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Abstract: Extending the internet of things (IoT) networks to remote areas under extreme conditions
or for serving sometimes unpredictable mobile applications has increased the need for satellite
technology to provide effective connectivity. However, existent medium access control (MAC)
protocols deployed in commercial satellite networks were not designed to offer scalable solutions
for the increasing number of devices predicted for IoT in the near future, nor do they consider other
specific IoT characteristics. In particular, CubeSats—a low-cost solution for space technology—have
the potential to become a wireless access network for the IoT, if additional requirements, including
simplicity and low demands in processing, storage, and energy consumption are incorporated
into MAC protocol design for satellite IoT systems. Here we review MAC protocols employed or
proposed for satellite systems and evaluate their performance considering the IoT scenario along
with the trend of using CubeSats for IoT connectivity. Criteria include channel load, throughput,
energy efficiency, and complexity. We have found that Aloha-based protocols and interference
cancellation-based protocols stand out on some of the performance metrics. However, the tradeoffs
among communications performance, energy consumption, and complexity require improvements in
future designs, for which we identify specific challenges and open research areas for MAC protocols
deployed with next low-cost nanosatellite IoT systems.

Keywords: CubeSats; internet of things; medium access control; nanosatellites; sensor networks;
wireless access networks

1. Introduction

From the beginnings of space exploration, satellites were large objects that took years to
construct and cost billions of dollars for a single unit. With more advanced and smaller technologies,
cheaper spacecraft (stand alone satellites and constellations of satellites) have evolved for diverse
applications, telecommunication applications being most prominent. Commercial satellite companies
like Iridium, Intelsat, O3b, and others offer a portfolio of products, including voice services, broadband,
and sensor data collection, with extensive coverage of the Earth’s surface. For example, Figure 1 shows
the approximate coverage of just one geostationary satellite located at a longitude of 91◦ W.
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Figure 1. Approximate coverage of a geostationary satellite located at 91◦ W.

With the internet of things (IoT), the paradigm that promises to revolutionize our world with the
collection of enormous quantities of data, the connectivity demands are being increased around the
globe. It is estimated that the IoT communications market will have an impact in the economy close
to three to 11 trillion dollars per year in 2025 [1]. Nonetheless, terrestrial technologies do not fully
cover the Earth’s surface yet. It is in such a scenario that satellite technology seems to offer the critical
solution to the problem of global connectivity. However, traditional satellites are expensive—Iridium’s
NEXT constellation of 75 satellites costs three billion dollars [2]—and thus novel, cheaper satellite
solutions have become the focus of growing interest.

With the need for more coverage of the IoT networks and the search for cheaper solutions,
nanosatellites may be the best answer for the global connectivity that the IoT demands.
The nanosatellite standard, the CubeSat with a volume of less than one liter and a weight of less
than one kilogram, also offers access to space and satellite development for countries that previously
had no experience in space sciences. Nevertheless, the performance of such a solution will largely
depend on the low-level protocols selected for the network architecture.

At the core of network architecture are the medium access control (MAC) protocols. Given the
broadcast nature of channels in satellite communications, a MAC protocol ensures the proper
coordination of frame transmissions, together with the logic for retransmissions and the recovery
of data in case of collisions. In the past, there have been comprehensive reviews related to MAC
protocols for satellite technology and also in the context of IoT. Peyravi [3] compiled a thorough
revision and evaluation of MAC protocols for satellite communications. Although the study includes
an evaluation with objective metrics such as throughput, buffer occupancy, scalability, stability,
and reconfigurability, these metrics have been defined in the context of a constellation of geostationary
satellites, which highly differ from the network conditions provided by smaller satellites deployed in
lower orbits. Other similar surveys that focus on resource allocation and MAC protocol comparisons
in conventional satellite systems are presented in Gaudenzi et al. [4] and Herrero et al. [5].

A more recent survey by De Sanctis et al. [6] makes the case of applicability of satellite
communications for IoT and machine to machine (M2M) systems, also mentioning the potential
of employing CubeSats within this context. Although the authors do provide a review of MAC
protocols, no quantitative or comparative evaluation is provided for the MAC protocols reviewed in
the work. Other works discussing the applicability of (small/nano) satellites in broadband internet
access, IoT, and M2M communications can be found in [6–10]. The mentioned works, however,
do not cover specific evaluations related to MAC protocols. Reviews devoted to the IoT, the enabling
technologies, and services are also found in [11–14]. The focus of such works is more general except
for the revision of MAC protocols for IoT presented by Oliveira et al. [14]; nevertheless, besides the
fact that the mentioned works do not include a quantitative performance evaluation and comparison,
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a good part only discuss terrestrial IoT wireless technologies; hence, the discussion is oriented to
different channel and network conditions from the ones addressed in this survey.

The contributions of this paper are threefold: (1) we review MAC protocols employed or
proposed for satellite systems from a novel viewpoint that considers the restricted characteristics of
CubeSat technology for wireless communications together with the particular requirements of IoT
services and applications; (2) we provide a comparative quantitative and qualitative evaluation of the
current protocols with metrics including communications performance (i.e., throughput, channel load,
packet loss), dependency of network topology, implementation complexity, and energy consumption;
and (3) we discuss the open research and implementation challenges to address by the next generation
of nanosatellite networks for IoT environments.

The remainder of this paper is organized into seven sections. In Section 2 we present the
fundamental aspects of satellites, space communication systems, and nanosatellites technology. It also
includes a discussion about the IoT requirements. In Section 3 we introduce the specifics about the
proposed IoT scenario served by a constellation of CubeSats. In Section 4 we provide the backgrounds
on MAC layer protocols and introduce the metrics for evaluation. Section 5 presents a detailed review
of MAC protocols designed and developed for satellite systems and other IoT-related technologies.
It also includes a performance evaluation with objective metrics relevant to the IoT study scenario.
In Section 6 we discuss the advantages and shortcomings of the existent protocols and identify the
open challenges. Section 7 presents the final remarks.

2. Overview of Space and Communications Systems

2.1. Satellites Evolution

In the 1950s, the Soviet Union launched Sputnik I, the first artificial satellite that orbited the
Earth. This milestone marked the beginning of a competition between two powerful countries that
had, as one of its consequences, an accelerated technological development in aerospace sciences.
Satellites created in the decades after the beginning of this competition were designed for very specific
missions, and each development had its own subsystems—energy, command and data handling,
attitude control, etc.—which allowed the particular requirements of a given project to be met. Such a
design methodology involved an extremely expensive process due to the constant iterations necessary
to create a new device, and the difficulties in reusing previous versions and designs.

One early shift occurred when, due to the use of modular systems, the main bus was designed to
be flexible and reconfigurable according to the goal of each mission. As a result of reducing the costs
in developing one unit, constellations of these spacecraft began to be feasibly designed and used by
those countries and companies that could afford the still enormous cost of development. Depending
on the configuration, these formations could increase the instantaneous global coverage and reducing
revisiting times, among others benefits.

A large number of satellites now dot the skies for diverse applications such as navigation, imaging,
meteorology, and communications. Some of the most significant applications are the following:

• Positioning systems: constellation of satellites located in medium height orbits (approximately
20,000 km) that make it possible to determine the position of an object on the Earth’s
surface in a given coordinate system. There are several systems belonging to different
countries, namely: GPS (USA—24 satellites), global orbiting navigation satellite system
(GLONASS) (Russia—24 operational satellites), GALILEO (European Union—24 satellites),
BEIDOU (China—17 operational satellites).

• Earth observation: Several satellites with a wide variety of cameras in different spectral bands
have been sent to space. Defense and security, cartography, and meteorology are some of the
disciplines that have benefited from these types of missions.

• Communications: Satellite systems that provide voice services, satellite television service,
and narrowband/broadband connectivity through standalone satellites or constellations.
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The Union of Concerned Scientists (UCS) maintains a count of operational satellites orbiting the
Earth. In Figure 2 we illustrate the distribution, according to the country of origin and the type of orbit,
for the 1957 active satellites reported up to 30th November 2018 [15].
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Figure 2. Active Earth orbiting satellites, separated by country of origin and type of orbit, from a total
of 1957 active satellites reported until 30th November 2018. Data published by the Union of Concerned
Scientists (UCS) in its annual report [15].

2.2. Communication Satellite Systems

One of the areas in which satellites have been relevant is in communication networks. Due to the
innate capacity of these spacecraft to cover the whole terrestrial surface, satellite systems are able to
provide connectivity to remote or isolated areas that by other means are almost impossible to connect.

There are three main types of architecture used in satellite communication systems: store and
forward, bent-pipe, and crosslink [8]. In the first, the satellite retrieves data from one point, stores it
for some time, and then downloads it to the first ground station it establishes a connection with.
In the second case, the satellite acts as a relay, collecting data and retransmitting it to another point on
Earth. In the crosslink architecture, the data is transmitted immediately through a satellite network via
inter-satellite links.

Satellite communication systems can be deployed in different orbits, offering a different set of
services according to the channel/network conditions derived from the characteristics of the orbit of
deployment. The types of orbits are the following:

• Geosynchronous equatorial orbit (GEO): This corresponds to an orbit whose rotation period is
the same as the Earth’s. Consequently, the satellite seems to “stand still” to an observer at one
point on the planet. To achieve this effect, the satellites are placed at a distance of approximately
35,786 km from Earth. Given such a long distance, the communication delays are considerable,
in the order of 120 ms, in the satellite-ground direction or vice versa, for the best scenario; also,
the transmission power required to establish effective links is high. Nevertheless, these systems
have an excellent and broad coverage, reaching a 30% of the Earth’s surface. The placement
process of a satellite into this orbit is an expensive task, and in order to remain at that position,
the crew on the ground must perform orbital maneuvers from time to time.

• Low Earth orbit (LEO): Most of the satellites in space today are placed in this type of orbit.
Its height ranges from 300–2000 km and, therefore, the delay in communications is low, in the
order of tens of milliseconds for the worst case. The transmission power required to establish
the links from this orbit are as low as hundreds of milliwatts [16]. Satellites in this orbit have low
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temporal and spatial coverage. Because of the speed—about 7.5 km per second for a satellite in a
500 km orbit—the Doppler effect has to be considered in these systems.

• Medium Earth orbit (MEO): Heights are between the low and geostationary orbits—2000–
35,786 km. One example system, the O3b network, is placed at a height of 8000 km and has a
theoretical minimum delay of 26 ms satellite-ground, or vice versa. All global navigation satellite
systems (GNSS) constellations are placed in this orbit.

• Highly elliptical orbit (HEO): Orbits with a large apogee and a small perigee. The most famous of
this kind is the Molniya orbit, which offers large coverage for high latitudes. Another example
is the Tundra orbit. In Molniya, the apogee is greater than a geostationary—about 40,000 km.
Satellites in this particular orbit have an approximate period of 12 h. The Soviet Union was the
first country to use it to provide communication services throughout its territory and also to
obtain meteorological images.

The classical services provided by satellite communication systems are the following:

• Broadband communications: The commercial satellite networks providing this service offer
connectivity with broadband data rates. For example, the new Iridium’s NEXT constellation
offers connectivity at 1.5 Mbps [17], whereas the Inmarsat’s BGAN HDR offers connections
at 800 kbps [18]. Generally, stations on the ground require a large antenna along with a high
transmission power to establish effective links. Satellites serving broadband communications
usually operate in the Ka, Ku, L, and C bands.

• Voice services: Using small devices such as satellite telephones, these satellite systems offer voice
connectivity on almost any part of the planet.

• Signaling services: In this area, some of the highlight services are the reception of automatic
identification system (AIS) and automatic dependent surveillance broadcast (ADS-B) signals,
which can track the path of vessels and aircraft, respectively.

• Sensor data collection: These satellite systems offer services at low data transfer rates, which allow
data to be retrieved from small sensors placed on the ground.

Table 1 provides a list of some of the commercial constellations providing communication services
in different orbits.

Table 1. A set of commercial constellations providing communication services as of 2018.

Company Number of Satellites Orbit Services

Inmarsat 13 GEO Broadband
Viasat 4 GEO Broadband

Intelsat 52 GEO Broadband
O3b 16 MEO Broadband

Iridium 66 LEO Voice, broadband
Globalstar 24 LEO Voice, broadband

2.3. CubeSats

Traditionally, most of the projects for designing and building satellites have been excessively
expensive. They involved complex designs and, consequently, long development time spans. However,
starting in the 1980s, a new paradigm was established that significantly reduced the size of some
satellites, leading to the appearance of microsatellites and, in the 2000s, the creation of nanosatellites
or CubeSats: aircraft whose weight is equal to or less than one kilogram.

The CubeSat standard was created in 1999 at the California Polytechnic State University in
conjunction with the Stanford University’s Space Systems Development Lab. The development of this
standard aimed at improving access to space by providing opportunities for satellite development,
design, and construction to institutions that could not do so with the classical paradigm. Figure 3
shows the number of Cubesats launched and operational to date.
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Figure 3. CubeSats launched since 1998. Data taken from the database at [19].

The basic design of a CubeSat consists of a 10-cm cube—called 1U—which must contain the
primary subsystems for the operation: an onboard computer, batteries, transmitters and receivers for
communication, and attitude determination and control system (ADCS), among others. The cubic
shape and volume defined for this new standard considerably reduce launching costs, but, at the same
time, incorporate restrictions regarding availability of computational resources, energy, and volume,
among others.

Initially, the development of nanosatellites was intended to test components and study their
behavior in the space environment. Nowadays, applications have spread widely with projects led
by universities, governments, and commercial entities. Moreover, and of interest to the authors,
this technology represents an excellent opportunity for developing countries to exploit space resources
in addition to providing a tool to democratize the use of space [20].

In South America, for example, several countries have taken advantage of nanosatellite
technology to promote educational initiatives within universities, including, the Libertad-1 in Colombia
(Sergio Arboleda University) [21], PUCPSAT in Peru (Catholic University of Peru) [22], SUCHAI-1 in
Chile (University of Chile) [20], to mention just a few. In the commercial field, new companies have
appeared in the market for developing and selling CubeSat parts and pieces; other companies make
use of CubeSats for applications such as satellite imaging collection. Government agencies, such as
NASA and ESA, developed nanosatellite-related missions. One of the most notable examples is the
experimental use of two CubeSats—Mars Cube One (MarCO) A and B—as communication relays for
the InSight-1 probe that landed on Mars in November 2018.

2.4. IoT and M2M Requirements

Cisco forecasts that by the year 2020 the number of devices connected to the internet will exceed
50 billion [23], an increase that raises a connectivity challenge for these new massive networks. It is
in this field that the capabilities of the new low-cost nanosatellite networks could be instrumental in
achieving a global connectivity, as demanded by the fifth generation networks.

The IoT and machine-to-machine networks are characterized by their intention to meet one or
more of the following requirements:

• Efficient performance against explosive traffics
• Low data rates in terminals
• Energy efficiency
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• Low cost terminals
• Mobility and scalability
• Minimization in the use of spectrum
• Minimum signaling
• Data security
• Data integrity
• Reliability
• Robustness
• Flexibility

In the case of terrestrial wireless access networks, various solutions have been developed to
meet the above requirements. For low consumption sensor arrays deployed across extensive areas,
technologies such as LoRaWAN [24] and Sigfox [25] are available; for sensors and actuators networks
deployed in urban environments, there are Wi-Sun [26] and NB-IoT [27], to mention some of the
available technologies. There are also autonomous sensor networks interconnected to provide
solutions to specific applications involving short-range technologies, such as IEEE 802.15.4 [28].
Despite the advances with the introduction of these new technologies, there are scenarios for which
existing networks do not offer feasible solutions. Remote places without connectivity still exist; also,
some monitoring applications in isolated places require devices with high and unpredictable mobility
to collect information on-the-move (e.g., monitoring of wild animals in areas of difficult access).
Considering the scenarios mentioned above, microsatellites and CubeSats appear as viable alternatives
to cover the gap in providing fully connected global communications networks for the IoT [6,10].
An example scenario of a CubeSat providing IoT connectivity is illustrated in Figure 4.

Figure 4. Illustrative scenario in which a CubeSat (or a constellation of them) provides connectivity for
internet of things (IoT) applications.

One of the challenges of these new massive networks is to enable the many terminals to share
a physical resource—the broadcast communications channel—in an efficient and orderly manner.
Such a challenge would necessarily make use of the medium access control layer, which corresponds
to a sub-layer of the link layer of the open system interconnection (OSI) model and is responsible
for coordinating frame transmissions in broadcast links. The specific MAC protocol used for IoT
applications will need to fulfil a number of requirements including increased average throughput,
to meet a minimum level of fairness as well as to comply with the resources, requirements,
and limitations of the access technology in use. Another critical aspect to consider in the choice
of a MAC protocol is the network topology and how much knowledge the nodes have or need
about that topology.
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To examine the fulfillment of the IoT and M2M networks requirements, from a MAC layer
perspective in the case of this study, together with the restrictions imposed by the capabilities of
the CubeSats, will shed light about the viability to provide IoT connectivity using nanosatellites.
The reviews and discussion presented in the coming sections address all of the IoT and M2M
requirements listed above, except the ones related to data security and data integrity. Whilst security
aspects are of paramount importance in the IoT ecosystem, we direct the interested reader to specialized
works on this subject discussing security threats and mitigations for a variety of IoT technologies and
architectures [29–32] and specifically for satellite communications [33–35].

3. IoT Scenario of Study

In order to exploit the full capabilities of the IoT, connectivity is a major issue to be solved in the
task of recovering the amount of data generated by the—expected—billions of sensors forecasted to be
deployed in coming years. Although some existent IoT technologies, like LoRa and SigFox, claim to
have large coverage—40 and 20 km in rural environments, respectively [36]—they are not even close to
the coverage that satellite systems can provide. Nevertheless, satellite connectivity is still considered
very expensive and poor in terms of energy efficiency. It is in this context that researchers consider that
the CubeSat standard could be a feasible solution to mitigate the above mentioned disadvantages of
traditional satellite networks, lowering the costs of satellite systems and making it a viable alternative
to current wireless technologies for IoT connectivity.

In this context, the scenario to be considered in this review corresponds to a CubeSat constellation,
with no inter-satellite connectivity, whose main purpose is retrieving small amounts of data from
sensors placed on the ground at a low data rate. The constellation will be deployed in several orbital
planes belonging to the Low Earth orbit; each orbit with a height ranging between 500–600 km and
with an inclination close to 97◦. Each nanosatellite from the constellation will face the same problem:
as it orbits around the planet, it will have to recover data from a network on Earth whose number of
nodes and geographic distribution is unknown and (possibly) changing continuously. Analyzing the
case for one satellite—the master—and several ground sensors—the slaves—will be representative of
the problem to be faced by the complete fleet.

The satellite communication system uses the 400 MHz band, which has low propagation losses
compared with the typical bands employed by commercial companies offering satellite broadband
services. Such frequencies are in the range of the amateur frequency band used and proven to work by
most of the CubeSat projects deployed to date [16]. The communications are half-duplex and have
an expected maximum data transmission rate of 100 kbps, which is similar to the rate offered by
commercial developments of transceivers for nanosatellites [37]. It is assumed that the antennas in
use, as well as the transmission power and the receivers’ sensitivity, are adequate to establish effective
data links for most nodes under the coverage area of the nanosatellite. However, it is expected that
the furthest nodes from the nanosatellite are less likely to generate a correct link due to the greater
distances to be covered.

As mentioned above, the sensors are distributed randomly in any geographical area on Earth.
A sensor node is not aware of the network topology, and the spacecraft does not know in advance
how many devices needs to serve in an area of coverage. Each sensor generates a quantity of data
independent of the others. It is also assumed there is no temporal synchronization among the sensors
nodes, nor between the sensor nodes and the nanosatellite.

4. Background on MAC Protocols

MAC layer groups a set of protocols and mechanisms in order to distribute the resources for
the nodes to make an effective (and efficient) use of the communications channel. The resources are
typically distributed in terms of time assignment, frequency assignment or code assignment. In the
particular case of broadcast links, a MAC protocol is in charge of coordinating the frame transmission.
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Each MAC protocol is designed to cover different requirements, and its performance can be
quantified with different metrics. In some cases, the priority is set to the performance concerning data
transmission rate, for which the normalized offered load and the normalized throughput are measured.
Other priorities may include measurements of delays in sending data or the packet loss ratio (PLR).
In the particular case of IoT applications, there may be limitations regarding processing capabilities,
available storage, hardware complexity, and energy consumption.

In this section, the authors provide a set of metrics that can quantify the fulfillment of the different
requirements objectively. We also present the traditional categorization employed to classify the
existent MAC protocols for broadcast channels.

4.1. Evaluation Metrics

4.1.1. Normalized Offered Load (C)

The normalized offered load (C) is the quotient between all the data injected into the network and
the maximum data that could be sent at the transmission rate of the link. The latter corresponds to
the product of the transmission rate and the total transmission time. The normalized offered load is
calculated according to the following formula:

C =
∑ Di
Tx · tt

, (1)

where Di is the data sent to the satellite by sensor i, Tx is the link transmission rate, and tt is the total
transmission time.

4.1.2. Normalized Throughput (S)

The normalized throughput is the quotient between the data received by the satellite in a given
time and all the data that could be sent continuously at the transmission rate of the link. It can be
interpreted as how effective is the use of the channel. It is always true that S ≤ C. The normalized
throughput is calculated according to the following equation:

S =
Dr

Tx · t
, (2)

where Dr is the amount of data received by the satellite, Tx is the link transmission rate, and t is an
arbitrary time.

4.1.3. Packet Loss Ratio (PLR)

PLR corresponds to the proportion of data lost or received with errors due to miscoordinations
of frame transmissions, and that cannot be recovered over the total amount of data sent. The PLR is
calculated as follows:

PLR =
Pl
Ps

, (3)

where Pl is the number of lost packets and Ps is the number of packets sent. This ratio turns out
to be important when energy efficiency is required, since a high PLR may trigger a high number of
retransmissions when implementing a reliable link layer, which may mean more waste of energy.
In general, the channel performance is analyzed by examining the supported channel load for a
target PLR, which is commonly considered on the order of 10−3 in the literature. In some cases,
the normalized load achieved with a target PLR = 10−3 is very low, making it necessary to consider
worse PLR values in the analysis, e.g., PLR = 10−2.

The relation among the three metrics presented above is described by the following equation:

S = C(1− PLR). (4)
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4.1.4. Energy Consumption

From the point of view of MAC protocols, energy consumption is directly affected by the length
of time in which data is being sent and received; to a lesser degree, energy consumption is also
affected by the amount of processing required by the protocol. To evaluate the energy consumption,
the length of time the transceiver is in transmission, reception, and idle modes should be compared.
The consumption on each state depends specifically on the model of transmitter/receiver that is being
used and the chosen MAC protocol. For example, in SigFox, the current consumption is 11 mA in
reception mode and 125 mA in transmission mode [38]. The peak current consumption is about 32 mA
and a range from 120 mA to 300 mA, in the cases of LoRa and NB-IoT, respectively [39].

In general scenarios, the main energy limitation is found in the terminal nodes, since in most cases
the receiving station has a virtually infinite energy source (e.g., a base station in a cellular network,
a WiFi access point, etc.). In our study scenario, the case is different since CubeSats may also have
energy limitations. Nevertheless, it is expected that energy limitation in the sensor nodes will be
considerably higher than in the spacecraft.

4.1.5. Complexity of Implementation

In the context of CubeSats and low-cost satellite solutions, the complexity of implementation
turns out to be a relevant factor. For this reason, aspects such as the need of high processing availability,
the presence of very specialized hardware, and large amounts of required storage, should be considered
as directly impacting the complexity of a given MAC protocol.

Usually, on-board computers (OBC) employed on CubeSats are microcontrollers such as the
Microchip PIC24 or the Texas Instruments MSP430, which are very limited in terms of computational
resources. Newer OBCs using the ARM Cortex family or ATMEL devices are already available in the
market for nanosatellites, but they still are in the category of modest processors.

4.2. MAC Protocols Categories

A brief categorization of the MAC protocols is provided as follows [3]:

• Fixed Assignment: Protocols in this category are characterized by assigning a limited resource
equitably and fixedly between different interlocutors. The resource can be a frequency channel,
a time interval or a code, deriving in the well-known mechanisms frequency division multiple
access (FDMA), time division multiple access (TDMA), and code division multiple access (CDMA).
These protocols are characterized by being easy to implement, as well as being efficient in link
usage when they occupy all or most of their resources. However, protocols following a fixed
assignment are not very flexible to changes in data rates, nor are they tolerant to variations in the
number of stations since they require a coordinated allocation among all the stations involved.

• Random Access: These protocols are characterized by having a non-fixed number of users that,
without prior coordination, make use of the same channel (i.e., contention-based protocols).
Since the allocation of resources is random, more than one device may win the right to use the
channel at the same time, causing frame collisions. Therefore, protocols in this category cannot
guarantee the successful arrival of frames. Depending on the scenario, these protocols may waste
system capacity in failed transmissions (and retransmissions). However, they have a fundamental
role in networks whose previous characteristics (number of nodes, nature of traffic, etc.) are not
known in advance.

• On-demand: These protocols are designed for scenarios in which the terminals require sending
an unequal and variable amount of data; in that case, on-demand protocols can vary the allocation
of resources depending on the nodes requirements. For example, a TDMA-based protocol may
assign additional time-slots to nodes with higher requirements regarding data rate. To manage the
variable assignment of resources, these protocols usually require extra control signaling, such as
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the incorporation of the packet generation rate of each terminal as additional control information
in every message.

• Adaptive: These correspond to protocols designed to manage variable network conditions.
These protocols are intended to change the MAC logic dynamically. For example,
when communication is carried out among a few terminals, the MAC employs a random access
scheme; conversely, when the number of devices increases, it uses a fixed allocation scheme.

• Reservation: The goal of these protocols is to achieve a collision-free allocation of resources.
A typical way to achieve the collision-free scheme is the use of a subchannel dedicated to the
coordination of access for each station, in such a way that only one station transmits at a given
time. In that subchannel, the devices may rotate a testimony (i.e., a token) that indicates who has
the right to transmit on the channel. Most of these protocols make use of TDMA or variations of
Aloha to assign the token.

The last three categories are, in a general way, hybrids of the first two. This is mainly because the
network characteristics—number of nodes, data generation rates, network explosiveness, etc.—have
a nature that is essentially either random or deterministic. In this way, the dominant categories that
match the network characteristics are either random access or fixed assignment protocols.

In this work, the MAC protocols selected for review corresponded mainly to random access and
its derivations. These schemes were selected because, in the study scenario, it is infeasible to predict the
state of channel congestion at all times, which and how many nodes are within nanosatellite coverage,
and the amount of data each node wants to transmit.

5. MAC Protocols for Satellite IoT and M2M

The early satellite solutions traditionally employed protocols mainly based on fixed assignment
(e.g., CDMA, FDMA, and TDMA). In some cases, the protocol was combined with a random access
scheme to perform the adaptive assignment according to the demand of the nodes. An example of
an early protocol is the demand assignment multiple access [40]. Nonetheless, as mentioned before,
considering the nature of our study scenario, protocols in the random access category are more relevant
and suitable for the comparative evaluation.

The protocols selected in this section included several descendants of the well-known Aloha
protocol, since such derivations are present in current satellite systems and modern IoT technologies
such as LoRa and Sigfox. The selection also included other significant—and more modern—random
access protocols that were considered suitable for the IoT scenario described in Section 3, all applicable
to satellite environments and other IoT technologies. Such protocols make use of advanced techniques
like interference cancellation, and adaptiveness, among others.

5.1. Aloha-Based Protocols

The most representative random access protocol—and the inspiration for many other MAC
protocols—is Aloha, developed in 1970. Although this protocol is quite old and simple, in current
IoT developments Aloha plays a fundamental role. For example, leading IoT technologies that use
variations of this protocol are LoRa and SigFox. Furthermore, there are several applications and
modifications to Aloha reported for satellite environments in the literature. Some of them can be found
in [41–44] for the interested reader.

In Pure Aloha, nodes send data when they have data to send, hoping that a collision does not
occur. When the reception of a packet is successful, the receiver sends an acknowledgement (ACK);
otherwise, nodes retransmit the same packet after a random time [45,46]. The performance of this
protocol is quite modest. It achieves a maximum normalized throughput of S = 0.18 when C = 0.5.
In terms of packet loss rate, it achieves a PLR = 10−3 for an extremely low normalized load of
C < 10−3. The advantage of this protocol lies in its simplicity of implementation, since it does not
require pre-coordination or extra access control signaling [47]. When there is low load in the channel,
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the energy consumption of Aloha is efficient, since it only requires sending data and the reception of
an ACK, so the active consumption due to transmission and reception is proportional to the data and
ACKs transmission delays. Nevertheless, for high channel loads, the packet losses due to collisions
become high, which causes more retransmissions, overloading the channel with the associated wasting
of energy.

5.1.1. Slotted Aloha (S-Aloha)

The most similar version to Aloha is S-Aloha. It consists of discretizing the channel, where each
time slot has the duration of a packet transmission time [46]. The purpose of discretizing is to avoid
partial collisions among packets. S-Aloha is used, for example, in the sending of short packets and
requests to initiate communications in the DVB-RCS standard [48].

S-Aloha achieves a low normalized throughput of S = 0.368 when the normalized load is C = 1.
Similar to the case of pure Aloha, a channel load of C < 10−3 is supported when the PLR = 10−3. In the
case of a higher packet loss, PLR = 10−2, the normalized load is increased to C ' 0.01. Regarding the
complexity of implementation, it can be said that S-Aloha adds additional complexity since it requires
all the nodes to be synchronized, both on the ground and also on the satellite. Such a synchronization
requires us to consider the time margins in order to align the time-slots among nodes that have different
delays. Similar to pure Aloha, this protocol proves to be quite inefficient for high channel loads due to
the need for retransmissions.

For IoT aplications, S-Aloha is a good option in scenarios where the offered load is low and the
delays between nodes and base station do not have a large variation, but it becomes impractical if
the delays imposed on a satellite link are considered. An application of this protocol on the recent
Weightless-N IoT technology is reported in [49].

5.1.2. Diversity Aloha/Slotted Aloha (DA/DSA)

This protocol is considered for systems that have large transmission delays (e.g., satellites in
GEO orbits) and for which confirmations of packet reception are impractical [50]. In the diversity
Aloha/slotted Aloha (DA/DSA) protocol each terminal sends two or more copies of a packet at
different randomly selected times, without waiting for the reception of an ACK. The idea is to increase
the probability of packet reception and to avoid retransmissions; however, the consequence is an
overloaded channel. An application of this protocol in satellite environments is observed in the
IP-over-Satellite system for sending short packets and registration [51,52].

The maximum performance of this protocol is reported to be lower than for slotted Aloha. In DSA,
a maximum normalized throughput of S ' 0.3 is achieved for a C ' 0.6. However, when C < 0.5,
the performance of DSA is slightly better. In the case of a PLR = 10−2, the protocol supports a
normalized load of C ' 0.05 (compared to a C ' 0.01 in S-Aloha). DSA is similar in behavior to
S-Aloha in terms of implementation complexity and energy efficiency.

DA/DSA is suitable for links with large delays and offered loads less than C = 0.5. Nonetheless,
in IoT scenarios the channel load will tend to increase progressively with time, consequently DA/DSA
may not meet the scalability requirement, a crucial aspect in an IoT system like the one described in
the study scenario.

5.1.3. Spread Spectrum Aloha (SS-Aloha)

The protocol is proposed to provide random multiple access over an unsynchronized channel.
SS-Aloha uses spread spectrum techniques to send messages; it is similar to a CDMA protocol where
each terminal uses the same code to spread the signal and accesses the channel without coordination
(like in Aloha) [53]. The multiple access capability is given by the large bandwidth employed instead
of the assignment of different codes. In Figure 5, we illustrate the responses of a correlator detector
(at the satellite’s receiver) applied to signals from one terminal (see Figure 5a) and four terminals
(see Figure 5b). In this example, a spreading factor SF = 60 is used, in consequence, 60 chips are
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placed between two consecutive bits from the same terminal. In order to achieve multiple access,
spread spectrum Aloha (SSA) makes use of the offset in chips between two signals, so in Figure 5b,
the messages from the four terminals are still decodable. Previous evaluations of the SS-Aloha protocol
in a satellite environment are reported in [54].

Regarding the performance of SS-Aloha, thanks to the use of proper error correction codes,
the protocol achieves a maximum normalized throughput close to S ' 0.6 for a given load of C ' 0.7.
In the case of PLR = 10−3, the system supports a load of C ' 0.5 [5]. This protocol has a reduced
level of complexity because it does not require synchronization. However, the spread spectrum
technique has a strong dependency on the signal to noise plus interference ratio (SNIR) threshold in
the demodulator to operate correctly. SS-Aloha shows to be efficient in terms of energy consumption;
similar to Aloha, SS-Aloha only requires the sending of data packets with no need to send extra control
signaling or synchronization information.

The simplicity required in transmitters in addition to the good performance of SS-Aloha, compared
to previous protocols, may make this protocol suitable for IoT scenarios. However, when employed
in LEO satellite links, where the expected power imbalance is high, the performance of this protocol
drops drastically, behaving similarly to S-Aloha.

Figure 5. In (a), the signal received by the satellite from one transmitter. In (b), the signal received by
the satellite from four transmitters; signals are still decodable because of the offset of chips between the
different terminals. Figure adapted from [55].
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5.1.4. Enhanced Aloha (E-Aloha)

When sensor nodes of a telemetry application transmit data readings, they are usually configured
to send packets in a periodical way, with a fixed time interval between messages. In this scenario,
the E-Aloha protocol has been proposed as a simplified version of Aloha. At the time of sending,
nodes simply initiate transmission, with no additional control to avoid collisions; a confirmation of
reception is also not considered in the protocol. For some applications, nodes may end up with the
same time interval between packets, in which case the nodes will collide permanently, with no effective
communication. To avoid this situation, E-Aloha defines a time window—considerably longer than
the packet transmission time—located around the fixed sending time. Within this window, each node
selects randomly a new sending time, thus reducing the chances of permanent collisions among nodes
using the same time interval.

Figure 6 illustrates the behavior of the protocol for nodes originally colliding over the same time
interval (see Figure 6a), and the corrections made through the use of a time window around the fixed
sending times (see Figure 6b). E-Aloha was introduced in [43] for use in satellite systems devoted to
telemetry such as Argos.
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Figure 6. Example of E-Aloha operation where three users send packets at a rate of
1
T

packets/s. In (a),
the users wait a fixed time (T), in consequence, there is a permanent collision between the users 1 and 2;
whereas in (b) there is a time window (L) for selecting a new random sending time in order to avoid
permanent collisions. Figure adapted from [43].

The performance evaluation of this protocol considered the periodic traffic characteristic of typical
telemetry systems [43]. The reported results indicate that for a PLR = 10−1, the protocol achieves
a normalized throughput of S = 0.091, considering a channel load C = 0.101. The performance is,
then, very similar to the one reported for S-Aloha (C = 0.1 for a PLR = 10−1), with the advantage that
E-Aloha does not require time synchronization. Furthermore, there is less complexity in implementing
E-Aloha than for Aloha, in particular since E-Aloha does not require a specific logic implemented at
the receiver. By not requiring ACK, this protocol is energy efficient when the load on the channel is
very low (C ∼ 0.1). For higher loads, the performance of the protocol drastically decreases due to the
high number of collisions.

The simplicity of this protocol is desirable for the implementation on the IoT terminal node.
It actually behaves well for the reported channel loads found in the systems where the protocol has been
implemented. However, E-Aloha may lack the necessary scalability to support the future IoT networks.
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5.1.5. Random Frequency Time Division Multiple Access (RFTDMA)

Despite not being reported in satellite environments, this protocol has an important relevance in
low power wide area (LPWA) technologies, more precisely for its use in SigFox. Considering the ultra
narrowband (UNB) technology, this protocol acquires prominence when low cost transmitters that do
not require expensive oscillators are required to perform a precise adjustment of the carrier frequency.
Taking this into account, random frequency time division multiple access (RFTDMA) uses the time
and frequency to send messages without discretization (as in pure Aloha) [38]. Figure 7 illustrates the
process of a transmitter selecting a frequency according to the protocol, a representation of the channel
resulting from many nodes transmitting at the same time and, finally, the receiver’s architecture to
retrieve the data out of the composite signal.

The performance of this protocol is calculated in [56]. Its maximum normalized throughput is
lower than 0.1 for C ' 0.25, and the PLR results are not reported as a function of C.
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Figure 7. Random frequency time division multiple access (RFTDMA) communication process.
Temporal and spectral random access from hundred of nodes.

5.2. Reservation and Adaptive Protocols

5.2.1. Reservation Aloha (R-Aloha)

This protocol divides the time into m slots, each with the duration of a packet transmission
time. The slots are grouped in frames, and the nodes randomly choose one slot per frame to send a
packet. If a node successfully sends a packet, it proceeds to reserve the same slot in future frames.
At the end of each frame, the receiver responds with an ACK, also indicating what the available
slots for the next cycle are. An example of the operation of reservation Aloha (R-Aloha) is shown in
Figure 8. The R-Aloha protocol was proposed for incorporating satellite communications in the ARPA
network [57].
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Figure 8. R-Aloha operation: five users contending for channel access. User three transmits successfully
in slot three of frame k, and reserves the same slot in future frames k + 1 and k + 2. Users one and five
achieve successful transmissions in frame k + 1, and place their reservations in frame k + 2 for slots
two and one, respectively. Red packets correspond to active reservations.

The throughput of this protocol depends mainly on the number of packets sent by each node
during a reservation. In the worst case, the performance of R-Aloha is similar to the S-Aloha. When the
protocol holds reservations for a large number of frames, the normalized throughput S approaches
to 1 [58].

Although R-Aloha reports having a normalized throughput that tends to 1, it may not meet the
requirements of IoT scenarios: the protocol has a good performance when the nodes disputing the
channel resemble the number of slots in each frame, and also when the reservations made by each
terminal last a large number of frames. However, when the scenario does not comply with these
assumptions, R-Aloha turns out to be an unscalable protocol. Moreover, for IoT applications where
nodes typically have small and/or infrequent amounts of data to send, the reservation mechanism of
R-Aloha may result impractical.

5.2.2. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) with RTS/CTS

A classical protocol in wireless network, the carrier sense multiple access with collision avoidance
(CSMA/CA) defines the monitoring of the channel before sending a message. If a node senses the
channel is busy, it refrains from transmitting and enters an exponential backoff stage; otherwise,
it issues a reservation request by means of a small broadcast message (i.e., the request-to-send
(RTS) packet). When there are no collisions and the receiver decodes the RTS correctly, another
broadcast message granting the reservation (i.e., the clear-to-send [CTS] packet) is sent by the
receiver. Upon reception of the CTS, the sender proceeds to send the data packet [59]. Figure 9
illustrates the exchange of packets when a successful reservation is placed in CSMA/CA with
RTS/CTS. The protocol has been evaluated in a LEO satellite environment considering different
back-off distribution functions [60].

The maximum performance regarding throughput of this protocol varies between S ' 0.5 and
S ' 0.8, since its performance depends on factors such as the packet length, number of nodes,
and the number of hidden terminals, among others. As reported in [59], for an example network with
10 stations and no hidden terminals, the protocol achieves a normalized throughput of S = 0.75 when
the load is C = 0.8. In the presence of hidden terminals—a common scenario for a satellite system
with ground terminals distributed over a large area—if there is a 5% probability of hidden terminals
for a total of 10 stations on ground, the normalized throughput is S = 0.65. By increasing the number
of stations to 50 in the same case, the normalized throughput falls to S = 0.57. PLR values for this
protocol are not reported since packet losses are avoided when using the reservation mechanism.
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In terms of complexity, CSMA/CA is still a simple protocol: it does not impose high processing
demands on the nodes beyond the ability to transmit and receive. Conversely, the power consumption
of CSMA/CA is high, since each node must permanently listen and monitor the channel.

CSMA/CA is widely used in wireless IoT technologies, such as ZigBee, D7AP, and other
short-range wireless sensor networks [49,61]. However, for the protocol to be implemented on a
satellite IoT network, it may be impractical for two reasons: first, the probability of hidden nodes in
a satellite scenario is high due to a wide geographic distribution area; and second, the long delays
of the different devices on ground make the channel sensing ineffective even when there are no
hidden terminals.

Figure 9. Exchange of packets for a successful channel reservation with request-to-send/clear-to-send
(RTS/CTS) signaling in carrier sense multiple access with collision avoidance (CSMA/CA).

5.2.3. Fixed Competitive TDMA (FC-TDMA)

Similar to R-Aloha, the fixed competitive TDMA (FC-TDMA) protocol defines a set of m slots
grouped in frames. In each frame, the nodes select a slot for transmission in a pseudo-random
manner [62]. To calculate the allocated slot for packet transmission, nslot, a node employs its ID—a
previously assigned integer number—and follows the calculation shown in (5). The receiver has to
estimate the number of stations on the ground based on the colliding slots and those with successful
transmissions; the frame is further divided according to that estimation. An example of the operation
of FC-TDMA is illustrated in Figure 10. The authors in [62] have suggested this MAC protocol for LEO
satellite systems.

ID%m = nslot. (5)

Figure 10. Fixed competitive TDMA (FC-TDMA) operation. In the first frame, packets collide in every
slot. For the following frame, the number of slots is increased, resulting in five successful transmissions
out of ten slots. The number in each packet represents the node’s ID.

The theoretical maximum normalized throughput of the protocol is S = 1 with a load of C = 1.
This performance corresponds to a scenario with a number of slots in the frame equal to the number
of devices on the ground, and all the devices having an assigned ID such that there are no collisions.
The complexity of this protocol is related to the TDMA functionality and the variable slot lengths.
In addition, the algorithm for estimating the number of terminals on the ground may impact both
the energy performance and the complexity. However, the details of this algorithm are not provided
in the literature.
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Similar to R-Aloha, the maximum normalized throughput of FC-TDMA is achieved under very
specific conditions: (a) when the number of devices is constant; and (b) when there are no conflicting
IDs among all users. However, FC-TDMA could potentially match the traffic characteristics of an IoT
application as long as the estimation of the number of nodes under its coverage is accurate and fast.

5.3. Interference Cancellation-Based Protocols

5.3.1. Contention Resolution Diversity Slotted Aloha (CRDSA)

As the name indicates, contention resolution diversity slotted Aloha (CRDSA) is based on the
DSA protocol. In addition to sending two or more copies of a packet, CRDSA iteratively resolves
the collisions that occur at the receiver through the use of a successive interference cancellation (SIC)
mechanism [51]. For a given frame, nodes send two or three copies of the packet in different slots.
The entire frame is then stored in a digital memory at the receiver. Furthermore, each packet includes
control data that indicates in what slot the “twin” packet has been sent. In this way, when a packet is
decoded correctly by the receiver, the latter retrieves the information regarding the arriving slot for
the “twin” packet. With this information, the receiver is able to perform the interference cancellation
method. The CRDSA protocol has been developed and included in the DVB-S2/RCS standard [63].

In terms of communication performance, when CRDSA uses two copies per packet, it achieves
a maximum performance of S = 0.52 for a given load of C = 0.65. In the case of a PLR = 10−3,
the supported channel load is C ' 0.05, improving to C ' 0.26 when the PLR = 10−2. Note that
CRDSA achieves a high normalized throughput performance for a low PLR; consequently, the protocol
is also considered energy efficient: although each node must send each packet two times, no further
retransmissions are required. Nevertheless, protocols based on interference cancellation have a high
dependency on a good channel estimation, which adds complexity to the implementation. In addition,
CRDSA also reports high demands regarding processing and storage capabilities at the receiver,
together with requiring synchronization among nodes.

To address the drawbacks reported for CRDSA, the protocol has evolved with adaptations such
as multi-frequency CRDSA (MF-CRDSA) and spread spectrum CRDSA (SS-CRDSA) [64]. The former
deals with the problem of requiring power peaks to send complete messages over small time slots.
By dividing the available spectrum in multiple channels, the time slots in MF-CRDSA can be longer,
thus avoiding very high power peaks but at the expense of the protocol’s performance. The latter
protocol, SS-CRDSA, addresses the problem of “loops” in the original CRDSA. A loop occurs when
two different sources send replicas of their packets over the same slot, making it impossible to apply a
successful interference cancellation (see for example users three and four in Figure 11). To avoid the
loop, SS-CRDSA uses spread spectrum techniques and randomly associates codes to each packet.

5.3.2. Irregular Repetition Slotted Aloha (IRSA)

This protocol represents an improvement over CRDSA. Although it also requires the nodes to
send copies of packets in randomly chosen slots, the difference lies in that the number of duplicates for
each packet varies depending on an optimized distribution probability. The protocol is intended to
improve the performance over uplink satellite channels [65].

Irregular repetition slotted Aloha (IRSA) achieves a maximum performance of S = 0.8 for a given
load of C = 0.85. In the case of a PLR = 10−3, the supported normalized offered load rises to C ' 0.7.
The complexity of this protocol is similar to the complexity of CRDSA, but it adds the difficulty of
calculating the different number of repetitions per packet. Given its performance, IRSA is considered
an energy efficient protocol for normalized offered loads near C = 0.7, because of its low PLR.



Sensors 2019, 19, 1947 19 of 29

Figure 11. Example of the operation of contention resolution diversity slotted Aloha (CRDSA) over
one frame. A collision-free packet from user two is received in the fourth slot. The packet includes
the position of its “twin”, located in slot one. An interference cancellation method is then applied
to the packet. In this example, packets from users one, two, and five can be successfully recovered,
achieving an S = 0.6 for a load of C = 1.

5.3.3. Coded Slotted Aloha (CSA)

A protocol inspired by IRSA and CRDSA in which the nodes divide packets before transmission
into k parts of the same length. Each one of these sub-packets is then encoded with an error correction
code and sent through the discrete channel [66]. Upon reception, if all the sub-packets from a sender
are received with no collisions, the recovery of other packets coming from the same sender can be
achieved by applying a maximum-a-posteriori (MAP) decoding scheme. In addition, the receiver
also employs the interference cancellation scheme for reception from other senders. The work in [66]
identifies the satellite network as a potential application for coded slotted Aloha (CSA).

The communications performance of the CSA protocol indicates a normalized throughput of
S ' 0.8 for a channel offered load of C ' 0.84. The normalized load supported for a PLR = 10−3 is
not reported in the literature.

Similar to CRDSA and other interference cancellation-based protocols, CSA is also energy efficient
due to its low PLR for high channel loads. In terms of complexity, CSA is very similar to CRDSA,
but it adds the difficulty of coding and decoding each packet with the model introduced in [66].

5.3.4. Multi-Slots Coded Aloha (MuSCA)

This protocol generalizes the CRDSA protocol. By employing adequate error correction codes
given a proper SNIR, multi slot coded Aloha (MuSCA) is able to decode packets even when there are
collisions for all the transmissions in a frame [67]. In the example provided for CRDSA in Figure 11,
MuSCA would have been able to successfully decode packets sent by users three and four, and received
at slots two and five. The MuSCA protocol is designed for uplinks shared among a number of users in
satellite systems [67].

MuSCA achieves a maximum normalized throughput of S = 1.4 when the normalized channel
load does not exceed 1.42. When the PLR = 10−3, MuSCA supports an offered load of C = 1.22.
Considering the very high efficiency of this protocol for normalized offered loads close to one, there are
no need for retransmissions. In terms of complexity, MuSCA is very similar to CSA, since the difference
between them is mainly in the coding mechanism.
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5.3.5. Enhanced Spread Spectrum Aloha (E-SSA)

This protocol is similar to SSA on the transmitter side. On the receiver side, enhanced spread
spectrum Aloha (E-SSA) employs an iterative soft interference cancellation (ISIC) algorithm with
a sliding window that captures the messages received on an unsynchronized channel. The main
difference with the previous protocols is that E-SSA does not require sending multiple copies of
packets, nor synchronization; thus, achieving a greater efficiency with a reduced complexity. The E-SSA
protocol has been designed for integrated satellite/terrestrial mobile systems [5,68]. Figure 12 shows
the operation of this protocol.

In terms of performance, the maximum normalized throughput reported for this protocol
is S = 1.2 for a channel load of C = 1.25. When the PLR = 10−3, E-SSA is able to operate with
a normalized load of C = 1.12, assuming that the power imbalance of the transmitting nodes is
equivalent. As opposed to SSA, in E-SSA, if a power imbalance of σ = 3 dB is assumed among nodes,
the performance improves considerably, achieving a normalized load of C = 1.9 under a PLR = 10−3.

Figure 12. Example of operation of enhanced spread spectrum Aloha (E-SSA) protocol. The sliding
window of length W is shifted in ∆W after performing the iterative process of interference cancellation
(ISIC) in the current window. Figure adapted from [47].

The interference-cancellation protocols presented in this section are designed mostly to solve the
multiple access for the uplink of satellite systems. However, most of the control information required
by the protocols is actually acquired/exchanged on the downlink. For example, a correct channel
estimation is a key element for the proper operation of E-SSA. Such an estimation takes place over the
downlink. Similarly, the code sharing process of CSA also takes place on the downlink. In half-duplex
systems, the interference-cancellation based protocol’s feasibility requires careful examination.

Regarding the suitability of this category for IoT services, it can be mentioned that despite the
great performance reported for these protocols, the complexity of their correct implementation makes
them hard to adapt given the capabilities of CubeSats in a LEO orbit. Among the reviewed protocols,
E-SSA stands out in performance compared to the others, and significantly reduces the complexity at
the ground terminal; however, it is still highly demanding of resources on the nanosatellite side.

5.4. Hybrid Protocols

This category corresponds to protocols whose MAC mechanisms are based on a mix of protocols
belonging to the other categories previously discussed in this section. The ones already mentioned
and that also match this category are SS-CRDSA, MF-CRDSA, FC-TDMA, and R-Aloha; all of them
employ a mix of fixed allocation techniques in conjunction with random access mechanisms.
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Aloha-LoRa

Despite not being reported in satellite environments, another protocol that is worth mentioning
due to its wide use in LPWA technologies is the one employed in LoRa. In this technology,
the bandwidth is divided into several channels, where the number is dependent on the regulation
(e.g., 13 channels for the industrial, scientific and medical (ISM) 902–928 MHz band under federal
communications commission (FCC) regulation). In these channels, nodes transmit modulating
the signal with the chirp spread spectrum (CSS) and make use of different spreading factors (SF).
The channels are further divided into 6 subchannels (from SF = 7 to SF = 12). The MAC behavior
depends on the LoRa class of device:

• Class A: The lowest power consumption type of device. Transmits data when is necessary
using Pure Aloha. To receive messages from the gateway, a listening window is open after each
transmission.

• Class B: For these devices there is a schedule to transmit, which is defined through beacons.
• Class C: These nodes are always in reception mode, except during transmission.

In the case of Class A nodes, the MAC protocol performs a fixed allocation of resources
(in bandwidth and code) together with a random access scheme [14].

To summarize our review, Figure 13 presents a taxonomy elaborated with the MAC protocols
under study. Furthermore, the main characteristics and performance metrics when the MAC protocols
are evaluated in a satellite environment are presented in Table 2.

Figure 13. Taxonomy of random access protocols evaluated for satellite systems based on nanosatellites
for IoT connectivity. Protocols with * indicate no time synchronization is needed.
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Table 2. Comparison of medium access control (MAC) protocols considering communications
performance, complexity of implementation, energy efficiency, and the topology impact.

Protocols Smax CSmax CPLR=10−3 Complexity Energy Efficiency Topology Impact *

MuSCA 1.4 1.42 1.22 high high different delays (−)
E-SSA 1.2 1.25 1.12 high high power imbalance (+)

FC-TDMA 1 1 - medium medium variability in number of nodes (−),
different delays (−)

R-Aloha 1 1 - medium medium different delays (−)
CSA 0.8 0.84 - high high different delays (−)
IRSA 0.8 0.85 0.7 high high different delays (−)

CSMA/CA 0.75 0.8 - low low hidden nodes (−),
different delays (−)

SS-Aloha 0.6 0.7 0.5 medium medium power imbalance (−)

CRDSA 0.52 0.65 0.05 high medium power imbalance (+),
different delays (−)

S-Aloha 0.368 1 <10−3 low medium power imbalance (+),
different delays (−)

DSA 0.3 0.6 <10−3 low medium power imbalance (+),
different delays (−)

E-Aloha 0.09 0.1 <10−3 low medium power imbalance (+)
∗ (+) means the topology characteristics help improve the communications performance of the protocol,
whereas (−) indicates a negative impact on performance.

6. Discussion and Open Research Challenges

In this section, we discuss the performance evaluation provided in Section 5 together with
additional characteristics of the IoT scenario described in Section 3. Of the protocols reviewed,
although several options offer a high throughput in terms of communications performance, such a
good result is associated with a medium to high cost in terms of implementation complexity and
energy consumption (see the first four protocols in Table 2). Our comparative analysis of protocols
suggests that the Aloha-based are good candidates for the MAC layer in nanosatellites devoted to IoT
connectivity. This is mainly due to their simplicity of implementation and their minimum hardware
requirements. These protocols also report having a low sensitivity to delay.

In terms of network topology, the Aloha-based protocols can benefit from the power imbalance
among nodes because of the so-called capture effect. In such a case, the receiver can correctly receive
a packet with a high signal strength despite the existence of interference with other transmissions
with lower power levels. Among the protocols in this category, the E-Aloha is the current solution for
commercial telemetry satellite systems, has been extensively tested, and is operative. The performance
of E-Aloha is similar to that of S-Aloha, with no need of synchronization. However, the main problem
with E-Aloha is it may lack scalability for massive applications, due to its poor performance even for
moderate traffic loads, as shown in Table 2. SS-Aloha, on the other hand, has much better performance
than other Aloha-based protocols. However, this mechanism does not benefit from the capture effect;
on the contrary, its performance falls to values similar to S-Aloha in a situation of power imbalance.

When examining the protocols based on interference cancellation (e.g., CRDSA and E-SSA in
Table 2), the limitations in processing capacity in CubeSats, together with the adverse conditions to
perform correct channel estimation in LEO orbits, make employing such protocols in the IoT study
scenario infeasible. Other protocols in this category, such as MuSCA, CSA, and E-SSA, require the
exchange of coordination or channel estimation information delivered in advance or through a
separated channel, making it more demanding regarding channel resources.

As for protocols that require the carrier sensing mechanism, i.e., CSMA/CA, they have been
shown to be highly inefficient given a topology with a moderate to a high number of hidden nodes,
which will be a reasonably common scenario given the random distributions of ground sensors and
devices serving a variety of IoT applications’ requirements. The performance of such protocols also
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decreases when the delays in transmissions among the nodes are highly uneven. In fact, the uneven
delays are also critical for the operation of TDMA-inspired protocols such as R-Aloha and FC-TDMA.
The reason is that each slot, to synchronize the channel, must incorporate a guard time of the order
of the inequalities among the delays, which may result in a considerable waste of channel resources
when the variability among delays is large. Moreover, despite the good performance reported for
the throughput in FC-TDMA, it requires a specialized algorithm that varies dynamically the number
of slots in each frame, which has not been determined in the definition of the protocol provided
in [62]. In the case of R-Aloha, although it seems to have excellent performance, that only holds when
reservations duration are such that the channel is always occupied; nevertheless, in the case of a large
number of nodes, and short reservation times, the scalability of the protocol falls rapidly.

As can be seen through comparative analysis, MAC protocol performance varies widely when
examined in the context of CubeSats together with the characteristics of the IoT networks (number of
nodes, nature of traffic, geographical distribution, etc.). A visual evaluation of the suitability of each
protocol derived from our comparative analysis is shown in Figure 14. In the figure, the protocols are
placed according to: (1) their fulfillment of IoT-related requirements such as the scalability (the x-axis),
which relates to the communications performance when serving networks composed of a large number
of nodes, the topology dependency (a larger-sized geometric figure enclosing each protocol indicates
a larger dependency on terminal nodes locations and knowledge of network topology); and the
energy efficiency (darker colors correspond to higher power consumption in the execution of the
MAC protocol); and (2) their adaptation to the constraints of nanosatellite technology, in which case
we evaluate their implementation complexity (the y-axis). A level of high complexity signifies the
need of costly resources such as dynamic channeling, advanced channel estimation mechanisms,
synchronization, etc.; and (once again) energy efficiency, since it is important to maintain the energy
consumption on the spacecraft side within the nanosatellite capabilities.

Figure 14. A visual comparison of the reviewed medium access control (MAC) protocols in the context of
nanosatellite IoT scenarios.

To address the specific challenges derived from the utilization of nanosatellites for providing
effective and cost-efficient IoT connectivity, we envision open research and implementation aspects
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from three perspectives: from the network protocols perspective, from the integration capabilities of
CubeSats and from the evolution of the nanosatellites industry.

6.1. From the Network Protocols Perspective

When existing network protocols are evaluated in the context of nanosatellites technology for
IoT connectivity, it is common to encounter difficulties in finding one protocol that meets all the
requirements. In the case of MAC protocols, Figure 14 shows how an ideal performance zone,
derived from the IoT scenario together with the CubeSat restrictions, is not yet met by any of the
reviewed protocols, even though many had good performance in more traditional satellite scenarios.
Additional research for MAC protocol design is needed to integrate aspects which can operate with
low processing capacity demands and adapt to a variable and dynamic number of ground sensors
and devices. Moreover, mitigation mechanisms should be considered for managing the high power
imbalance conditions over the network links, the unequal delays derived from uneven link lengths,
and the inability to provide high-quality channel estimations.

6.2. From the Integration Capabilities of CubeSat Connectivity with Other Wireless Technologies

The IoT ecosystem will benefit from a more integrated communications platform. In many
cases, a global nanosatellite network integrated to an LPWA technology would boost the possibilities
for improving connectivity at reduced costs. In recent years, there have been proposals for such
a hierarchical architecture: the connected devices send data to an LPWA gateway, which in turn
forwards data via the satellite network [9,69]. However, such an integration has not been explored with
constellations of nanosatellites instead of traditional satellite networks. Additional research is needed
to explore the requirements of compatibility in terms of MAC protocols, network architecture and
united service patterns [10]. Another innovative line studied the behavior of an LPWA link to enable
connectivity from the nanosatellite to a gateway on Earth [70,71]. Further research and experimentation
will help understand and design an integrated platform that takes advantage of the different wireless
technologies involved in these hybrid solutions.

6.3. From the Evolution of the Nanosatellites Industry

The enormous growth foreseen for the IoT market is highly related to the rapid evolution of
low-cost wireless access technologies. In particular, with the introduction of LPWA technologies such
as LoRa, Sigfox, and NB-IoT, to mention some, the massification of connected devices seems more
plausible in the near future. Although nanosatellite connectivity is being identified as part of the IoT
technologies ecosystem [6–9], it is still not considered as low-cost as to become part of the LPWA
category [72,73]. The industry of nanosatellite construction and launching needs to keep evolving, and
to evolve fast, to reduce costs even more and become another key player in the LPWA market.

7. Conclusions

The evolution of satellite systems and the introduction of CubeSats as low-cost satellite technology
has made it possible to provide massive communications services for IoT applications, opening the
opportunity for countries with no experience in space science and small corporations to participate
competitively in the growing satellite communications market. However, the existent protocols in
satellite technology, in particular for medium access control, were not designed with the IoT scenario,
nor the low-cost technology constraints in mind.

This paper has presented a thorough review of MAC protocols designed for satellite environments,
considering the specific characteristics of the IoT networks and applications together with the
conditions of a wireless network served by CubeSats deployed in a low earth orbit. The study has
shown that many of the reviewed protocols are not suitable for deployment in the scenario of interest,
although they have been successfully implemented and deployed in other satellite systems. From the
comparative evaluation, the protocols employing interference cancellation techniques are shown to
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have the best communications performance, but they behave poorly with regards to the demands of
processing/channel resources and energy consumption. Furthermore, the Aloha-based protocols are
good candidates for the MAC layer in nanosatellites devoted to IoT connectivity due to their simplicity
of implementation and their minimum hardware requirements. However, these protocols report
having poor communications performance when the traffic load—related to the growing number
of expected nodes in the IoT—increases, and also when the delays vary greatly due to variable link
lengths.

From our analysis, a better balance among performance, complexity, energy consumption,
and sensitivity to topology should drive the design of future MAC protocols for nanosatellite IoT
solutions. Aspects related to the network protocol design, the integration capabilities of CubeSat
connectivity with other wireless technologies, and the evolution of the nanosatellites industry are
some of the open challenges identified and discussed in this review.
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Abbreviations

The following abbreviations are used in this manuscript:

ACK Acknowledgement
ADCS Attitude determination and control system
ADS-B Automatic dependent surveillance broadcast
AIS Automatic identification system
CDMA Code division multiple access
CRDSA Contention resolution diversity slotted Aloha
CSA Coded slotted Aloha
CSMA Carrier sense multiple access
CSMA/CA CSMA with collision avoidance
CSS Chirp spread spectrum
CTS Clear-to-send
DA Diversity Aloha
DSA Diversity slotted Aloha
E-SSA Enhanced spread spectrum Aloha
ESA European Space Agency
FCC Federal communications commission
FC-TDMA Fixed competitive TDMA
FDMA Frequency division multiple access
GEO Geosynchronous equatorial orbit
GLONASS Global orbiting navigation satellite system
GNSS Global navigation satellite system
GPS Global positioning system
HEO Highly elliptical orbit
ISIC Iterative soft interference cancellation
IRSA Irregular repetition slotted Aloha
IoT Internet of things
ISM Industrial, scientific and medical
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LEO Low Earth orbit
LPWA Low power wide area
M2M Machine to machine
MarCO Mars Cube One
MAC Medium access control
MEO Medium Earth orbit
MF-CRDSA Multi-frequency CRDSA
MuSCA Multi slot coded Aloha
NASA National Agency for Space Administration
OBC On-board computer
OSI Open system interconnection
PLR Packet loss ratio
RFTDMA Random frequency time division multiple access
RTS Request-to-send
SNIR Signal to noise plus interference ratio
SSA Spread spectrum Aloha
SS-CRDSA Spread spectrum CRDSA
SIC Successive interference cancellation
TDMA Time division multiple access
UCS Union of Concerned Scientists
UNB Ultra narrowband
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