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Abstract: A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency
shift as function of the tip-sample distance. Once the function of the frequency shift versus force
gradient is acquired, the combination of these two functions results in the relationship between the
force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates
the values of the interaction force and the interatomic potential, respectively. However, getting the
frequency shift as a function of the force gradient requires a physical model which can describe
the equations of motion properly. Most papers have adopted the single harmonic oscillator model,
but encountered the problem of determining the spring constant. Their methods of finding the spring
constant are very controversial in the research community and full of discrepancies. By circumventing
the determination of the spring constant, we propose a method which models the prongs and proof
mass as elastic bodies. Through the use of Hamilton’s principle, we can obtain the equations of
motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of
motion analytically, we get the relationship between the frequency shift and force gradient.

Keywords: quartz tuning fork; atomic force microscopy; frequency shift; force gradient; Hamilton’s
principle

1. Introduction

Quartz tuning forks (QTF) are widely used as a scanning probe for atomic force microscopy
(AFM). Due to the inherent precise oscillation frequency of single-crystal quartz, the frequency shift is
measured as a signal for the atomic and subatomic resolution images of surface of metals, dielectrics,
and semiconductors [1,2]. Pawlak et al. [3] used QTF-based non-contact AFM (nc-AFM) to observe the
island growth process and the hexagonal structure of fullerene assembly on a KBr(001). They found
that Cu(111) substrate has a stronger molecule-substrate interaction than KBr(001), so that Cu(111)
substrate can hold the fullerene and not be disrupted by the nc-AFM when its tip approaches the
short-range repulsive force regime. The first time that individual atoms within the aromatic molecules
were resolved was done by means of nc-AFM [4]. Both techniques of nc-AFM and STM (scanning
tunneling microscope) can be used complementarily to study atomic bonding within and between
molecules, molecular orbitals, molecular conformational changes, and chemical reactions at the
single-molecule level [4,5]. Polesel-Marris et al. [5] used nc-AFM to observe the unfolding signatures
during protein stretching and they also functionalized the tip, so as to graft proteins onto the substrate.
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The force-distance curve of AFM can be used to detect the stiffness change of diseased cells compared
with the surrounding cell wall [6].

Certain researchers have enhanced the functions of AFM by modifying the structure of a QTF
probe [7–11]. Bayat [7] coupled a cantilever probe called the Akiyama probe to a QTF. The Akiyama
probe oscillating at its second eigenmode can be used to measure soft samples in tapping mode, while
the QTF oscillating at its first eigenmode is used to operate in either tapping mode or non-contact
mode. Hussain [9] modified the structure of the tip and its orientation, such that the QTF can perform
sidewall roughness measurements.

Although the output of nc-AFM can provide the frequency shift as a function of the distance
between the tip and sample [12–16], the tip-sample interaction force cannot be obtained directly from
this kind of experiment. First, we need the equations of motion, which can describe exactly the
motion behavior of the system composed of a QTF and the tip-sample interaction force. Tip-sample
interaction force is equal to the negative gradient of the tip-sample potential and the gradient of the
force (or force gradient) is the spring constant of the physically-modeled spring connecting the tip and
sample. By solving the equations of motion, the frequency shift as a function of the force gradient
can be obtained. The combination of these two functions yields the force gradient as a function of the
tip-sample distance. Then, the integration of the force gradient provides the tip-sample interaction
force and the second integration provides the interaction potential.

References [13–15] have modeled a QTF as a simple one-dimensional harmonic oscillator and
they use their own method for estimating the spring constant of this oscillator. Castellanos-Gomez [17]
modeled the QTF as two collinear coupling oscillators and he evaluated the spring constant of a single
prong, as well as the spring constant, of the coupling spring connecting the two prongs by theoretical
and experimental analysis. Falter et al. [18] calibrated the beam formula for determining the static
spring constant of a qPlus sensor by shifting the origin of the prong to the zero stress zone inside
the basis and including the torsion effect. Melcher et al. [19] analyzed a qPlus QTF sensor, in which
the tip is of finite length and has axial offset. They improved the accuracy of the spring constant
estimation by correct derivation of the angular displacement of the finite tip during the deformation of
the slender prong, and also by considering the effect of the peaked ridges appearing in the side wall of
the prongs. In this paper, we model the two prongs and the proof mass as continuum bodies instead of
the spring-mass oscillator model, and establish the equations of motion through the use of Hamilton’s
principle, including the Lennard-Jones potential force between the tip and sample. Although our
equations of motion are more complicated than those of harmonic oscillators, there is no need for us to
determine the equivalent spring constant.

The free prong, the prong loaded with interaction force, and the proof mass are taken apart.
With the interface surfaces acted on by shear forces and moments of opposite direction, their own
equations of motion are set up independently, and their general solutions are solved analytically.
Finally, putting all these three sets of general solutions together with the boundary and interface
conditions imposed results in the characteristic equation, which can be solved to get the natural
frequency of the in-plane anti-phase resonant mode of the QTF. Based on this, the frequency shift,
which is the difference between the loaded QTF and free QTF, can be obtained.

2. The Equations of Motion and the General Solution of the Prong Loaded with Tip-Sample
Interaction Force

2.1. The Linearization of the Lennard-Jones Potential Force

The potential function of Lennard-Jones type is considered here as [20–22]

W(z) = −
2
3
π2ερ1ρ2σ

5R[
σ
s
−

σ7

210s7 ] (1)
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where ε is the dielectric constant, σ is the radius of the sample molecule, R is the radius of the atom of
the tip, ρ1 and ρ2 are the molecule density of the tip and sample, respectively, and s is the distance
between the tip and sample. The interaction force is the gradient of the potential

F = −
∂W
∂s

= −
A1R

180s8 +
A2R
6s2 (2)

Referring to Figure 1, the parameter z is the initial height between the tip and sample, with the
interaction force not yet considered. w∗ is the displacement of the tip in static equilibrium, w(x, t) is the
displacement of vibration around the equilibrium state. So the actual distance between the tip and
sample in the deformed state of the QTF is (z−w(x, t)) where

w(x, t) = w∗(x) + w(x, t) (3)

is the total displacement of the tip. Therefore, Equation (2) becomes

F = −
A1R

180(z−w)8 +
A2R

6(z−w)2 (4)

where A1 = π2ρ1ρ2c1 and A2 = π2ρ1ρ2c2 are called Hamaker constants. In the practical application of
nc-AFM, the amplitude w is kept small, thus, w� z, so we can rewrite (4) as

F(w) = −
1

180
A1Rz−8(1−

w
z
)
−8

+
1
6

A2Rz−2(1−
w
z
)
−2

(5)
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Figure 1. The displacements of the tip in static equilibrium state and vibration state.

Taking a binomial expansion of those terms (1−w/z)−8 and (1−w/z)−2, Equation (5) reduces to

F(w; z) = k(z)w(x, t; z) + F0(z) (6)

where
k = (−

2
45

A1Rz−9 +
1
3

A2Rz−3), F0 = −
1

180
A1Rz−8 +

1
6

A2Rz−2 (7)

Notice that given a value of z in (7), k, and F0 becomes constant, and Equation (6) reveals that k
plays the role of the spring constant of a linear spring and the Lennard-Jones force can be represented
by the linear spring plus a constant force, as shown in Figure 2.
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Taking a derivative of Equation (6) with respect to displacement w gives

k =
∂F
∂w

(8)

Since s = z−w, for a given value of the initial height z ds = −dw, then Equation (8) becomes

k =
∂F
∂w

=
∂F
∂s

ds
dw

= −
∂F
∂s

. (9)

Thus the spring constant has the physical meaning of negative force gradient.

2.2. The Deformation and Equations of Motion

The QTF is made of a Z − cut 2◦ ingle-crystal wafer. The second-order stress σi j and strain
tensors εi j are expressed in the vector form as (σ1, σ2, σ3, σ4, σ5, σ6) = (σ11, σ22, σ33, σ23, σ13, σ12),
(S1, S2, S3, S4, S5, S6) = (ε11, ε22, ε33, ε23, ε13, ε12). The constitutive law for stress and strain is σ = CS,
the stiffness matrix C of Z− cut 2◦ quartz is [23]

cE =



86.74 6.99 11.91 −17.91 0 0
6.99 86.74 11.91 17.91 0 0

11.91 11.91 107.2 0 0 0
−17.91 17.91 0 57.94 0 0

0 0 0 0 57.94 −17.91
0 0 0 0 −17.91 39.88


× 109 N/m2 (10)

Since the lower prong loaded with a tip-sample potential force is slender, its deformation can
be modeled by the well-known Euler beam theory, that is, the cross section perpendicular to the
neutral axis remains perpendicular during deformation. Its free body diagram is shown in Figure 3.
Here, the conjunctive surface of the proof mass and the prong is assumed to be rotatable and has
no x1 component of displacement vector. The external shear force Qext and moment Mext, acting at
the left boundary, are exerted by the proof mass. The parameters Lb, bb, and h denote the length,
width, and height of the rectangular cross-section of the prong. For the QTF of (ZYw) + 2◦ layout [24],
the x2−axis is designated to be along the longitudinal direction of the prong and the x3−axis is
perpendicular to the QTF surface.
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Figure 3. The displacement and loading condition of the lower prong.

Let w(x2, t) denote the transverse displacement of the central line of the prong and the displacement
field (u1, u2, u3) of any point (x1, x2, x3) of the prong based on the Euler beam theory is

u1 = w(x2, t), u2 = −x1w,2(x2, t), u3 = 0 (11)

where w,2 = ∂w/∂x2. Then the strain fields are

S1 = 0, S2 = −x1w,22, S3 = S4 = S5 = S6 = 0 (12)

The velocity of point (x1, x2, x3)is

v =
.
u1i +

.
u2j +

.
u3k =

∂w(x2, t)
∂t

i− x1
∂2w(x2, t)
∂x2∂t

j (13)

The Hamilton’ principle for an elastic body is∫ t f

ti

[
δT − δU + δW(m)

]
dt = 0 (14)

where T is the kinetic energy, U the elastic energy, and W(m) the work done by the applied mechanical
force. At the interface, the moment Mext has the contribution Mext δ(w,2)

∣∣∣
x2=0 to δM(m) and no

contribution for the shear force Qext. Because there is no x1−axis component of displacement at
x2 = 0, the spring force and constant force F0 have done virtual work, due to the virtual displacement
δw|x2=Lb

. So
δW(m) = Mext δ(w,2)

∣∣∣
x2=0 + (kw + F0)δw

∣∣∣
x2=Lb

(15)

The first term of (14), that is, the variation of kinetic energy, can be derived as (see Appendix A)∫ t f

ti

[δT]dt = ρ

∫ t f

ti

{∫
∂τ
−

[(
x2

1
..
w,2

)
δw

]∣∣∣∣x2=Lb

x2=0
ds +

∫
τ

(
−

..
w + x2

1
..
w,22

)
δwdτ

}
dt (16)
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where τ and ∂τ are the volume and boundary surface of the prong. The strain energy per unit volume is

1
2

cE
pqSpSq = −

1
2



0
S2

0
0
0
0



T

c11 c12 c13 c14 0 0
c12 c22 c23 c24 0 0
c13 c23 c33 c34 0 0
c14 c24 c34 c44 0 0
0 0 0 0 c55 c56

0 0 0 0 c56 c66





0
S2

0
0
0
0


=

1
2

c22S2
2 (17)

Substituting Equation (12) into the second term of Hamilton’s principle (14) gives∫ t f
ti

∫
τ
−δUdτdt =

∫ t f
ti

{∫
τ
δ
[
−

1
2 cE

pqSpSq
]
dτ

}
dt =

∫ t f
ti

{∫
τ
δ
[
−

1
2 c22S2

2
]
dτ

}
dt

=
∫ t f

ti

{∫
τ
δ
[
−

1
2 c22(−x1w,22)

2
]
dτ

}
dt =

∫ t f
ti

{∫
τ

[
−

(
c22x1

2w,22
)
δw,22

]
dτ

}
dt

(18)

The integration by parts of the right-hand side of (18) is given by Equations (A5) and (A6). Finally
we have ∫ t f

ti

{∫
τ
δ
[
−

1
2 cE

pqSpSq
]
dτ

}
dt

=
∫ t f

ti
c22

{∫
∂τ

[
−

(
x1

2w,22
)
δw,2 +

(
x1

2w,222
)
δw

]∣∣∣∣x2=Lb

x2=0
dS +

∫
τ

[
−

(
x1

2w,2222
)
δw

]
dτ

}
dt

(19)

The substitution of Equations (15), (16), and (19) into the Hamilton’s principle (14) results in∫ t f
ti

{∫ t f
ti

{
∫
τ
(eq1δw)dτ+

∫
∂τ

[
(B1δw + B2δw,2)

∣∣∣x2=Lb
x2=0

]
dS

+ (Mextδw,2)
∣∣∣
x2=0 + (kw + F0)δw

∣∣∣
x2=Lb

}
dt = 0

(20)

The variation δw in the volume integration of the first term of Equation (20) is arbitrary and its
coefficient eq1 must be zero, this leads to the equation of motion of the lower loaded prong as

ρ
(
−

..
w + x1

2 ..
w,22

)
− c22

(
x1

2w,2222
)
= 0 (21)

Based on (20), at the left boundary x2 = 0, δw|x2 = 0 leads to B1 , 0 and δw,2
∣∣∣
x2=0 , 0 leads to

(B2 + Mext)
∣∣∣
x2=0 = 0, which is the left boundary condition

− c22
(
x1

2w,22
)
+ Mext = 0, at x2 = 0 (22a)

At the right boundary x2 = Lb, both δw and δw,2 are not zero, therefore, their coefficients must be
zero, which leads to the right boundary conditions as −ρ

(
x1

2 ..
w,2

)
+ c22

(
x1

2w,222
)
+ (kw + F0) = 0,

−c22
(
x1

2w,22
)
= 0.

at x2 = Lb (22b)

For static equilibrium, all the velocities and accelerations are zero. By setting
..
w = 0 and

..
w,22 = 0,

Equations (21) and (22a,b) become the static equation and boundary conditions for static displacement
w∗(x2) as

c22
(
x1

2w∗,2222
)
= 0. (23)

M∗ext = c22
(
x1

2w∗,22
)
, at x2 = 0. (24) c22

(
x1

2w∗,222
)
+ kw∗ + F0 = 0,

−c22
(
x1

2w∗,22
)
= 0.

at x2 = Lb (25)
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Substituting (3) into (22a,b) and subtracting (23) from it gives

ρ
(
−

..
w + x1

2
..
w,22

)
− c22

(
x1

2w,2222
)
= 0 (26)

and 
Mext = c22

(
x1

2w,22
)
, at x2 = 0, (27a)

−ρ
(
x1

2
..
w,2

)
+ c22

(
x1

2w,222
)
+ kw = 0, at x2 = Lb (27b)

−c22
(
x1

2w,22
)
= 0. at x2 = Lb (27c)

where Mext = M∗ext(x2) + Mext(x2, t). The boundary condition (27c) is independent of the constant
force F0. It is clear that the natural frequencies of vibration around the static equilibrium state are not
affected by the constant F0, but influenced by the spring constant k.

2.3. The General Solution of the Lower Loaded Prong

The resonant solution of system (24) is of the form

w(x2, t) = W(x2)eiωt (28)

where ω is the natural frequency and W(x2) is the mode shape. Substituting (28) into (26) and
integrating over the cross-section area in the x1 − x3 plane yields

c22I2W,2222 + ρω2I2W,22 − ρω
2I1W = 0 (29)

where

I1 =
∫ h

2

−
h
2

∫ bb
2

−
bb
2

dx1dx3 = bbh, (30a)

I2 =
∫ h

2

−
h
2

∫ bb
2

−
bb
2

x1
2dx1dx3 =

b3
bh

12 . (30b)

The mode shape is assumed to be of the form W(x2) = Reλx2 , and substituting this into (29) gives
the characteristic equation

c22I2λ
4 + ρω2I2λ

2
− ρω2I1 = 0 (31)

The solution of (31) is

λ2 =
−ρω2I2 ±

√
(ρω2I2)

2 + 4(c22I2)(ρω2I1)

2(c22I2)
(32)

The general solution of (29) is

W(x2) = R1 cosh ξ1x2 + R2sinhξ1x2 + R3 cos ξ2x2 + R4 sin ξ2x2 (33)

where ξ1 and ξ2 are related to the natural frequency ω by

ξ1 =

√
−ρω2I2+

√
Γ

2(c22I2)
, (34a)

ξ2 =

√
ρω2I2+

√
Γ

2(c22I2)
(34b)
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and
Γ =

(
ρω2I2

)2
+ 4(c22I2)

(
ρω2I1

)
(35)

3. The Deformation and Equations of Motion of the Proof Mass

3.1. The Deformation of the Proof Mass

When the QTF is in the state of free vibration at its in-plane anti-phase natural frequency, the two
prongs vibrate in opposite directions with the same magnitude. These two prongs will exert shear
force and bending moment of opposite direction and equal magnitude on the proof mass, as shown in
Figure 4. When the QTF is put closely above the tested sample, the tip-sample interaction force will
exert additional moment and shear to the proof mass at their conjunctive area. The net shear force and
moment in the interface is shown in Figure 5, and they satisfy

Q2 = Q1 + F, M2 = M1 + MF, (36)

where MF = FLb, F is the spring force acting on the tip of the lower prong.
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the applied force F.

3.1.1. Deformation Due to the Bending Moment of the Tip-Sample Interaction

The deformation of the proof mass subject to the bending moment MF could be of bending type
or of pure shearing type. We have adopted the type of pure shear deformation in this paper, as shown
in Figure 6. The cross-section is inclined by an angle β(x2, t).
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The displacement of this pure shearing is

u′1 = 0, u′2 = −x1β, u′3 = 0. (37)

3.1.2. The Wrapping Deformation of the Proof Mass

The cross-section experiences wrapped deformation in the anti-phase mode, as shown in Figure 7.
We assume that the rotation angle θ of any point (x1, x2) in the cross-section is linearly proportional to
the distance x1, that is, θ = x1ψ(x2, t). We assume that there is no axial displacement at the conjunctive
point x1 = d/2, i.e., u′′2 (d/2, x2, t) = 0. Then we have

u′′2 (x1, x2, t) − u′′2 (d/2, x2, t) =
∫ x1

d
2

x1ψ(x2, t)dx1 =

(
1
2

x2
1 −

d2

8

)
.
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Figure 7. Wrapped curve of the cross-section of the proof mass.

So the displacement field of the wrapping deformation is

u′′1 = 0, u′′2 =

(
1
2

x1
2
−

d2

8

)
ψ(x2, t), u′′3 = 0. (38)
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By rotating the wrapping displacement field around the x3 axis by an angle −β(x2, t),
the components resolved along the x1 − x2 − x3 coordinates are obtained as


u(w)

1
u(w)

2
u(w)

3

 =


cos β sin β 0
− sin β

0
cos β

0
0
1




u′′1
u′′2
u′′3

 =


ψ(x2, t) sin β(x2, t)

[
x2

1
2 −

d2

8

]
cos β(x2, t)ψ(x2, t)

[
x2

1
2 −

d2

8

]
0

 (39)

If we assume a small deformation, thus sin β ≈ β and cos β ≈ 1, and drop the nonlinear term,
we get

u(w)
1 = 0, u(w)

2 = ψ(x2, t)

x2
1

2
−

d2

8

, u(w)
3 = 0. (40)

Equation (38) plus equation (40) gives the total displacement of the proof mass

u1 = 0, u2 = −x1β(x2, t) +

x2
1

2
−

d2

8

ψ(x2, t), u3 = 0 (41)

The strain field of the proof mass is

S1 = 0, S2 = −x1β,2 +
(

x2
1

2 −
d2

8

)
ψ,2, S3 = 0,

S4 = 0, S5 = 0, S6 = −β+ x1ψ.
(42)

The strain energy per unit volume is

1
2

cE
pqSpSq =

1
2



0
S2

0
0
0
S6



T

c11 c12 c13 c14 0 0
c12 c22 c23 c24 0 0
c13 c23 c33 c34 0 0
c14 c24 c34 c44 0 0
0 0 0 0 c55 c56

0 0 0 0 c56 c66





0
S2

0
0
0
S6


=

1
2

(
c22S2

2 + c66S6
2
)

(43)

3.2. Equations of Motion of the Proof Mass

The first term of the Hamilton’s principle (14) with the use of (41) is carried out as∫ t f
ti
{δT}dt =

∫
τ
ρ
{
−

∫ t f
ti

..
UiδUidt

}
dτ

=
∫
τ
ρ
{
−

∫ t f
ti

[ ..
U1δU1 +

..
U2δU2 +

..
U3δU3

]
dt

}
dτ

=
∫
τ
ρ
{
−

∫ t f
ti

[
−x1

..
β(x2, t) +

(
1
2 x2

1 −
d2

8

) ..
ψ(x2, t)

]
×

[
−x1δβ(x2, t) +

(
1
2 x2

1 −
d2

8

)
δψ(x2, t)

]
dt}dτ

(44)

The second term of Hamilton’s principle with the use of (43) is developed out as∫ t f
ti

∫
τ
−δUdτdt ==

∫ t f
ti

{∫
τ
δ
[
−

1
2 cE

pqSpSq
]
dτ

}
dt =∫ t f

ti

{∫
∂τ

[(
−c22

(
1
2 x2

1 −
d2

8

)2
ψ,2 + c22

(
1
2 x2

1 −
d2

8

)
x1β,2

)
δψ

+
(
c22

(
1
2 x2

1 −
d2

8

)
x1ψ,2 − c22x1

2β,2
)
δβ

]x2=Lm

x2=0
dS

+
∫
τ

[(
c22

(
1
2 x2

1 −
d2

8

)2
ψ,22 − c22

(
1
2 x2

1 −
d2

8

)
x1β,22 − c66(x1ψ− β)x1

)
δψ

+
(
−

(
1
2 x2

1 −
d2

8

)
c22x1ψ,22 + c22x1

2β,22 + c66(x1ψ− β)
)
δβ

]
dτ

}
dt

(45)
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The virtual work done on the proof mass has two parts. One comes from the product of the
moment M1 as shown in Figure 4 and the virtual rotation δθ = x1δψ of the cross-section as shown in
Figure 7 at x1 = ±d/2. The other comes from the product of the moment FLb caused by the interaction
force and the virtual rotation δβ of the cross-section due to the pure shearing deformation, that is,

δW(m) = δW(m)

inter f ace = δW(m)
warping + δW(m)

Inclination

=
(
(−M1)δ

(
−

d
2ψ

)∣∣∣∣x2=Lm,,x1=−
d
2
+ M1δ

(
d
2ψ

)∣∣∣∣x2=Lm,x1=
d
2

)
+ FLbδβ

∣∣∣x2=Lm

=
[
2M1δ

(
d
2ψ

)
+ FLbδβ

]∣∣∣x2=Lm

(46)

where Lm and bm are the length and width of the proof mass, respectively. Substituting Equations
(44)–(46) into the Hamilton’s principle (14) yields∫ t f

ti

{∫
τ

(
eq1 · δψ+ eq2 · δβ

)
dτ

+
∫
∂τ

[ (
B1 · δψ+ B2 · δβ

)∣∣∣∣x2=Lm

x2=0

]
dS + [M1dδψ+ FLbδβ]

∣∣∣x2=Lm

}
dt = 0

(47)

In the volume integration of (47) the variations δψ and δβ are arbitrary, that their coefficients eq1

and eq2 must be zero gives the two equations of motion as

c22
(

1
2 x2

1 −
d2

8

)2
ψ,22 − c22

(
1
2 x2

1 −
d2

8

)
x1β,22 − c66(x1ψ− β)x1

+ρx1
(

1
2 x1

2
−

d2

8

) ..
β(x2, t) − ρ

(
1
2 x1

2
−

d2

8

)2 ..
ψ(x2, t) = 0,

(48)

−

(
1
2 x2

1 −
d2

8

)
c22x1ψ,22 + c22x1

2β,22 + c66(x1ψ− β)

−ρx1
2

..
β(x2, t) + ρx1

(
1
2 x1

2
−

d2

8

) ..
ψ(x2, t) = 0

(49)

The left boundary conditions of the proof mass are

ψ = 0, β = 0, at x2 = 0. (50)

The natural boundary at the right end of the proof mass can be derived from (47).
The variations δψ and δβ at x2 = Lm are arbitrary, so their coefficients

(
B1 + M1d

)
and

(
B2 + FLb

)
must be zero, this leads to right boundary conditions −c22

(
1
2 x2

1 −
d2

8

)2
ψ,2 + c22

(
1
2 x2

1 −
d2

8

)
x1β,2 + M1d = 0, (51a)

c22
(

1
2 x2

1 −
d2

8

)
x1ψ,2 − c22x1

2β,2 + FLb = 0. (51b)

The integration of Equation (51a,b) over the cross-section area in x1 − x3 plane gives{
−c22I1ψ,2 + I5M1d = 0,
−c22I3β,2 + I5FLb = 0.

at x2 = Lm (52)

3.3. General Solution of the Proof Mass

Integrating the Equations (48) and (49) of motion over the cross-section area gives c22I1ψ,22 − c66I3ψ− ρI1
..
ψ = 0,

c22I3β,22 − c66I5β− ρI3
..
β = 0,

(53)

where

I1 =

∫ h
2

−
h
2

∫ bm
2

−
bm
2

(
1
2

x2
1 −

d2

8

)2

dx1dx3 =
h

960

(
3bm

5
− 10bm

3d2 + 15bmd4
)
, (54a)
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I3 =
∫ h

2

−
h
2

∫ bm
2

−
bm
2

x2
1dx1dx3 =

b3
mh
12 , (54b)

I5 =
∫ h

2

−
h
2

∫ bm
2

−
bm
2

dx1dx3 = bmh. (54c)

Equations (52) and (53) reveal that variables ψ and β are uncoupled, due to the fact that the
nonlinear coupling term in the displacement field (39) is neglected for small amplitude vibration. The
resonant solution is of the form

ψ(x2, t) = Ψ(x2)eiωt, (55a)

β(x2, t) = Θ(x2)eiωt. (55b)

Substituting (55) into (53) gives{
c22I1Ψ,22 − c66I3Ψ + ρω2I1Ψ = 0,
c22I3Θ,22 − c66I5Θ + ρω2I3Θ = 0 .

The solution of the mode shape for wrapping vibration is of the form Ψ(x2) = Reλx2 . Substituting
this into (56a) gives

c22I1λ1
2
−

(
c66I3 − ρω

2I1
)
= 0 (57)

The solution is λ1
2 =

(
c66I3 − ρω2I1

)
/c22I1. The mode shape is

Ψ(x2) = R1 cosh ξ3x2 + R2sinhξ3x2 (58)

where

ξ3 =

√√
−

(
c66I3 − ρω2I1

)
c22I1

(59)

Similarly, the mode shape of Equation (56b) is

Θ(x2) = R3 cosh ξ4x2 + R4sinhξ4x2, (60)

where ξ4 is related to the natural frequency ω by

ξ4 =

√√
−

(
c66I5 − ρω2I3

)
c22I3

(61)

4. Anti-Phase Resonant Frequency of QTF

In this section, the three components of the QTF, one free prong, one loaded prong, and the proof
mass, are considered as a whole. Their individual general solutions were obtained in previous sections,
with the twelve coefficients of mode shapes and the resonant frequency left unknown, to be determined.
When the twelve boundary and interface conditions are imposed, the anti-phase resonant frequency
can be evaluated. Also, the frequency shift corresponding to the spring constant k (or the negative
force gradient) can be found. Three different sets of coordinates need to be used as shown in Figure 8.
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4.1. Mode Shapes with Undetermined Coefficients

The mode shape of the upper free prong is almost similar to Equation (33)

W(2)
(
x(2)2

)
= R1

(2) cosh ξ1x(2)2 + R2
(2)sinhξ1x(2)2 + R3

(2) cos ξ2x(2)2 + R4
(2) sin ξ2x(2)2 (62)

where ξ1 and ξ2 are functions of resonant frequency implicitly as

ξ1 =

√
−ρω2I2 +

√
Γ

2(c22I2)
, ξ2 = ±

√
ρω2I2 +

√
Γ

2(c22I2)
(63)

where Γ is given by (35), coefficients
(
R(2)

1 , R(2)
2 , R(2)

3 , R(2)
4

)
are to be determined.

The boundary conditions at the right free end are the same as Equation (27b,c), but with the
interaction force kw and external moment Mext removed.

Mext = c22

(
x(2)1

)2
w(2)

,22 , at x(2)2 = 0 (64a)


−ρ

[(
x(2)1

)2 ..
w(2)

,2

]
+ c22

[(
x(2)1

)2
w(2)

,222

]
= 0, at x(2)2 = Lb (64b)

−c22

[(
x(2)1

)2
w(2)

,22

]
= 0, at x(2)2 = Lb (64c)

Equation (64b) is the shear-force free condition and (64c) is the moment free condition.
Integrating (64b,c) over the cross-section area and using the mode shape (62) gives{

ρω2I2W(2)
,2 + c22I2W(2)

,222 = 0,
−c22I2W(2)

,22 = 0.
at x(2)2 = Lb (65)

The mode shapes of the proof mass for cross-section wrapping and shearing in terms of the
newly-defined coordinates are Ψ(1)

(
x(1)2

)
= R1

(1) cosh ξ3x(1)2 + R2
(1)sinhξ3x(1)2 ,

Θ(1)
(
x(1)2

)
= R3

(1) cosh ξ4x(1)2 + R4
(1)sinhξ4x(1)2 .

(66)

where ξ3 and ξ4, being functions of resonant frequency, are given by (59) and (61).
The boundary and interface conditions are given by (50) and (52).
The mode shape of the lower loaded prong in terms of the new coordinates is

W
(3)

(x(3)2 ) = R1
(3) cosh ξ1x(3)2 + R2

(3)sinhξ1x(3)2 + R3
(3) cos ξ2x(3)2 + R4

(3) sin ξ2x(3)2 (67)
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where the frequency dependent parameters ξ1 and ξ2 are given by Equation (34a,b). The boundary
conditions are

Mext = c22

(
x(3)1

)
w(3)

,22 , at x(3)2 = 0. (68a)

Integrating Equations (27b,c) over the cross-section area gives ρω2I2W
(3)
,2 + c22I2W(3)

,222 + kbbhW
(3)

= 0,

−c22I2W(3)
,22 = 0.

at x(3)2 = Lb (68b)

4.2. The Twelve Boundary and Interface Conditions

The proof mass has no wrapping rotation and shear inclination at the clamped boundary, so

Ψ(1)
(
x(1)2 = 0

)
= 0, (69a)

Θ(1)
(
x(1)2 = 0

)
= 0 (69b)

At the interface, the free prong has no vertical displacement,

W(2)
(
x(2)2 = 0

)
= 0. (69c)

The slope of the proof mass at the interface is equal to that of the free prong, i.e.,(
Θ(1)

−
d
2

Ψ(1)
)∣∣∣∣∣∣

x(1)2 =Lm, x(1)1 =−d/2
= W(2)

,2

(
x(2)2 = 0

)
(69d)

The condition that the moment acting on the proof mass is equal in magnitude to the moment
acting on the free prong at the upper interface is not used, because the end surface of the prong is flat
while the proof mass is curvilinear. Instead, the condition that the work, δW(1)

m2 , done by the moment

M1 in (51a) on the virtual angular displacement of the proof mass be equal to that, δW(2)
b , done by the

moment Mext

(
x(2)2

)
in (64a) on the virtual rotation of the prong end face is used here. Note that

δW(2)
b =

∫ h
2

−
h
2

∫ bb
2

−
bb
2

{[
−c22

((
x1

(2)
)2

w,22

)]
δw,2

}
dx(2)1 dx(2)3

and

δW(1)
m2 =

∫ h
2

−
h
2

∫
−

d
2+

bb
2

−
d
2−

bb
2

 1
d

c22

(
1
2

(
x(1)1

)2
−

d2

8

)2

ψ,2

− c22

(
1
2

(
x(1)1

)2
−

d2

8

)
x(1)1 β,2

]
δ
(
−

d
2ψ

)}
dx(1)1 dx(1)2

The condition δW(2)
b = δW(1)

m2 with the use ofψ = w,2 and integration over the contact area leads to

dI2W,22
(
x2

(2) = 0
)
= −I1Ψ,2

(
x2

(1) = Lm
)

(69e)

where

I2 =
∫ h

2

−
h
2

∫ bb
2

−
bb
2

(
x1

2
)
dx1dx3 = 1

12 bb
3h,

I1 =
∫ h

2

−
h
2

∫
−

d
2+

bb
2

−
d
2−

bb
2

( 1
2

(
x(2)1

)2
−

d2

8

)2dx(2)1 dx(2)3 = h
960

(
3 bb

5 + 20bb
3d2

)
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The shear force at zero at the free end of the upper prong is

ρω2I2W(2)
,2 + c22I2W(2)

,222 = 0, at x(2)2 = Lb. (69f)

The bending moment at zero at the free end of the upper prong is

−c22I2W(2)
,22 = 0. at x(2)2 = Lb. (69g)

The lower prong has no displacement in the x(3)1 direction at the interface

W(3)
(
x(3)2 = 0

)
= 0. (69h)

The slope of the lower prong is equal to that of the proof mass at the lower interface

W(3)
,2

(
x2

(3) = 0
)
= Θ +

d
2

Ψ(1)
(
x2

(1) = Lm, x1
(3) =

d
2

)
(69i)

The virtual work δW(3)
b done by the moment in (24) on the virtual rotation of the prong is equal to

the work δW(1)
m3 done by the moment in (51a) on the virtual angular displacement of the proof mass,

i.e., the condition δW(3)
b = δW(1)

m3 gives

dI2W,22
(
x2

(3) = 0
)
= I1Ψ,2

(
x2

(1) = Lm
)

(69j)

The balance of the shear force at the right end of the lower loaded prong is

ρω2I2W(3)
,2 + c22I2W(3)

,222 + kbbhW(3) = 0, at x(3)2 = Lb (69k)

The moment-free of the right loaded prong is

− c22I2W(3)
,22 = 0. (69l)

Substituting the general solutions (62), (66), and (67) into the twelve boundary and interface
conditions given by the Equations (69a–l) yields the 12× 12 matrix-vector equation[

Mi j
]
12×12

{
R j

}
= 0 (70)

where {R} =
[

R1
(1) R2

(1) R3
(1) R4

(1) R1
(2) R2

(2) R3
(2) R4

(2) R1
(3) R2

(3) R3
(3) R3

(3)
]
.

The non-zero elements of the matrix
[
Mi j

]
are given in Appendix B.

For the nontrivial solution of the parametric vector {R} the determinant of the coefficient matrix of
Equation (70) must be zero, that is,

det
[
Mi j(ω)

]
= 0 (71)

this leads to the characteristic equation, which is a nonlinear algebraic equation of natural frequency
ω. By solving this characteristic equation numerically, we get the natural frequencies of the in-plane
anti-phase resonant modes.

4.3. Results and Discussions

The geometric parameters of QTF are as follows. (1) The length, width, and thickness of the prong
are 154 µm, 14 µm, and 7 µm, respectively. (2) The length, width, and thickness of the proof mass are
60 µm, 46 µm, and 7 µm, respectively. The gap between the two prongs is 8 µm. The Hamaker constant
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for quartz is 8.83× 10−20 J [25], the radius of the tip is 8 nm, the density of QTF is ρ = 2649 kg/mand
the elastic stiffness coefficients are given by (10).

The natural frequency and frequency shift associated with various values of the spring constant
are listed in Table 1 through the numerical solution of (71), and are plotted in Figure 9. It is obvious
based on Figure 9 that increasing the spring constant will increase the natural frequency, and hence
there is a frequency shift, which is approximately a parabolic function of the spring constant.

Table 1. Spring constants and natural frequencies of the first anti-phase mode and frequency shift.

k = nN
nm Frequency (kHz) Frequency Shift (Hz) Frequency Shift Ratio (ppm)

1 451.219 21 46.5
2 451.24 42 93.1
3 451.262 64 141.8
4 451.284 86 190.6
5 451.307 109 241.5
6 451.33 132 292.5
7 451.353 155 343.4
8 451.377 179 396.6
9 451.402 204 451.9
10 451.426 228 505.1
11 451.452 254 562.6
12 451.477 279 618.0
13 451.504 306 677.7
14 451.53 332 735.3
15 451.558 360 797.2
16 451.586 388 859.2
17 451.614 416 921.1
18 451.643 445 985.3
19 451.673 475 1051.6
20 451.703 505 1118.0
21 451.734 536 1186.5
22 451.765 567 1255.1
23 451.797 599 1325.8
24 451.83 632 1398.8
25 451.864 666 1473.9
26 451.898 700 1549.0
27 451.934 736 1628.6
28 451.969 771 1705.9
29 452.006 808 1787.6
30 452.044 846 1871.5
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Given an initial height z denoted by z j, the spring constant k
(
z j
)

and F0
(
z j
)

can be evaluated from
Equation (7). The solution of the static equilibrium state given by Equation (25) with the left end
clamped is easily obtained as

w∗
(
z j
)
=

−F0
(
z j
)(

c22I2 −
k(z j)Lb

3

3

) (x3
2

6
−

x2
2Lb

2
). (72)

During measurement, the vibration amplitude w of the prong is controlled as a small constant
denoted by Aconst (which is called amplitude modulation AFM, or AM-AFM) so as not to touch the
sample, the distance s

(
z j
)

between the tip and sample is

s
(
z j
)
= z j −w∗

(
z j
)
−Aconst (73)

Then, by solving Equation (71) the natural frequency and frequency shift (∆ f ) can be obtained for
this given initial height z j. Varying the initial height means varying the distance s

(
z j
)

and the frequency

shift can be plotted as function of s
(
z j
)
, as shown in Figure 10 in the far-range regime 20

◦

A ≤ s ≤ 60
◦

A.

Including the shot-range repulsive regime
(
3
◦

A ≤ s ≤ 5
◦

A
)
, ∆ f vs. s is plotted in Figure 11.
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Figure 11. Frequency shift ratio versus the tip-sample distance, including the short-range
repulsive regime.
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As to the experimental work, due to the piezoelectric effect of the single-crystal quartz, QTF can
sense the frequency shift. If the tip-sample distance s(z) can be measured, the frequency shift ∆ f as a
function of s

(
z j
)

can be obtained experimentally as

∆ f = g(s). (74)

However, the relationship between the frequency shift and the force gradient is not available from
QTF measurement. This hindered us finding the tip-sample force, but it can be obtained by solving the
equations of motion established from proper physical modeling. From the equation s = z−w∗(z) −w
we have a fixed value of z and therefore the fixed value of static deflection w∗(z),

∂F
∂w

=
∂F
∂s

∂s
∂w

= −
∂F
∂s

. (75)

The solution of (71) gives

∆ f = h(∂F/∂w) = h(−∂F/∂s), or
∂F
∂s

= −h−1(∆ f ) (76)

With the use of (74) and (75), Equation (76) becomes

∂F
∂s

= −h−1(g(s)) = p(s) (77)

The integration of Equation (77) provides the tip-sample force as

F(s) ≈ F(s) − F(∞) =

∫ s

∞

p(s)ds (78)

In short, the QTF experiment produces the frequency shift as function of distance s, such as in
Equation (74). Physical modeling gives the frequency shift as function of the force gradient, like in
Equation (76). Combining these two functions and performing integrations numerically, the tip-sample
interaction force as a function of s comes out. Since the interaction force is the negative gradient
of the potential, therefore, the integration of Equation (78) again gives a negative potential for the
tip-sample interaction.

4.4. Experimental Test for the Natural Frequency

To support the proposed physical model based on elasticity and dynamics, an experimental test
for the natural frequency of the first flexural-bending and anti-phase mode was executed. If a QTF
of tiny size as the one used in Section 4.3 may not be available at hand, a QTF of moderate size can
be obtained from a wristwatch by etching out the epoxy packing. Since the geometrical dimensions
influence the natural frequency significantly, the length, width, and gap between the two prongs are
measured by microscope as shown in Figures 12–14. The length and width of the proof mass are shown
in Figures 15 and 16. The thickness of the QTF is measured by using SEM as shown in Figure 17.

The results of analytical solution, finite element simulation using commercial code COMSOL, and
the experimental measurements are listed in Table 2.

Table 2. Natural frequency of the first in-plane anti-phase mode from experiment, FEM (finite element
method), and theoretical analysis.

Experiment Analysis FEM

Frequency (kHz) 32.768 (kHz) 33.367 (kHz) 31.466 (kHz)

Error (%) - 1.83% −3.97%
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Figure 17. Thickness measurements from an SEM image. (a) The top view of the QTF. (b). The side
view of the QTF.

From Table 2, it is clear that the natural frequency predicted by theoretical analysis is closer to
the experimental one than that obtained by finite element analysis. The reason for this is that the
theoretical result is obtained by solving the equations of motion of the system exactly, so the eigenvalue
(natural frequency) and eigenfunction (mode shape) should approach the true solutions. The only
error comes from the small discrepancy between our equations of motion and the true equations of
motion, while the method of finite element uses the admissible functions to replace the unknown
eigenfunctions. The solution process is explained in Appendix C.

5. Conclusions

Although non-contact QTF can provide the frequency shift, due to the tip-sample interaction as a
function of their distance, the high resolution images of the tested molecules, atoms, or living cells
need precise physical modeling for providing the relationship between the frequency shift and the
force gradient. The popular physical model contains a simple harmonic oscillator or two coupled
oscillators. However, it encounters the problem of determining the spring constant correctly. This is
still controversial among researchers. In the paper, we proposed a new physical model, which models
the QTF as elastic bodies instead of point mass oscillator. Based on the elastic theory and analytical
dynamics, we can completely solve the problem of finding the relationship between the frequency
shift and force gradient.
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Appendix A

The kinetic energy of the prong is T =
∫
τ
(1/2)uiuiρdτ, where the repeated indices means

summation over that index, τ the volume of the prong, and ρ the density. Then∫ t f
ti
{δT}dt =

∫ t f
ti
δ
{∫
τ

1
2 u2

i ρdτ
}

=
∫ t f

ti

{∫
τ

[
ρuiδuidτ+ 1

2 u2
i δ(ρdτ)

]}
dt

=
∫ t f

ti

{∫
τ
ρui

∂(δui)
∂t dτ

}
dt

(A1)

since δ(ρdτ) = 0 due to local mass conservative [26]. The two operators δ and d can be interchanged.
Integration by parts, Equation (A1) becomes∫ t f

ti

{δT}dt =
∫
τ
ρ

{
[uiδui]

∣∣∣t=t f
t=ti
−

∫ t f

ti

..
uiδuidt

}
dτ =

∫
τ
ρ

{
−

∫ t f

ti

..
uiδuidt

}
dτ (A2)

where no variation at the end points, that is, δu(ti) = δu
(
t f

)
= 0, has been used.

The substitution of Equation (13) into (A2) gives∫
τ
ρ
{
−

∫ t f
ti

..
uiδuidt

}
dτ =

∫
τ
ρ
{
−

∫ t f
ti

[ ..
u1δu1 +

..
u2δu2 +

..
u3δu3

]
dt

}
dτ

=
∫
τ
ρ
{
−

∫ t f
ti

[( ..
w
)
δw +

(
x1

2 ..
w,2

)
δw,2

]
dt

}
dτ

(A3)

Integration by parts the second term in the right-had side of Equation (A3) yields∫
τ
ρ
{
−

∫ t f
ti

[(
x1

2 ..
w,2

)
δ ∂w
∂x2

]
dτ

}
dt

= −
∫ t f

ti
ρ
{∫
∂τ

[(
x1

2 ..
w,2

)
δw

]∣∣∣∣x2=L

x2=0
dS−

∫
τ

(
x1

2 ..
w,22

)
δwdτ

}
dt

(A4)

Substituting (A4) into (A3) and (A2) gives Equation (16).
The first integration by parts the right-hand side of (18) gives

∫ t f
ti

{∫
τ

[
−

(
c22x1

2w,22
)
δ
∂w,2
∂x2

]
dτ

}
dt =

∫ t f
ti

{∫
τ

[
−

(
c22x1

2w,22
)∂(δw,2)

∂x2

]
dτ

}
dt

= −
∫ t f

ti
c22

{∫
∂τ

[(
x1

2w,22
)
δw,2

]∣∣∣∣x2=Lb

x2=0
dS−

∫
τ

[(
x1

2w,222
)
δw,2

]
dτ

}
dt

(A5)

Integrating the second term in the right-had side of (A5) gives

−

∫
τ

[(
x1

2w,222
)
δ ∂w
∂x2

]
dτ

= −
∫
∂τ

[(
x1

2w,222
)
δw

]∣∣∣∣x2=Lb

x2=0
dS +

∫
τ

[(
x1

2w,2222
)
δw

]
dτ

(A6)

Appendix B

The non-zero entries of the matrix
[
Mi j

]
in Equation (66) are

M11 = M23 = M25 = M35 = M37 = 1,

M41 = d
2 cosh ξ3Lm, M42 = d

2 sinhξ3Lm, M43 = − cosh ξ4Lm
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M44 = −sinhξ4Lm, M46 = ξ1, M48 = ξ2,

M51 = −I1ξ3sinhξ3Lm, M52 = I1ξ3 cosh ξ3Lm, M55 = dI2ξ2
1,

M55 = −dI2ξ2
2, M65 =

(
ρω2ξ1 + c22ξ3

1

)
sinhξ1Lb,

M66 =
(
ρω2ξ1 + c22ξ3

1

)
cosh ξ1Lb, M67 =

(
−ρω2ξ2 + c22ξ3

2

)
sin ξ2Lb,

M68 =
(
ρω2ξ2 − c22ξ3

2

)
cos ξ2Lb,

M75 = ξ2
1 cosh ξ1Lb, M76 = ξ2

1sinhξ1Lb, M77 = −ξ2
2 cos ξ2Lb,

M78 = −ξ2
2 sin ξ2Lb, M8,9 = 1, M8,11 = 1,

M91 = d
2 cosh ξ3Lm, M92 = d

2 sinhξ3Lm, M93 = cosh ξ4Lm,
M94 = sinhξ4Lm, M9,10 = −ξ1, M9,12 = −ξ2 ,

M10,1 = I1ξ3sinhξ3Lm, M10,2 = I1ξ3 cosh ξ3Lm, M10,9 = −dI1ξ2
1,

M10,11 = dI2ξ2
2, M11,9 = (ρω2ξ1 + c22ξ1

3)I2sinhξ1Lb + kbbh cosh ξ1Lb,
M11,10 = (ρω2ξ1 + c22ξ1

3)I2 cosh ξ1Lb + kbbhsinhξ1Lb,
M11,11 = (−ρω2ξ2 + c22ξ2

3)I2 sin ξ2Lb + kbbh cos ξ2Lb,
M12,9 = ξ2

1 cosh ξ1Lb, M12,10 = ξ2
1sinhξ1Lb, M12,11 = −ξ2

2 cos ξ2Lb,

M12,12 = −ξ2
2 sin ξ2Lb.

Appendix C

The QTF used in Section 4.4 is free of the tip-sample force, the deflections of the two prongs are of
mirror-symmetry, that is, if the transverse displacement of the lower prong is w(x2, t), the upper prong
is −w(x2, t). The proof mass experiences only pure wrapping deformation, i.e., the inclination variable
in Section 3.1.1 is zero, or β(x2, t) = 0. The general solution of the prong is

W(x2) = R1
(2) cosh ξ1x2 + R2

(2)sinhξ1x2 + R3
(2) cos ξ2x2 + R4

(2) sin ξ2x2 (A7)

where ξ1 and ξ2 are given by (34a,b). The general solution of the proof mass is

Ψ(1)(x2) = R1
(1) cosh ξ3x2 + R2

(1)sinhξ3x2 (A8)

where

ξ3 =

√
−ρI1ω2 + c66I2

c22I1
(A9)

The substitution of Equations (A7)–(A9) into the six boundary and interface conditions yields the
algebraic equation [

Mi j
]
6×6

{
R j

}
= 0 (A10)

where
{
R j

}
=

[
R1

(1) R2
(1) R1

(2) R2
(2) R3

(2) R4
(2)

]
.

The non-zero entries of the matrix
[
Mi j

]
are

M11 = M23 = M25 = 0, M31 = − d
2 cosh ξ3Lm, M32 = − d

2 sinhξ3Lm,

M34 = ξ1, M36 = ξ2, M41 = −I1ξ3sinhξ3Lm,

M42 = −I1ξ3 cosh ξ3Lm, M43 = d
2 I2ξ1

2, M45 = d
2 I2ξ2

2,
M53 = (ρω2ξ1 + c22ξ1

3)sinhξ1Lb, M54 = (ρω2ξ1 + c22ξ1
3) cosh ξ1Lb,

M55 = (−ρω2ξ2 + c22ξ2
3) sin ξ2Lb, M56 = (ρω2ξ2 − c22ξ2

3) cos ξ2Lb,
M63 = ξ1

2 cosh ξ1Lb, M64 = ξ1
2sinhξ1Lb,

M65 = −ξ2
2 cos ξ2Lb, M66 = −ξ2

2 sin ξ2Lb.
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