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Abstract: Robotic manipulators may be subject to different types of disturbances such as unknown
payloads, unmodeled dynamics, and environment interaction forces. Observing these unknown
disturbances in robotic manipulators is fundamental in many robotic applications such as disturbance
rejection and sensorless force control. In this paper, a novel disturbance observer (DOB) is introduced
based on the insights from the finite-time observer (FTO) and robot dynamics. Different from the
traditional DOBs, this new observer can provide the capability to track the disturbance within a finite
time. The performance of the presented observer is verified by two kinds of typical disturbances for a
two-link manipulator with a comparison with several existing DOBs. The simulation results show
the rapidity and accuracy of the proposed FTO.

Keywords: disturbance observer; robotic manipulator; finite-time observer; human-robot interaction;
estimation

1. Introduction

Robotic manipulators could be subject to different kinds of disturbances when they carry
on normal operations. Roughly speaking, these disturbances can be divided into two categories,
namely external and internal disturbances. These disturbances may present useful information
about how the manipulator interacts with its environment. In addition to the interaction force
disturbance, adverse disturbances such as unknown payloads, unmodeled dynamics may challenge
the performance of the manipulator by affecting the trajectory tracking accuracy. In order to
deduce these uncertain disturbances induced by either internal or external factors, it is necessary
to incorporate a disturbance observer (DOB) to estimate these disturbances. Once the observer is
provided, the DOB in robotic manipulators can enable versatile applications including disturbance
observer based control [1–3], friction estimation and compensation [4,5], sensorless force/torque
control [6–8], fault diagnose and isolation (FDI) [9–11] etc. For example, the interaction force between
human and robot could be treated as the joint torque disturbances as the Cartesian forces could
be projected into the joint level. By observing the interaction toque, the manipulator could sense
human intention or accidental collision [11,12]. Thus, the design of a well and sound DOB is not only
theoretically important to robotic techniques but also empirically required to enhance the performance
of robotic manipulators.

The disturbance observer technique has been widely utilized in robotic manipulators for a variety
of purposes. The basic idea of DOB is to use the robot motion state and joint torque as input and then to
estimate all the unknown internal and external torque imposed on the manipulator in a lumped term
as the output. In Reference [5], a nonlinear disturbance observer (NDOB) was established to estimate
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the rapidly varying friction by elaborately choosing a nonlinear function. However, the selection of
such a nonlinear function is nontrivial, and the implementation of this NDOB is limited to a two link
condition. By observing the generalized momentum, the generalized momentum observer (GMO) [9]
is built, which not only can avoid the calculation of acceleration to decrease the influence of noise in
position measurement but also can generate the observation of disturbances as a first-order filtered
result of the true value. GMO is able to realize FDI such as the prediction of the accidental impact as
well as the saturated actuator fault [9]. Its easy implementation and reliable performance make GMO
a popular and widely used method in many robotic applications [6,8,12]. However, in practice, GMO
has to make a trade-off between the response rate and noise filtering. In a sensorless scenario, GMO
is designed to remove the noise in a motor current as much as possible but at the cost of a delayed
response. Such delayed behavior will degrade the detection sensitivity and response rate when GMO
is applied in collision detection. As an enhancement of GMO, an external state observer (ESO) was
proposed in Reference [10] by taking the disturbance as an external state. Moreover, despite the
fact that many DOBs have been developed for robotic manipulators [5,9,10,13,14], the asymptotic
convergence rate of these DOBs reveals that the estimation error will not converge to a certain small
level quickly and will never decay to zero.

From the aspect of convergence rates, most of the existing DOBs for robotic disturbance achieve
the asymptotically tracking performance. Specifically, the system convergence rate of traditional DOBs
is at best exponential while FTO can obtain faster convergence rate with a finite-time convergence.
Due to the finite-time features, several types of FTOs have been designed for different systems with
versatile applications [15–20]. In this paper, a novel DOB is conceived by the requirement of a fast
and accurate estimation of robotic disturbances. Based on the robot dynamic model, the concept in
finite-time control is employed in the observer design. The resulting FTO could enable the estimation
of disturbance in a finite time, which guarantees that the estimation error could vanish after a certain
time. The proposed FTO also removes the requirement of computing the acceleration. Its finite-time
convergent property renders the disturbance observation with more accuracy and quickness.

The rest of the paper is organized as follows. In Section 2, some basic knowledge of robot
dynamics and finite-time stability is presented along with the introduction of GMO. Section 3 details
the design of the proposed FTO for disturbance estimation. The stability and convergent rate is also
presented. Section 4 presents the tracking performance of FTO in a simulation in comparison with
other DOBs. The conclusion and future perspective are provided in Section 5.

2. Preliminaries

2.1. Robot Dynamic Model

For an n degrees-of-freedom (DOFs) robotic manipulator with a rigid link and joint, its dynamics
could be represented by

M(q)q̈ + C(q, q̇)q̇ + G(q) + τf = τ + τd (1)

where q ∈ Rn is the joint position and its first and second derivatives q̇ and q̈ are the joint velocity and
acceleration, respectively. M(q) ∈ Rn×n denotes the symmetric and positive-definite inertia matrix,
C(q, q̇)q̇ ∈ Rn represents the centrifugal and Coriolis torque vector with G(q) ∈ Rn the gravity effect.
τf ∈ Rn denotes the lumped friction effect from both the motor and link sides and are always described
with the following Coulomb-viscous model, namely

τf = Fcsgn(q̇) + Fv q̇ (2)

with Fc = diag{Fc1, . . . , Fcn}, Fv = diag{Fv1, . . . , Fvn}. Fci, Fvi(1 ≤ i ≤ n) are the Coulomb and viscous
friction coefficients for the ith joint. Such a friction model could capture most dynamic property of the
friction in a rigid joint. The equivalent motor torque at the link side through a reduced amplification is
denoted as τ ∈ Rn. τd ∈ Rn is the internal/external disturbances which could be an external force,
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unmodeled or uncertain robot dynamics. The exact meaning of τd decides on the specific application.
The observed disturbance for a manipulator can be further utilized in FDI and disturbance rejection
control. For example, τd is deemed as the physical impact with the environment for collision detection
scenario and, thus, τd can indicate the occurrence of the collision. The robot dynamics model in
Equation (1) has the following property.

Property 1. The matrix Ṁ(q)− 2C(q, q̇) is skew-symmetry [21], and it follows that

Ṁ(q) = C(q, q̇) + CT(q, q̇). (3)

2.2. Disturbance Observer Using Generalized Momentum

In order to estimate the disturbances for a robotic manipulator, different observer design
techniques have been envisaged to estimate the disturbances. One of the commonly used observers
is the generalized momentum observer (GMO) proposed in Reference [9] of which the basic concept
is to observe the generalized momentum p = M(q)q̇. Combined with the generalized momentum p,
the robot dynamics in Equation (1) could be rewritten to

ṗ = τ + CT(q, q̇)q̇− G(q) + τd. (4)

Then, GMO method is implemented as follows:

ˆ̇p = τ + CT(q, q̇)q̇− G(q) + τ̂d (5)

τ̂d = Ko(p− p̂) (6)

where (·̂) denotes the estimated value and Ko = diag{koi} > 0. More compactly, the disturbance
estimation τ̂d is given as

τ̂d = Ko

[
p−

∫
(τ + CT(q, q̇)q̇− G(q) + τ̂d)dt

]
. (7)

From Equations (5) and (6), the time evolution of GMO is given by

ˆ̇τd = Ko(τd − τ̂d) (8)

or equivalently expressed in the Laplace domain as

τ̂d =
Ko

s + Ko
τd. (9)

Thus, the observation τ̂d can be interpreted as the output of a first-order filtering of τd.
The obtained estimation τ̂d yielded by GMO exponentially converges to the disturbance τd. It is
worth noting that the convergent rate of this observer critically depends on the observance matrix
Ko. In practice, a large value of koi is demanded to quickly reproduce the disturbance. However,
system measurement noises and modeling errors will limit the gain of the observer [10]. Moreover,
the estimation error exponentially decays which reveals that the estimation error always exists.
Particularly, the estimation error will not decrease to a relatively small level until a certain time elapses,
suggesting GMO fails to provide a fast and accurate estimation of the rapidly changing disturbances.

2.3. Finite-Time Stability

Consider the following nonlinear autonomous system.

ẋ = f (x), x ∈ Rn, f (0) = 0 (10)
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where f satisfies the locally Lipschitz continuous condition. Some basic knowledge of finite-time
stability and homogeneity is recalled hereafter. The definition of finite-time stability (FTS) [22,23] is
given as follows.

Definition 1. The equilibrium x = 0 of Equation (10) is finite-time convergent if there is a function
T : U\{0} → (0,+∞) (U is a neighborhood of the origin) such that every solution trajectory x(t, x0)

of Equation (10) starting from the initial point x0 ∈ U\{0} is well-defined and unique on [0, T(x0)] and
limt→T(x0)

x(t, x0) = 0. Here, T(x0) is called the settling time of Equation (10). If the equilibrium of
Equation (10) is Lyapunov stable and finite-time convergent, then the system in Equation (10) is finite-time
stable (FTS).

In addition, the concept of homogeneity [23] is also introduced.

Definition 2. A function W : Rn → R is homogeneous of degree d with respect to the weights (r1, . . . , rn) ∈
Rn with ri > 0 (i = 1, . . . , n) if

W(λr1 x1, . . . , λrn xn) = λdW(x1, . . . , xn), ∀λ > 0. (11)

A vector field f is homogeneous of degree d with respect to the weights (r1, . . . , rn) ∈ Rn with ri > 0
(i = 1, . . . , n) if

fi(λ
r1 x1, . . . , λrn xn) = λri+d fi(x1, . . . , xn), ∀λ > 0 (12)

where fi is the ith component of f . The system in Equation (10) is said to be homogeneous of degree d if the
vector field f is homogeneous of degree d.

Next, a criteria to determine whether a system is FTS is described in the following theorem.

Theorem 1. [24]: If the origin of Equation (10) is locally asymptotically stable and homogeneous of degree
d < 0, then it is globally FTS.

3. Finite-Time Observer of Robotic Disturbance

The objective of this paper is to design a finite-time observer such that the observation of
disturbance τd could converge to its actual value within a finite time. In this section, a basic FTO is
primarily formulated to estimate the disturbance. Then, taking advantage of the the available system
signals, a reduced-order FTO is deduced in order to reduce the computation burden and phase lag.
Finally, an improved expression of the FTO is conceived such that the inversion of inertia matrix
is avoided.

3.1. Finite-Time Observer Design

From Equation (1), the acceleration q̈ can be written as

q̈ = M−1(q)τd + M−1(q)
(

τ − C(q, q̇)q̇− G(q)− τf

)
. (13)

By designating τa = τ − C(q, q̇)q̇− G(q)− τf , the above equation can be rewritten as

q̈ = M−1(q)τd + M−1(q)τa. (14)

where M−1(q)τd is treated as the system disturbances with M−1(q)τa the system input.
Incorporating the FTO design skill in Reference [20], a basic FTO for robot disturbance is consequently
designed in the following manner.

żb1 = zb2 + K1 bebeα1 (15)
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żb2 = zb3 + M−1(q)τa + K2 bebeα2 (16)

żb3 = K3 bebeα3 (17)

where zb1 = q̂, zb2 = ˆ̇q , zb3 = M−1(q)τ̂d and eb = q− q̂. K1, K2, K3 ∈ Rn×n are diagonal gain matrices.
Moreover, the corresponding powers are selected as α1 = α, α2 = 2α− 1, α3 = 3α− 2, and 2

3 < α < 1.
The operator b·eα is denoted as

bxeα = |x|αsgn(x), x ∈ Rn and α > 0. (18)

Consequently, the disturbance observation τ̂d is computed as

τ̂d = M(q)zb3. (19)

The proposed third-order FTO can simultaneously estimate the joint velocity q̇ and disturbance
torque τ̂d. Indeed, the joint velocity q̇ could be immediately acquired from the robotic control system,
implying the basic FTO defined in Equations (15)–(17) could be tailored with both the observer order
and computation burden reduction. Thus, a reduced-order FTO could be developed as

żr1 = zr2 + M−1(q)τa + K1 bereα1 (20)

żr2 = K2 bereα2 (21)

where zb1 = ˆ̇q, zb2 = M−1(q)τ̂d and eb = q̇− ˆ̇q. α1 = α, α2 = 2α− 1, 1
2 < α < 1. The calculation of the

disturbance estimation resembles that given in Equation (19), i.e.,

τ̂d = M(q)zr2. (22)

The reduced-order observer should have a quicker response than the previous design,
which benefits the disturbance observation. However, it is worth noting that the inversion of the inertia
matrix M(q) is involved in the observer design, which is quiet a troublesome issue for algorithmic
computation. Specifically, the matrix inversion has a cubic complexity, which inevitably brings heavy
computational burden in the case of robots with large DOFs. Generally speaking, the observed
system defined in Equation (14) containing the inversion of M(q) should be responsible for the matrix
inversion in the designed observer. In order to circumvent the matrix inversion, it is necessary to
rearrange the original system from Equation (14) into a transformed equation with different state
variables. Multiplying both sides of Equation (14) with M(q) yields

M(q)q̈ = τa + τd. (23)

Additionally, the left side of Equation (23) could be altered using the generalized momentum p, namely

ṗ− Ṁ(q)q̇ = τa + τd. (24)

Reorganizing Equation (24) and employing Property 1, the derivative of the generalized momentum p
is rewritten as

ṗ = τd + τp (25)

where τp = Ṁ(q)(q) + τa = τ + ϕ(q, q̇), ϕ(q, q̇) = CT(q, q̇)q̇− G(q)− τf . The system to observe is
now revised and has different state variables. Accordingly, a modified second-order FTO could be
defined as follows.

żm1 = zm2 + τp + K1 bemeα1 (26)

żm2 = K2 bemeα2 (27)
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where zm1 = p̂, zm2 = τ̂d and em = p− p̂. The block diagram of the proposed FTO to estimate robotic
disturbance is depicted in Figure 1.
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Figure 1. A block diagram of the proposed robotic disturbance finite-time observer (FTO).

To this end, three different types of FTO for robot disturbance estimation are introduced with a
progressive optimization. The obtained FTO given in Equations (26) and (27) is structurally similar
to the GMO defined in Equations (5) and (6) as both observer shares the same system states and
input. Particularly, if we set α = 1, then the designed FTO restores to an ESO formulation defined
in Reference [10]. In other words, the ESO expression given in Reference [10] is a special case of the
proposed FTO. As declared in Reference [10], ESO outperforms the popular GMO in disturbance
observation in robot manipulator settings. It is reasonable to believe that the performance of FTO
proposed in our paper should exceed that of both ESO and GMO.

3.2. Stability and Convergence of FTO

As the proposed observer is rooted in a general FTO design scheme, the stability and convergence
of the presented DOB are evidently guaranteed. For completeness and readability, the error dynamics
of FTO is inspected with a convergence analysis. The observation errors are given as

ėp = ed − K1
⌊
ep
⌉α1 (28)

ėd = −K2
⌊
ep
⌉α2 (29)

where ep = p− p̂, ed = τd − τ̂d, e = [ep ed].
We will first prove the stability of the proposed observer. Consider the following Lyapunov

function candidate:

V =
n

∑
i=1

k2i

∫ epi

0
bτeα2 dτ +

eT
d ed

2

=
n

∑
i=1

k2i
α2 + 1

eα2+1
pi +

eT
d ed

2

(30)
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where k2i is the ith diagonal element of K2. Then its derivative is given as

V̇ =
∂V
∂eT ė

=
n

∑
i=1

k2i
⌊
epi
⌉α2
(

edi − K1
⌊
epi
⌉α1
)
− eT

d K2
⌊
ep
⌉α2

= eT
d K2

⌊
ep
⌉α2 −

n

∑
i=1

k1ik2i
∣∣epi
∣∣α1+α2 − eT

d K2
⌊
ep
⌉α2

= −
n

∑
i=1

k1ik2i
∣∣epi
∣∣α1+α2 ≤ 0.

(31)

where k1i is the ith diagonal element of K1. The only invariant set is the origin ep = ed = 0. According to
LaShalle theorem, the asymptotic convergence of e to zero is guaranteed.

Next, we will prove the finite-time convergence of the observer. According to Definition 2,
Equations (28) and (29) are homogeneous of degree α− 1 with respect to the weights {r1, r2} = {1, α}.
Considering α < 1, thus, Equations (28) and (29) have a negative homogeneity. From Theorem 1,
it follows that the error system is globally FTS. In other words, the estimation errors will vanish within
a finite time. To this end, it could be concluded that the proposed FTO is stable and with finite-time
convergence performance.

4. Simulation Results

In order to demonstrate the effectiveness and advantage of the proposed FTO algorithm in
estimating robotic disturbance, a simulation was conducted on a simple 2-DOF planar manipulator
vertical to the ground as depicted in Figure 2.

1q

2q

Figure 2. The studied two-link manipulator for simulation. The initial and end configurations for robot
movement are in dashed lines.

The studied manipulator is assumed to have a simple mass distribution, i.e., the mass of each
link is concentrated as a point at the rod end. For simplicity, the friction effect will not be considered.
The corresponding matrices in Equation (1) for this 2-DOF robot are expressed as

M(q) =

[
θ1 + 2θ2 cos(q2) θ3 + θ2 cos(q2)

θ3 + θ2 cos(q2) θ3

]
(32)

C(q, q̇) = θ2 sin(q2)

[
−2q̇2 −q̇2

q̇1 0

]
(33)

G(q) =

[
θ4 cos(q1) + θ5 cos(q1 + q2)

θ5 cos(q1 + q2)

]
(34)
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where 

θ1 = l2
2m2 + l2

1(m1 + m2)

θ2 = l1l2m2

θ3 = l2
2m2

θ4 = (m1 + m2)l1g0

θ5 = m2l2g0

(35)

with li, mi (i = 1, 2) as the length and mass for the ith link, respectively, and g0 the gravitational
acceleration. The manipulator performs point-to-point motion with two predefined configurations
qs = [0, π/4]T and qe = [π/3, π/2]T . For a smooth tracking trajectory generation, fifth polynomial
interpolation is used to ensure a continuous reference acceleration. Without the loss of generality,
the implemented controller for this example is merely a proportional–integral–derivative (PID)
controller. Moreover, additional noises with a normal distribution are artificially imposed on the
measurement signals. Specifically, nq ∼ N (0, 7.56−10) is the noise for joint position measurement
with nτ ∼ N (0, 0.01) for torque. The simulation was based on MATLAB using a PC with a 3.5 GHz
processor and 4 G memory.

As human–robot interaction is increasingly demanded in both domestic and industrial application,
the necessity to quickly and accurately acquire the estimation of an interaction force is strengthened.
Delayed or mismatched estimations may hinder the robot to sense its environment and human force
intention. In this example, two prototypes of impact forces are employed with one step signal and the
other ramp signal. The step signal may represent the fierce collision force, and the slop signals can be
due to the normal interaction force. The step external torques are imposed on the time interval [1, 1.8]
seconds, and the slop impact forces are exerted during the time interval [0.8, 1.6] seconds.

The proposed FTO method is then employed to estimate the external impact force and compared
with other existing observers including NDOB [5], GMO [9], and ESO [10]. The gain matrix is selected
to be diag{4, 4} for NDOB and diag{50, 50} for GMO. For ESO, its two gain matrices are chosen to
be diag{200, 200} and diag{10,000, 10,000}. When it comes to FTO coefficients selection, it contains
more coefficients to be tuned. For simplicity, FTO shares the same gain matrices with ESO, namely
K1 = diag{200, 200} and K2 = diag{10,000, 10,000}. The power coefficient is chosen to be α = 0.9.
As noted in a previous section, when α = 1, FTO formulation degrades to ESO. However, this slight
change in system powers significantly improves the performance of the estimation accuracy and
convergent rate. Notice that the related parameters of these observers are tuned such that a similar
noise level in residual signals is achieved.

The time profiles of the observation results are shown in Figure 3, and the corresponding
estimation error is also plotted in Figure 4. As it can be seen from Figure 3, FTO provides the
quickest response compared to other DOBs thanks to the adoption of finite-time design, while ESO has
better convergent rate compared to GMO and NDOB. Moreover, FTO also shows smaller estimation
errors, especially for the dynamic force estimation. As shown in the bottom view of Figure 4, the FTO
estimation error is comparatively smaller than that of both GMO and ESO in simulation. This fact
demonstrates the fast convergence of the proposed FTO in disturbance observing. NDOB seems to
share the same performance in slop disturbance tracking with FTO. However, NDOB is prone to sharp
changes in acceleration as joint 2 undergoes violent acceleration processes near 1 and 1.8 seconds
induced by the step disturbance on joint 1.

Table 1 details the specific estimation performance of these DOBs with different evaluation indices.
The estimation errors for joint 1 and 2 are listed in the second and third column, respectively. It is
clear that the proposed FTO outperforms other methods in minimizing the estimation error as FTO
can track the real value with fast response. It should be pointed out that the model errors will be
included in the lumped disturbances estimation in all of these DOBs. In order to realize an accurate
estimation of the external impact, the model error should be kept under a low level. The last column in
Table 1 illustrates the execution time per iteration of each observer. As the matrix inversion is required
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in NDOB, it takes the most computational time. Compared with GMO and ESO, FTO method costs
slightly more computational time as a result of the power operation.

Table 1. A comparison of nonlinear disturbance observer (NDOB), generalized momentum observer
(GMO), external state observer (ESO), and FTO methods.

Method RMSE1 (Nm) RMSE2 (Nm) Te (µs)

NDOB 0.5361 0.1204 13.50
GMO 0.5086 0.1634 5.79
ESO 0.4802 0.1495 7.72
FTO 0.4072 0.0805 9.64
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Figure 3. Estimation of external torque.(a) External disturbance observation results of step response
signal for joint 1; (b) external disturbance observation results of slop signal for joint 2.
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Figure 4. The disturbance estimation errors of external torque. (a) External disturbance estimation
errors for joint 1; (b) external disturbance estimation errors for joint 2.
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5. Conclusions

In this paper, a finite-time observer is designed to estimate the unknown disturbances imposed on
a robotic manipulator. By reducing the observer order and reselecting the state variables, three types
of FTO were iteratively designed and gradually optimized in order to ease the computation burden.

The adoption of the proposed FTO provides the disturbance estimation with a fast and accurate
tracking capability, along with the avoidance of the joint acceleration calculation and matrix inversion.
Compared with the existing DOBs of which the convergence rate is at best exponential, FTO is able to
force the estimation error to converge to zero within a finite time. Although FTO has a more complex
formulation and thus a slightly increased computational time cost, the simulation results demonstrate
that FTO has the quickest response to disturbance and the lowest estimation error. Future work is
to apply the proposed observer to the real manipulator with applications in collision detection and
disturbance observer-based control. Moreover, theoretical work to adaptively handle robot model
uncertainties will also be considered.
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