the signals for the
other two participants were noisy. Root mean squared error was calculated as Equation (10). The root
mean squared errors of all tasks and all subjects were combined. Table 3 shows the median values of
the root mean squared errors [mV] of each muscle in the proposed and baseline method. All root mean
squared errors of the proposed method were significantly different from those of baseline because all
p-values of Mann-Whitney U test for all muscles were less than 0.01.

Table 3. Median root mean squared errors [mV] of the proposed and baseline method (** p < 0.01).

Tibialis Anterior Gastrocnemius Lateral Gastrocnemius Medial

Proposed 0.0125 ** 0.0186 ** 0.0349 **
Baseline 0.0167 0.0220 0.0498

Peroneus Soleus Lateral Soleus Medial

Proposed 0.0130 ** 0.0102 ** 0.0298 **
Baseline 0.0170 0.0141 0.0459

Table 4 shows the median root mean squared errors [mV] of each task based on the proposed
method. All errors were less than those of baseline. Each error was compared with that of baseline
based on the Mann-Whitney U test. There were significant differences at several muscles in all tasks
between the error of the proposed method and that of the baseline.

Table 4. Median root mean squared errors [mV] of each task based on the proposed method (* p < 0.05,
** p < 0.01).

Tibialis Anterior Gastrocnemius Lateral Gastrocnemius Medial

2 km 0.0121 ** 0.0151 0.0372 *
3 km 0.0131 * 0.0184 0.0369 *
4 km 0.0176 0.0237 0.0338
load 0.0110 ** 0.0175 0.0338

Peroneus Soleus Lateral Soleus Medial

2 km 0.0139 0.0095 ** 0.0269 *
3 km 0.0113 * 0.0107 ** 0.0300 *
4 km 0.0176 0.0127 ** 0.0347 *
load 0.0112 0.0084 ** 0.0255

Figure 9 shows the trajectories of the average measured signal and average estimated signal
under “Walk(2 km/h) with load” condition. Each muscle activity has a cyclic function during gait.
Five cycles were extracted from all subjects based on a certain threshold, which was experimentally
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defined. All cycle data were normalized based on spatial and temporal aspects. Spatial normalization
was calculated as the following equation.

x′ =
x− xmin

xmax − xmin
× 100 (13)

where x′ is the normalized data, x is one cycle data extracted from the data of a subject’s muscle, xmax is
the maximum value of x, xmin is the minimum value of x. Temporal normalization is performed so that
the time of all data is 0–100, and liner interpolation is performed so that the sampling rate is 1000 [Hz].
The average measured signal and average estimated signal were calculated from the normalized data
of all subjects. As shown in Figure 9, the trend of the average estimated signals was close to that of
average measured signals.
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Figure 9. Average mean absolute values for the “Walk(2 km/h) with load” task. The red line is the
average mean absolute value, the red dotted line is the standard deviation of mean absolute value,
the blue line is the average regression value, and the purple area is the standard deviation of average
regression value.

4.2.2. Dependability

Root mean squared errors were calculated from each task of each subject. Table 5 shows the
median root mean squared errors of each muscle of the first model and the second model. There were
a few differences between the first model accuracy and the second model accuracy. In addition,
there were no significant differences because all p-values of the Mann-Whitney U test between the
accuracy of the first model and the second model were greater than 0.05.
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Table 5. Median root mean squared errors of the first half and the second half.

Tibialis Anterior Gastrocnemius Lateral Gastrocnemius Medial

First model 0.0111 0.0175 0.0351
Second model 0.0107 0.0164 0.0331

Peroneus Soleus Lateral Soleus Medial

First model 0.0100 0.0076 0.0269
Second model 0.0100 0.0088 0.0251

4.2.3. Spatial and Temporal Analysis

Tables 6 and 7 shows the median temporal accuracy and spatial accuracy from all subjects by
using the estimated signals based on the proposed method. All accuracies were higher than those of
the baseline. Both from the temporal and spatial point of view, most results were higher than 80%.
There were significant differences at several muscles in all tasks between the accuracy of the proposed
method and that of the baseline.

Table 6. Median temporal accuracy [%] of each task of the proposed method (* p < 0.05, ** p < 0.01).

Tibialis Anterior Gastrocnemius Lateral Gastrocnemius Medial

2 km 0.896 * 0.762 0.773
3 km 0.923 ** 0.824 0.843
4 km 0.937 * 0.852 0.837 *
load 0.911 ** 0.788 0.792 *

Peroneus Soleus Lateral Soleus Medial

2 km 0.820 0.931 0.861
3 km 0.861 * 0.939 * 0.885 *
4 km 0.823 0.910 * 0.896
load 0.796 0.933 0.858

Table 7. Median spatial accuracy [%] of each task of the proposed method (* p < 0.05, ** p < 0.01).

Tibialis Anterior Gastrocnemius Lateral Gastrocnemius Medial

2 km 0.866 * 0.779 0.790 *
3 km 0.877 * 0.818 0.819 **
4 km 0.860 0.794 0.835
load 0.880 * 0.773 0.765 **

Peroneus Soleus Lateral Soleus Medial

2 km 0.844 0.887 * 0.830 *
3 km 0.858 0.911 * 0.858 *
4 km 0.855 0.901 0.842 *
load 0.835 * 0.899 * 0.827 *

5. Discussion

The goal of this study was to develop a sock-type system for estimating lower leg muscle activity
based on distal EMG signals around the ankles. Multiple band-pass filter-based feature extraction was
proposed for increasing the estimation accuracy. We conducted experiments involving five channels
with conductive fabric for obtaining distal EMG signals, and we estimated the mean absolute value
signals of target muscles (tibialis anterior, gastrocnemius lateral, gastrocnemius medial, soleus lateral,
soleus medial, and peroneus ). In the experiment of the mean absolute value estimation accuracy,
the estimation accuracy of the proposed method was compared with that of a baseline method that is
based on a single bandpass filter. As shown in Tables 3 and 4, the accuracies of the proposed method
were higher than those of the baseline method. This result indicates that the proposed method can
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estimate mean absolute values at a high accuracy than the baseline method. In addition, this result
indicates that the proposed method is applicable to all conducted tasks in this experiment at high
accuracy. As shown in Figure 9, the trend of the estimated signals from our system is close to that of
the measured signals. The variance of the average measured signal and the average estimated signal
are large, as shown in Figure 9. We considered that this was caused from the individual variability
of muscle activity in the gait. This result indicates that our system is user-dependent owing to the
individual differences of muscle activity in the gait.

In the dependability analysis, the effect of body movements on estimation accuracy were evaluated
by constructing two estimation models. As shown in Table 5, there were no significant differences
between the first model (assumed to be low impacts of body movements) and the second model
(assumed to be high impacts of body movements). Therefore, the effects of body movement on
the estimation accuracy can be considered to be small. This result is assumed to depend on the
kinds of tasks, the body characteristics of subjects, the duration of tasks, and the size of socks.
When the above conditions are determined, the dependability test is carried out. Most results from
the temporal-spatial muscle activity analysis exceeded 80%, as shown in Tables 6 and 7. Therefore,
our system can be used to analyze information such as muscle-force ratio, muscle activation (ON/OFF)
state, and the timing of muscle contraction and relaxation. In this experiment, the same tasks were
used for calibration and estimation. Our system estimates EMG signals of target muscles based
on distal EMG signals, which are biosignals propagated from several muscles. Therefore, distal
EMG signals are defined by the contraction of each muscle. The results indicate that target muscle
activity under the same muscle-contraction patterns as calibration can be estimated with high accuracy.
Movement composed of the same muscle-contraction patterns as those of the target movement is
assumed to be an appropriate calibration movement.

We applied multiple band-pass filters to the distal EMG signals. Since good results were
obtained using our system, separating raw distal EMG signals into multiple frequency bands is
considered beneficial. Raw distal EMG signals are assumed to contain several signals whose frequency
distributions differ. One reason for this is that noise of a specific frequency distribution has been
separated. Another is that the frequency distributions of each target muscle might originally be
different. A third reason is that frequency distributions slightly change over the course of signal
propagation, even if the frequency distributions of the original signals are the same. It is said that
the frequency distributions of EMG signals are affected by propagation velocity [37]. It is assumed
that longer the propagation path of the EMG signals, the more susceptible they are to the effect of
propagation velocity. Although computational cost is considered to be a concern, it is not supposed to
be a major problem in the offline analysis as in this experiment.

The reason the data of the two subjects were noisy is attributed to the fact that the socks did
not fit them. Table 8 summarizes the length around the ankle [cm] for each subject. Two subjects
whose data were noisy were subjects B and D, and their lengths around the ankle were shorter than
others. The necessity to choose suitable socks could be a limitation of the proposed system. The impact
of sweat also could be a limitation. It is assumed that the effect of sweat on these electrodes may
cause an increase in the biopotential voltage measured from the surface of the skin with a decrease in
skin impedance. The correction of biopotential voltage based on impedance analysis is considered to
reduce the impact of sweat. The necessity of the calibration and recalibration is supposed to depend
on whether the same signal characteristics as in the calibration are measured. Biopotential signals,
which are measured from the surface of the skin, vary depending on muscle masses, skin impedance,
and the coordination of muscle activity. It is assumed that they are different among individuals,
and therefore, the estimation model should be calibrated for each user. There is also a possibility that
the shifts or rotations of electrodes by re-wearing the socks. The impact of the shifts or rotations of
electrodes should be investigated in further study.
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Table 8. Length around the ankle of each subject.

Subject A B C D E F G H I J

Length around the ankle [cm] 24.7 19.5 26.0 19.5 21.9 25.3 23.8 24.2 21.5 23.0

6. Conclusions

The aim of this research was to develop a sock-type system for estimating lower leg muscle
activity based on distal EMG signals around the ankles. A sock-type wearable sensor with electrodes
implemented around the ankle was proposed as an easy-to-wear system. By placing electrodes
only around the ankle, a less restrained wearable system was realized. Owing to electrode position
limitations, distal EMG signals around the ankle were measured while EMG signals on each muscle
belly could not be measured. We constructed an estimation system for lower leg muscle activity based
on distal EMG signals. Multiple band-pass filters were adopted for increasing the estimation accuracy
of the proposed system. The estimation accuracy of the mean absolute values, dependability, and the
temporal-spatial analysis of the proposed system were validated through the experiment. From the
results, we could confirm that the proposed system can be used for estimating muscle activity at a
high accuracy.

It can be a disadvantage in that the system requires a large high-compression area owing to
the distribution of the target muscles. A distal EMG signal analysis allows for the redesign of
electrode positions based on the propagation characteristics of EMG signals. Therefore, distal EMG
signals-based analysis has the potential to accelerate the popularization of wearable muscle activity
monitoring systems.
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