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Abstract: Blue carbon (BC) ecosystems are an important coastal resource, as they provide a range of
goods and services to the environment. They play a vital role in the global carbon cycle by reducing
greenhouse gas emissions and mitigating the impacts of climate change. However, there has been
a large reduction in the global BC ecosystems due to their conversion to agriculture and aquaculture,
overexploitation, and removal for human settlements. Effectively monitoring BC ecosystems at large
scales remains a challenge owing to practical difficulties in monitoring and the time-consuming field
measurement approaches used. As a result, sensible policies and actions for the sustainability and
conservation of BC ecosystems can be hard to implement. In this context, remote sensing provides
a useful tool for mapping and monitoring BC ecosystems faster and at larger scales. Numerous
studies have been carried out on various sensors based on optical imagery, synthetic aperture
radar (SAR), light detection and ranging (LiDAR), aerial photographs (APs), and multispectral data.
Remote sensing-based approaches have been proven effective for mapping and monitoring BC
ecosystems by a large number of studies. However, to the best of our knowledge, this is the first
comprehensive review on the applications of remote sensing techniques for mapping and monitoring
BC ecosystems. The main goal of this review is to provide an overview and summary of the key
studies undertaken from 2010 onwards on remote sensing applications for mapping and monitoring
BC ecosystems. Our review showed that optical imagery, such as multispectral and hyper-spectral
data, is the most common for mapping BC ecosystems, while the Landsat time-series are the most
widely-used data for monitoring their changes on larger scales. We investigate the limitations of
current studies and suggest several key aspects for future applications of remote sensing combined
with state-of-the-art machine learning techniques for mapping coastal vegetation and monitoring
their extents and changes.
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1. Introduction

Blue carbon (BC) ecosystems consist of mangroves, seagrasses, and salt marshes, which play
a crucial role across the world by providing habitats for wildlife and a range of ecosystem services to
coastal organisms [1]. They are among the most carbon-dense ecosystems; while terrestrial forests are
able to store 300 megagrams of carbon per hectare, seagrass meadows may store twice as much [2],
and mangroves can store up to four times as much [3]. BC ecosystems also contribute significantly to
the livelihood of coastal populations by providing valuable resources to local markets [4]. Despite such
benefits and services, they have rapidly declined, owing to conversion to aquaculture and agriculture,
overexploitation [5], and relative sea level rise [6].

According to the analyses of the available data provided by the Food and Agriculture Organization
(FAO) in 2007, about 18.8 million hectares of mangroves existed worldwide in 1980 and declined to
15.2 million hectares by 2005. The most extensive mangrove area loss was recorded in Asia, followed
by Africa, and North and Central America. Five countries, namely Indonesia, Australia, Brazil,
Nigeria, and Mexico, account for 48% of the total global mangrove area. Just ten countries account
for approximately 65% of the total global mangrove area, while the remaining 35% is accounted
for by over 114 countries and regions, of which 60% have less than 10,000 ha of mangroves [7].
The comprehensive global assessment in [8] found that seagrasses have been consumed at a rate
of 110 km2 per year since 1980, of which 29% have disappeared since seagrass areas were initially
recorded in 1879. The regional-scale assessment [9] indicated that, in the U.S., the San Francisco Bay
and New England have experienced a 79% and 50% reduction in the area of salt marshes, respectively.

Remote sensing-based approaches have been proven to be suitable for mapping and monitoring
BC ecosystems [10,11]. They have lower costs, higher accuracy, and easier repeatability and cover
wider areas than traditional field-based methods [11]. However, they still have limitations caused
by clouds and limited coverage of airborne datasets [12]. The recent advances in remote sensing
techniques, computer vision, and pattern recognition can overcome these limitations and encourage
new approaches to develop more accurate mapping techniques [13]. In recent years, there has been
an increased use of machine learning methods and data integration of optical and synthetic aperture
radar (SAR) data in mapping and monitoring BC ecosystems.

In this paper, we inventory and give an overview and comparison of the key studies undertaken
from 2010 onwards on mapping and/or monitoring of BC ecosystems. This review provides a critical
overview of the methods developed from 2010 onwards using different remote sensing-based
approaches and various datasets and specific mapping and monitoring techniques for mangrove,
seagrass, and salt marsh ecosystems. The limitations of recent studies are also highlighted for future
directions for the use of remote sensing techniques combined with state-of-the-art machine learning
algorithms for mapping mangrove, seagrass, and salt marsh ecosystems and monitoring their extent.
Importantly, this work also discusses the future trends in mapping and monitoring BC ecosystems.

2. Background and Methods

2.1. Blue Carbon Ecosystems

Coastal ecosystems mainly include mangroves, seagrasses, and salt marshes, which are known as
“BC” [14]. They are capable of storing high volumes of carbon in their sediments [14]. They are able
to contribute significantly to the global carbon cycle by absorbing and storing carbon for long time
scales [2,15].

2.1.1. Mangroves

Mangroves are forested wetlands and are mainly found in estuaries, along riverbanks, in lagoons,
and in intertidal areas [16]. As shown in Figure 1, mangroves are groups of trees and shrubs that are
able to grow in estuaries and form a transition zone between land and sea [15]. The mangrove biomes
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generally exceed half a meter in height and often grow above the mean sea level in the intertidal
zone of coastal environments or along estuary margins of many tropical and semi-tropical countries
around the world [17]. According to FAO, mangroves grow in the estuaries of over 120 countries [7]
and cover over 137,000 km2 [18]. However, the most recent estimates indicate that between 1980 and
2005, the global areas of mangroves declined by up to 3.6 million hectares, mainly in Southeast Asia [7].
Primary drivers vary regionally, but include urban development, aquaculture, agriculture expansion,
salt pond construction, and overexploitation [19].

Figure 1. Mangrove communities in North Vietnam (20◦18′–21◦ 22′ N, 105◦10′–106◦39′ E). These photos
were taken by T.D. Pham [20].

2.1.2. Seagrasses

Seagrass meadows are flowering, submerged monocotyledonous plants, e.g., tape grass and
turtle grass, of tropical to temperate regions. They are usually found in shallow coastal water, have
narrow grass-like leaves and often form dense underwater meadows [2]. Seagrasses are generally
found in temperate and tropical climates (see Figure 2), and their meadows can survive for thousands
of years. They provide several essential resources for aquatic life, including nursing and breeding
grounds, water quality improvement, and coastline stabilization [21]. Recently, this ecosystem has
been considered as an effective carbon sink, with a higher rate of carbon storage compared to Boreal
and tropical forests [22]. Similar to mangroves, however, seagrass populations have declined [8],
which has lead to a significant loss of aquatic habitats and the emission of CO2 to the atmosphere [23].

Figure 2. Seagrass meadows in the centre of Vietnam (16◦13′–16◦42′ N, 107◦21′–108◦5′ E). These photos
were taken by H.N. Thang [24].
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2.1.3. Salt Marshes

Salt marshes are restricted to sub-tropical and temperate regions [1]. They are divided into
intertidal marshes, which are found from the mean neap high water mark to the mean spring high
water mark, and tidal marshes (see Figure 3), which are found above the spring high water mark [25].
Salt marshes are considered highly productive ecosystems because they provide a range of ecosystem
benefits, such as food supply, nutrient cycling, and carbon storage [26]. Despite such important benefits,
the area of salt marshes has been declining due to land development and dredging [27], as well as
coastline transgression, i.e., sea level rise [28].

Figure 3. Salt marsh ecosystem in the middle coast of Jiangsu, China (33◦00′–33◦40′ N, 120◦30′–120◦55′ E) [29].

2.2. Inventory, Review, and Comparison of Studies

2.2.1. Summary of Inventory, Datasets, and Methods

In this work, based on an extensive search in the Scopus and the Web of Science databases, more
than 120 key studies conducted from 2010 onwards were inventoried. All inventoried papers were
compared based on key attributes, including the data type and classification methods. All data types
include the category, platform, spatial resolution, revisit capability, and launch date (Table 1). Figure 4
shows the locations of the key studies on a wide range of remote sensing applications for mapping
and monitoring BC ecosystems.

Most of data used in the representative research is at high resolution and can be classified into
four categories: (1) optical data, (2) SAR, (3) LiDAR, and (4) ancillary data. The ancillary data include
maps produced from GIS data acquired by remote sensing and in situ measurements classified by
their acquisition platform and sensor types. The dataset used in this review varies from different
sensors, platforms, and spatial resolutions. We classified them into five categories: (1) optical high
spatial resolution (HS), (2) optical medium/low spatial resolution (MS), (3) SAR, (4) LiDAR, and (5)
ancillary data. The ancillary data include point, sonar, and video datasets and the spectral information
collected by the field survey. Table 1 shows different datasets classified by their sensor types and
acquisition platforms.

Among the available optical datasets, the Landsat series are the most widely used because
they can be utilized for mapping for long-term observation at a large scale (e.g., global and country
scales). LiDAR and HS datasets can be used to provide high precision mapping results. The SAR data
can be used for both day and night acquisition. The spectral signatures derived from hyperspectral
measurements could be used to distinguish the difference between mangrove, seagrass, and salt
marsh species.
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Figure 4. The review of the study sites.

Table 1. Summary of remote sensing data used for mangroves, seagrasses, and salt marshes. HS, high
spatial resolution; MS, medium/low spatial resolution.

.
Type Acquisition Platform Spatial Resolution (m) Revisit Capability (day) Launch Date (year)

Optical HS

Airborne
UAV 0.1

mobilized to order Since 2000HyMap Hyperspectral: 5
CASI Hyperspectral: 1

Spaceborne

QuickBird Panchromatic: 0.6 1.5–3 2001.10Multispectral: 2.4

IKONOS Panchromatic: 1 1.5–3 1999.9Multispectral: 4

ALOS PRISM: 4 2 2006.1AVNIR: 10

SPOT-4 Panchromatic: 10 2–3 1998.3

SPOT-5 Panchromatic: 5 2–3 2002.5Multispectral: 10

WorldView-2 Panchromatic: 0.46 1.1 2009.10Multispectral: 1.85

GeoEye-1 Panchromatic: 0.41 2–3 2008.9Multispectral: 1.65

KOMPSAT-2 Panchromatic: 1 2–3 2007.7Multispectral: 4

Optical MS Space borne

Landsat 5 Multispectral: 30 16 1984.4–2013.5

Landsat 7 Panchromatic: 15 16 1999.4Multispectral: 30

Landsat 8 Panchromatic: 15 16 2013.2Multispectral: 30

Sentinel-2 Multispectral: 10, 20, 60 5–10 2015.6

IRS1D LISS Multispectral: 23.5 25 1997.9

EO-1 Hyperspectral: 30 16 2000.11Multispectral: 30 200

SAR Space borne

ALOS PALSAR: 10 46 2006.1

ALOS-2 Spotlight: 1-3 16 2014.5Stripmap: 3, 6, 10

RADARSAT-2 Spotlight: 1 24 2007.12Stripmap: 3

Sentinel-1 Interferometric Wide Swath: 5 12 2014.4Stripmap: 5

LiDAR Ground Aerial Aeroplane, UAV 0.1 mobilized to order Since 2000
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2.2.2. Comparison of Studies

From Figure 4, it can be seen that the mangrove studies have been conducted all over the world,
whereas the study sites of the seagrass are located mostly in South Asia and Europe. The study sites of
salt marshes are located mainly in the USA, Canada, and Europe.

Figure 5 shows the classification methods for the mapping of BC ecosystems. In this work,
we divided the classification methods into five types: (1) unsupervised learning; (2) supervised learning;
(3) advanced learning; (4) object-based image analysis (OBIA); and (5) sub-pixel. Unsupervised and
supervised learning methods belong to pixel-based classification techniques, whereby a pixel is
assigned to a certain class by considering the similarities between the features. Typical unsupervised
methods are the iterative self-organizing data analysis (ISODATA) technique and the index-based
methods, e.g., normalized difference vegetation index (NDVI). Representative supervised methods are
the minimum distance, the maximum livelihood classifier (MLC), and the decision tree (DT). Recently,
machine learning methods, such as neural networks, support vector machines (SVMs), random forests
(RF), and deep learning, have also been used in research fields. Here, we included these methods in
the advanced category (3). The OBIA aims at analysing groups of neighbouring pixels as objects or
segments instead of using the conventional pixel-based classification approaches. Image segmentation
is a basic processing technique in the OBIA approach [30]. Most of these parameters are specified
as objects and cannot be used in pixel-oriented classification [31]. In many cases, the results obtained
with the object-oriented approach are similar to or outperform those obtained with the pixel-based
approach. The sub-pixel approach exploits and identifies different materials within the single pixel using
unmixing-based methods with the output of abundance. In the following three sections, we introduce
mapping and monitoring change analysis for each BC ecosystem separately. In the mapping part, we depict
the five categories of classification method and remote sensing datasets. In the monitoring part, we list
the methods, remote sensing datasets, location, and the period of changes.

Figure 5. Illustration of classification methods for mapping blue carbon ecosystems.
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2.3. Mangrove Ecosystems

2.3.1. Mapping Mangrove Ecosystems

There is a wide range of research studies available that have used different methods for mangrove
mapping. This section reviews the advantages and disadvantages of each approach. Table 2 summaries
the mangrove mapping techniques using remotely-sensed data from 2010–2018.

Table 2. Remote sensing techniques for mapping mangroves using remotely-sensed data from
2010–2018. OBIA, object-based image analysis.

Datasets Methods Location
HS MS SAR LiDAR SL UL OBIA Advanced

Kovacs et al. [32], 2010
√ √

West Africa
Salami et al. [33], 2010

√ √
Nigeria

Yu et al. [34], 2010
√ √

China
Alatorre et al. [35], 2011

√ √
Mexico

Long and Giri [36], 2011
√ √

Philippines
Satyanarayana et al. [37], 2011a

√ √
Sri Lanka

Satyanarayana et al. [38], 2011b
√ √

Malaysia
Beh Boon et al. [39], 2011

√ √
Malaysia

Dat and Yoshino [40], 2011
√ √ √

North Vietnam
Giri et al. [41], 2011

√ √ √
Global

Nandy and Kushwaha [42], 2011
√ √

Bangladesh
Heumann [43], 2011

√ √ √
Ecuador

Srinivasa Kumar et al. [44], 2011
√ √

India
Chadwick [45], 2011

√ √ √
Florida, United States

Rocha de Souza Pereira et al. [46], 2011
√ √

Brazil
Tien Dat and Yoshino [20], 2012

√ √ √
Hai Phong, Vietnam

Kirui et al. [47], 2013
√ √

Kenya
Vo et al. [48], 2013

√ √
Ca Mau, Vietnam

Cardoso et al. [49], 2014
√ √

Amazon, Brazil
Kamal et al. [50], 2014

√ √
Moreton, Australia

Jones et al. [51], 2014
√ √

Madagascar
Singh et al. [52], 2014

√ √
India

Kamal et al. [53], 2015
√ √ √

Karimunjawa, Indonesia
Giardino et al. [54], 2016

√ √
Myanmar

Jones et al. [55], 2016
√ √ √

Madagascar
Aslan et al. [56], 2017

√ √ √
Indonesian Papua

Chen et al. [57], 2017
√ √ √

China
Zhang et al. [58], 2017

√ √
China

Almahasheer [59], 2018
√ √

Arabian Gulf

The most common and widely-used supervised classification method is the MLC [60]. Numerous
studies have used the MLC for analysing land use and land cover (LULC) changes in both tropical
forests and coastal zones [61–63]. This method is applied to mangrove mapping based on different
types of remote sensing images, such as aerial photographs (APs) [64], Landsat TM [35,65], ETM+ [66],
LANDSAT-8 OLI [67], IKONOS [38], SPOT [68,69], QuickBird [70], and RADARSAT [68]. The datasets
obtained from Indian remote sensing satellite data [71] were also used to quantify mangrove loss
for coastal zone management [33]. The MLC allows the extraction of different mangrove land cover
categories [72]. The MLC technique exhibits an overall accuracy (OA) ranging from 79% to over
88% [62,63]. Furthermore, the MLC and the DT classifiers were used for mangrove mapping in South
China [57,58] and Saudi Arabia with Landsat and Sentinel series [59].

For the unsupervised classification, the ISODATA classifier was applied to the IKONOS dataset
acquired in Guinea [32], Landsat images from the Philippines [36] and Madagascar [51], and Indian
Space Research Organization (ISRO)—Linear Imaging Self Scanner (LISS) satellite data from the
Biosphere Reserve in Bangladesh [42] and South India [44]. The NDVI is an effective and the most
popular index for vegetation monitoring [73], including mangrove ecosystem [74]. This index is
often employed to obtain the spatial distribution of vegetation coverage in the wetland regions
and mangrove ecosystems [74]. The use of the vegetation index leads to a better discrimination
between mangroves and plantations [75]. Because vegetation indices are derived from remote
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sensing imagery, the spatial resolution of different imagery types affects the analytical results.
Thus, the combination of a supervised classification method and texture analysis is a suitable
approach to improve the accuracy assessment from various satellite imagery sources [76]. For instance,
the MLC was utilized to discriminate mangrove and non-mangrove regions from extracted vegetation
areas, which could be acquired based on the NDVI [76]. Giri et al. [41] and Jones et al. [55] used the
supervised and unsupervised classification methods for the mangrove mapping globally and locally
(within countries), respectively.

The object-oriented classification and the OBIA can provide 80% OA individually and can reach
94% accuracy for satellite image processing with Digital Elevation Model (DEM) thematic layers [30].
The object-oriented approaches for mapping mangroves have been applied in multi-resolution image
segmentation. These techniques are also used for change detection conducted on the segmentation of
different time series analysis. The object-oriented approaches are able to clearly discriminate between
different land cover types within mangrove ecosystems. The methods can achieve an OA as high as 97%
for the mangroves’ class and a kappa index of 0.83 [77].

In recent years, many researchers proposed a combination of techniques for multi-source
remotely-sensed data. This method is called the hybrid approach, which combines both pixel-based
and object-based classification techniques (see Figure 6) [78].

Figure 6. The hybrid approach scheme (modified from Zingaretti et al. [78]).

2.3.2. Monitoring Mangrove Ecosystems

Time-series remotely-sensed data have been proved to be effective at monitoring mangrove
ecosystems changes, using both APs and optical and SAR data. Table 3 lists the remotely-sensed
data and the approaches used for monitoring mangrove ecosystems and assessing their extents and
change detection. In the last decade, time-series APs have been used for mapping mangroves’ changes.
Approximately eighteen studies conducted in nine countries in Asia, Australia, Africa, and North and
South America have been reviewed. The most common techniques applied for classifying APs are based
on visual interpretation and digitizing skills. Aerial photography has been used for detecting mangrove
ecosystems changes and examining the drivers of these changes. For instance,Everitt et al. [64] used
APs to detect mangrove dynamic changes due to an alternation of net accretion and erosion between
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1951 and 1999, while Lam-Dao et al. [68] found a rapid expansion of shrimp aquaculture resulting
in mangrove loss in the Ca Mau Peninsula (South Vietnam) from 1968–1992. A similar trend was
observed using visual interpretation techniques for APs reported by Satyanarayana et al. [38] in Sri
Lanka, showing that the development of shrimp farming is the main driving force of mangrove
deforestation. The unsupervised ISODATA clustering algorithm was also used for processing aerial
colour photographs taken to detect mangrove changes by Lam-Dao et al. [68], with high accuracy.
The high spatial resolution derived from APs indicates their capability of mapping mangrove ecosystem
extents and changes. Nevertheless, data acquisition and the presence of clouds, which is frequent in
tropical and semi-tropical regions, are the main limitations of aerial photography for local mangroves’
mapping, change detection, and conservation and management support. Optical images such as the
Landsat imagery are the most commonly used to evaluate mangrove change dynamics [66,69,79,80].
For instance, Nguyen et al. [69] and Bullock et al. [81] used the Landsat time-series data to monitor
mangrove changes in the Mekong Delta, Vietnam. Data from the SPOT XS imagery have been used for
monitoring mangrove dynamics in the tropics. Tran Thi et al. [82] used the SPOT time-series data to
assess mangrove ecosystems’ changes in the Mekong Delta in Vietnam from 1995–2001. A recent study
conducted by Liu et al. [83] demonstrated that SPOT and Gaofen-1 (GF-1) optical remotely-sensed
data can be used for monitoring the temporal and spatial changes of mangrove species in the Mai
Po area (Hong Kong). Jones et al. [55] employed the Landsat time-series data to monitor mangrove
changes in Madagascar between 1990 and 2010.

Regarding the use of SAR data, Thomas et al. [84] compared the Japanese Earth Resources Satellite
(JERS-1), SAR HH, and ALOS PALSAR HH and HV data for monitoring mangrove extents and
concluded that a combination of two SAR datasets is suitable for assessing the mangrove extents
over a decade and to support the JAXA’s Global Mangrove Watch (GMW) program. Pham et al. [85]
reported that using the ALOS PALSAR data combined with the SVM algorithm have the potential to
use the SAR data for monitoring forest extents and to support policy-makers in mangrove conservation
and management.
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Table 3. Remote sensing techniques for monitoring mangroves using remotely-sensed data from 2010–2018. MLC, maximum livelihood classifier.

Technique Used Sensor Location Reference Year of Detection Year of
Publishing

MLC Aerial photographs South Texas Gulf Coast, USA [64] 1976, 1988, 2002 2010

MLC Landsat TM Madagascar [65] 1951 and 2000 2010

MLC and ISODATA Landsat, SPOT, and RADARSAT Ca Mau Peninsular, Vietnam [68] 1973–2008 2011

MLC IKONOS Sri Lanka [38] 1994 and 2004 2011

Unsupervised Landsat TM and IRS 1D LISS-IV Chidambaram, South India [44] 1991, 2001, 2006 2011

Visual interpretations Landsat MSS, TM, and IRS LISS-III East coast of India [86] 1973, 1990, 2006 2011

Sub-pixel MODIS Mahakam Delta, Indonesia [87] 2000–2010 2013

Unsupervised Landsat TM, ETM+, and OLI Honduras [88] 1985-2013 2013

Unsupervised Landsat TM and ETM+ Zhanjiang mangrove, Guangdong
province of Southern China [79] 1977–2010 2013

MLC Landsat TM and SPOT Kien Giang Province, Vietnam [69] 1989–2009 2013

Unsupervised Landsat, JERS-2 SAR, ALOS
PALSAR, and ALOS-2 PALSAR-2 Global Mangrove Watch [89] 1992–2011 2014

RoFand NN Landsat MSS, TM, and ETM+ Ayeyarwady Delta, Myanmar [90] 1978–2011 2014

OBIA Landsat TM Quang Ninh, Ca Mau, Kien Giang
in Vietnam [91] 1990, 2000, 2010 2014

SVM Landsat TM Southeast coast of India [52] 1991, 2000, 2009 2014

OSTU Aerial photos, Landsat MSS, TM,
ETM+, and SPOT 2, 4, 5 Mui Ca Mau, Vietnam [82] 1953–2011 2014

MLC Landsat TM and ETM+ Southern Peninsular Malaysia [66] 1989–2014 2015

OBIA Landsat TM and ETM+ Matang Mangrove Forest Reserve,
Malaysia [67] 1988–2013 2015

CART Landsat TM, ETM+, and OLI South Asia [92] 2000-2012 2015

MLC Aerial photographs and Landsat Mui Ca Mau, Vietnam [93] 1953–2011 2015
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Table 3. Cont.

Technique Used Sensor Location Reference Year of Detection Year of
Publishing

OBIA and visual
interpretation ALOS PALSAR and JERS-1 SAR

Nine mangrove sites in Brazil,
Australia, French Guiana,
Kalimantan, Papua, Sumatra of
Indonesia, Peninsular Malaysia,
Nigeria, and Ecuador

[84] 1995–1998 and
2007–2010 2015

ISODATA Aerial photos, ASTER, and Landsat
ETM+ Ecuador [94] 2000–2011 2015

OBIA Landsat TM and OLI Hai Phong city, Vietnam [95] 1989–2013 2015

OBIA Landsat TM, OLI Ca Mau Peninsula, Vietnam [96] 1979–2013 2015

Unsupervised Landsat TM, ETM+, and OLI Zambezi Delta, Mozambique [97] 1994-2013 2015

Tasselled cap transformation
(TCT) and subpixel Landsat TM and OLI Can Gio Biosphere Reserve,

Vietnam [98] 1989–2014 2016

NDVI Landsat TM and ETM+ Mekong River Delta, Vietnam [99] 1989–2014 2016

supervised and
unsupervised Landsat TM, ETM+, OLI Southeast Asia [19] 2000–2012 2016

MLC IKONOS, GeoEye, QuickBird,
and WorldView-2 Bali, Indonesia [100] 2001–2014 2016

MLC Aerial photos, QuickBird,
and WorldView-2 Northeastern coast of Florida, USA [70] 1942–2013 2016

Unsupervised Landsat TM, ETM+, and OLI Madagascar [55] 1990–2010 2016

OBIA SPOT 5 Ca Mau Peninsula, Vietnam [101] 2004–2013 2017

OBIA and SVM SPOT 4 and 5 Can Gio Biosphere Reserve,
Vietnam [102] 2000–2011 2017

ISOCLUST Landsat ETM+ and OLI Madagascar [103] 2002–2014 2017

TCT and RF Landsat TM, ETM+, and OLI Mekong Delta, Vietnam [81] 1990–2015 2017
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Table 3. Cont.

Technique Used Sensor Location Reference Year of Detection Year of
Publishing

MLC IKONOS, QuickBird,
and WorldView-2 and 3, GeoEye Perancak estuary, Bali, Indonesia [104] 2001–2015 2018

K-means Landsat TM, ETM+, and OLI Sierra Leone, West Africa [105] 1990–2016 2018

Data fusion ALOS PALSAR and Rapid Eye Wadi Lehmy, Egypt [106] 2007–2015 2018

MLC Landsat MSS, TM, ETM+, and OLI Coastline of Bangladesh [107] 1976–2015 2018

Decision tree Landsat TM and Landsat OLI Fujian Province, China [108] 1995–2014 2018

SVM ALOS PALSAR and ALOS-2
PALSAR-2 Cat Ba Biosphere Reserve, Vietnam [85] 2010–2015 2018

MLC Landsat TM, ETM+, and OLI Tanintharyi, Myanmar [109] 1989–2014 2018
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2.4. Seagrass Ecosystems

2.4.1. Mapping Seagrass Ecosystems

Table 4 summarizes the datasets and the mapping techniques used for mapping seagrass
meadows. It is observed that a range of satellite sensors has been employed for mapping seagrasses,
including optical data such as multi-/hyper-spectral imagery, SAR data, and APs. Among them,
the multi-spectral imagery is the most frequently used. A series of research studies was carried out on
HS multi-spectral imagery using WorldView and IKONOS for seagrass mapping. A comparison of the
performances of different optical sensors, i.e., Landsat 8, Ziyuan-3A, Sentinel–2, and WorldView–3,
on seagrass mapping was reported by Kovacs et al. [110]. The OBIA was used in this study to detect the
boundaries of the seagrass species. Despite the very high spatial resolution of ZY–3A and WorldView–3,
the OA only obtained 66% for species mapping and 57% for percentage cover maps. The highest user
accuracy was reported using the WorldView-3 data, with 80% for seagrass species and 76% for seagrass
percentage mapping (at 70–100% cover). A similar performance of WorldView-2 was observed for
seagrass species and percentage cover mapping, in which the average producer accuracies were 73.74%
and 75%, respectively [111]. An OA of 78% was obtained using WorldView–2 and OBIA for seagrass
distribution mapping [112]. Wicaksono [113] used an image rotation technique, involving principle
component analysis (PCA) and independent component analysis to deliver the spatial distribution
of seagrass from WorldView–2 data. The water column corrected image with principle component
analysis was reported to have the highest producer accuracy for seagrass mapping from the MLC.
Using simple radiative transfer modelling for water column correction, the corrected WorldView-2
produced a seagrass map with 88.3% OA [114]. Similar research was conducted for mapping of
seagrass distribution around Lizard Island, Australia [115] using the OBIA and the radiative transfer
modelling-based simulator [116]. For the IKONOS sensor, the selected works were [117,118] with
a remarkable density index developed by Baumstark et al. [119]. However, a low Kappa coefficient
(0.53) was observed in this work due to the inconsistency of the index and validation data.

Table 4. Seagrass mapping techniques using remotely-sensed data from 2010–2018.

Datasets Methods

HS MS SAR LiDAR Ancillary SL UL OBIA Advanced Subpixel

Sagawa et al. [120], 2010
√ √

Meyer et al. [121], 2010
√ √ √

Fearns et al. [122], 2011
√ √ √ √

Knudby and Nordlund [117], 2011
√ √

Ferreira et al. [123], 2012
√ √

Lu and Cho [124], 2012
√ √

Nobi and Thangaradjou [125], 2012
√ √

Micallef et al. [126], 2012
√ √

Li et al. [127], 2012
√ √ √

Paulose et al. [128], 2013
√ √

Pu and Bell [129], 2013
√ √

Borfecchia et al. [130], 2013
√ √ √

Massot-Campos et al. [131], 2013
√ √

Wicaksono and Hafizt [132], 2013
√ √ √

Baumstark et al. [119], 2013
√ √ √

Tamondong et al. [114], 2013
√ √

Torres-Pulliza et al. [133], 2013
√ √ √

March et al. [134], 2013
√ √

Nguyen et al. [135], 2013
√ √

Hogrefe et al. [136], 2014
√ √ √

Cho et al. [137], 2014
√ √

Saunders et al. [115], 2015
√ √

Kim et al. [138], 2015
√ √ √

Valle et al. [139], 2015
√ √

Garcia et al. [140], 2015
√ √

Barrell et al. [141], 2015
√ √

Roelfsema et al. [142], 2015
√ √ √



Sensors 2019, 19, 1933 14 of 37

Table 4. Cont.

Datasets Methods

HS MS SAR LiDAR Ancillary SL UL OBIA Advanced Subpixel

Schubert et al. [143], 2015
√ √

Sagawa and Komatsu [116], 2015
√ √

Tsujimoto et al. [144], 2016
√ √

Purnawan et al. [145],2016
√ √

Koedsin et al. [111], 2016
√ √

Uhrin and Townsend [146], 2016
√ √

Wicaksono [113], 2016
√ √ √

Baumstark et al. [112], 2016
√ √ √

Kakuta et al. [147], 2016
√ √ √

Pan et al. [148], 2016
√ √ √ √ √

Folmer et al. [149], 2016
√ √

Bonin-Font et al. [150], 2016
√ √ √

Pe’eri et al. [151], 2016
√ √

Pu and Bell [118], 2017
√ √ √ √

da Silva et al. [152], 2017
√ √ √

Hedley et al. [153], 2017
√ √

Traganos et al. [154], 2017
Ferretti et al. [155], 2017

√ √

Kovacs et al. [110], 2018
Rahnemoonfar et al. [156], 2018

√ √

Topouzelis et al. [157], 2018
√ √

Ventura et al. [158], 2018
√ √

Mohamed et al. [159], 2018
√ √ √ √

Effrosynidis et al. [160], 2018
√ √ √

Traganos et al. [161], 2018
√ √

Gereon et al. [162], 2018
√ √

Duffy et al. [163], 2018
√ √ √

Konar and Iken [164], 2018
√ √

At a lower spatial resolution, a large-scale mapping is preferred to measure the effects of the
natural hazards (in Indian [128] and Japan [144], for instance) or to provide more data for resource
inventory with typical works in the lower Alaska Peninsula [136] and Landsat-5 TM in the Eastern
Africa coast [165]. Other works involve seagrass mapping from Landsat-8 OLI [145] and [147]; ASTER,
SPOT–4, and KOMPSAT–2 [138]; ALOS AVNIR–2 [120] and [152]; ALOS AVNIR–2 and ASTER using
leaf area index [132]; Indian remote sensing (IRS) [125] and THEOSdata [135].

Although multi-spectral imagery has emerged as a popular dataset for seagrass mapping,
the limited number of spectral bands may lead to a low accuracy of single species detection.
For this reason, hyper-spectral imagery was widely combined with physical-based models and
various classification algorithms to improve the accuracy of seagrass detection in complex water
environment. A majority of studies used the applications of different hyperspectral sensors such
as: CASI, HICO, HyMap, Hyperion, PRISM, and EO-1 images. In [148], the combination of CASI
imagery and bathymetric LiDAR data for the detection of seagrass in shallow waters was reported.
Four classification algorithms were tested, involving SVMs, MLC with principle component analysis
(PCA-ML), MLC with linear discrimination analysis (LDA-ML), and spectral angle mapper (SAM).
The data from the CASI imagery increased the OA to 95% for all habitats, whilst the fusion of CASI
and LiDAR data only improved the accuracy of seagrass classification. Using the same hyper-spectral
imagery for seagrass mapping, Valle et al. [139] applied MLC to six different band combinations
of CASI imagery and yielded the highest producer accuracy using 10 bands’ combination (92%).
A comparison of the performance was also found for Hyperion and a group of Landsat-5 TM, EO–1,
and IKONOS [121,129], which exhibited a higher accuracy of seagrass mapping than hyper-spectral
images. To deal with turbid waters, Borfecchia et al. [130] attempted to enhance the radiometric
correction for 2.5-m spatial resolution airborne imagery. Landsat 7 ETM+ and MERIS images were
used as the references for atmospheric and water column correction. In the study, the Lyzenga method
for water column correction was improved with the addition of the water diffuse attenuation coefficient
retrieved from MERIS images. A strong correlation (R2 = 0.84) between the in situ leaf area index (LAI)
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and the water column corrected image pixel was achieved to deliver the seagrass map by the index.
Despite promising results, there is still uncertainty on the method due to the spectral band mismatching
of MERIS and the airborne images, which may lead to various results for water column correction.

In addition, Hedley et al. [153] introduced a physical inversion model combined with
hyper-spectral data (PRISM) for the detection of seagrass species. Due to a similarity in the spectrum
of seagrass (Thalassia testudinum and Syringodium filiforme) at the study sites, the proposed model failed
to discriminate the species from only remote sensing data. This approach, however, is a potential
option for other species with the addition of ecological data to the model. Another attempt to detect
seagrass from algae using various data types and semi-analytical modelling approach was reported by
Garcia et al. [140], who developed a semi-analytical shallow water forward model with hierarchical
clustering technique from hyper-spectral (HICO and HyMap) and multi-spectral (WorldView–2)
images. This work showed a better performance of HICO and HyMap compared to WorldView–2 in
distinguishing seagrass from algae. These hyper-spectral data are able to detect seagrass with higher
clustering accuracy and deeper water depth and can deal with various water types (Water Types 1–4).
In addition to the spectral discrimination, this study also denoted the important role of spatial
resolution and atmospheric correction for seagrass mapping and, in particular, distinction from
algae. Similarly, Fearns et al. [122] reported an agreement of 48% for seagrass and up to 90% for
brown algae by using semi-analytical shallow optical water modelling and HyMap data. It was
considered that patchy meadows and water depth caused a low accuracy for the seagrass class
when performing cross-validation with video data. In the same year, Lu and Cho [124] improved
a water column correction algorithm for seagrass mapping. The improvement was then applied
to APs and denoted an increase of reflectance values of the red and NIR bands of approximately
6% and 28%, respectively. The improvement of water column correction is expected to significantly
contribute to further mapping of seagrass. Recently, the linear spectral unmixing classifier and visual
interpretation [146] or an an extension of the LEGION method [127] were used to detect patchy
seagrass meadows. Furthermore, Cho et al. [137] developed spectral modelling SlopeRed and SlopeNIR
to detect seagrass from macroalgae by selecting the key bands from hyper-spectral imagery. Compared
to SAM and ISODATA, the proposed models improved the accuracy to approximately 64%, which
was higher than SAM (47.5%) and ISODATA (25%). Given their simplicity, SlopeRed and SlopeNIR may
provide an alternative solution for the mapping of seagrass mixed with other substratum. Generally,
the semi-analytical method using hyper-spectral imagery allows a higher mapping accuracy than the
empirical approach [166]. However, it requires an intensive spectral library of different bottom curves
as the input for the classification algorithm. This may lead to an expensive field sampling and storage
of the library in case of large-area and mixed bottom type site monitoring. In addition, hyper-spectral
sensors usually perform small coverage and allow on-demand requesting in a specific geographic
region. The use of these data may result in the difficulty of time-series analysis and monitoring of
seagrass resources at regional scales. In terms of physical-based models, it is necessary to validate the
performance at various sites, as well as simplify the processing steps for further re-producibility.

Moreover, the modelling approach is constructed using digital images to predict the
presence/absence of seagrass. The most recent work involved species distribution models using
physical parameters and Bayesian geostatistics. Water depth, wave exposure, slope, and near-bottom
velocity have been considered important factors in improving a model’s performance [134,143].

In the field of sonar images, the multi-beam bathymetry and backscatter data were combined
to build a semi-automated sea floor mapping [126]. However, an accuracy assessment metric was
not reported despite having a visual validation with the photo from the diving. On the contrary,
Rahnemoonfar et al. [156] reported a very high accuracy (97%) for seagrass detection in turbid and
very shallow water (<2 m depth) using morphology transformation and filter techniques on side scan
sonar images. In [141], the authors compared the performance of single beam and QuickBird data for
seagrass cover mapping. However, disagreement was observed in terms of both the Kappa coefficient
and OA despite a good performance at high values of percentage cover.
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Unmanned vehicles and machine learning are considered promising approaches in the marine
science community. Unmanned marine vehicles (UMVs) have the advantages of both acoustic data
from single beam echosounders and underwater cameras, which achieve very high accuracy in seagrass
mapping (>95%) [155]. This high accuracy is also reported with unmanned aerial vehicles (UAVs) and
the OBIA technique. Very high resolution photos were segmented with 61–100% producer accuracy
for seagrass classification [158]. The potential combination of UAV/UMV and OBIA for seagrass
mapping at a small scale was reported in previous studies. This approach represents a replacement for
traditional seagrass field campaigns with snorkelling in the future [142]. In larger regions, however,
the problems of high cost, time-series data, and the usage license of UAV/UMV may be an obstacle for
seagrass mapping.

For machine learning-based mapping, several algorithms have been developed to improve
either the classification from satellite imagery or seagrass prediction from environmental parameters.
As described by Mohamed et al. [159], the weighted majority voting (WMV) method increased
OA to 92.7% with the QuickBird image. A very high accuracy was also reported with the logistic
model tree with digital images (96.33% incorrectness) [131], AdaBoost, Random forest (RF), Bayesian
Network Learning, KNN, and NN (96% and 97% in both precision and recall) with digital images [150],
or SVM algorithms (100% in producer accuracy) using the Sentinel-2 data [167]. A DT model was
also adapted with hyper-spectral imagery for seagrass mapping [151]. The model performed well at
high densities of seagrass meadows, but detected approximately 66% when the density reduced to
below 60%. The authors claimed the threshold determination at deep optical water depths was the
most challenging and led to the confusion of deep water and dense seagrass meadows. Regarding the
prediction of seagrass distribution, RF was found to be superior to other machine learning models.
In [149], a lowest RMSE (0.59) or highest precision and recall (98.1% and 90.4%, respectively) [160] were
reported for the seagrass prediction model from environmental and physical factors (chlorophyll-a,
distance to the coast). In the latter study, they also attempted to predict the presence of seagrass
depending on their family. However, the performance was low in terms of both precision and recall
(below 50% for all machine learning algorithms). Despite the importance of the idea, it is also necessary
to address the uncertainty in the sampling method of the research. The disadvantage comes from
an artefact of absent point data of seagrass, which can be different from their distribution in the
field site. On the other hand, the unbalance of the dataset among seagrass families may cause a low
accuracy of the prediction and lead to a re-evaluation of the accuracy assessment metrics in this case.
A new approach is emerging, whereby the cloud computation power of Google Earth Engine, free
satellite imagery, and machine learning have been combined to retrieve a map of seagrass and their
change globally. Using Sentinel-2 and SVMs, approximately 2510 km2 of Posidonia oceanica in the
Aegean sea, Greece, were mapped with an OA of 72% [161]. Despite the medium accuracy, it opens a
modern approach for eco-regional mapping of seagrass unlike previous studies, in which a series of
data (Landsat and ASTER) was combined with classical classification techniques for very large-scale
mapping [133].

Deep learning algorithms provide a very comprehensive approach for marine science and,
in particular, seagrass mapping. Among them, the deep neural network outperformed the others in
the detection of fish [168], plankton [169], and coral reef [170] from digital images. Nevertheless, this
approach is not widely used for satellite data, and it still faces big challenges in the application to
seagrass mapping. As a result, a limited number of research papers was published on this subject
in recent years. In this field, an automatic seagrass segmentation method was introduced that uses
several feature extraction algorithms, involving convolutional neural networks (CNNs), histogram
of oriented gradients (HOG), and local binary patterns (LBP) on digital images [162]. An excellent
performance was found for the CNN method with an accuracy of 94.5% for seagrass segmentation.
Despite the advantages of deep learning, the application for seagrass mapping remains a challenge due
to mixed boundaries of seagrass and other benthic habitats, as well as the necessity of computation
power. In addition, the effects of water columns on the image pixel values and the requirement of
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a very large dataset for the training phase will preclude the deep learning’s expansion to the marine
science community [171].

2.4.2. Monitoring Seagrass Ecosystems

Recently, several change detection approaches (see Table 5) have been applied to seagrass
environments for various time scales, considering the change in spatial distribution, coverage,
and above-ground biomass in the range of 5–40 years [172–175]. However, no single technique
has emerged as superior across diverse marine environments [10].

Between 2010 and 2018, a series of post-classification-based change detection methods was
developed. The cross-reference matrix was created from classified images to describe the change
between 2009 and 2013 in Malaysia using Landsat 5 TM and Landsat 8 OLI [173]; between 2011 and
2016 in the Mediterranean Sea using RapidEye time-series data [174]; and between 2004 and 2007 using
QuickBird and acoustic field data [172]. Linking satellite data to water quality, a time-series of MODIS
images in five years (2007–2011) showed a negative correlation between the annual total seagrass
area or biomass and water types with very high coefficients of 0.98 and 0.92, respectively [176].
For detection over a single year, a time-series analysis is a more suitable selection. However,
it is sensor and acquisition date-dependent, and therefore, only a limited number of studies has
been published in recent years [177]. For long-term monitoring of seagrass, the research papers
selected involved change detection from 1996–2015 in Cam Ranh Bay (Vietnam), which used Landsat
TM/ETM+/OLI [178], from 1992–2013 in Inhambane bay (Mozambique) [165], which used Landsat
TM and SPOT-5, from 2004–2013 in the Eastern Banks, Australia [166], which used QuickBird–2,
IKONOS, and WorldView-2, from 1990–2014 in Malaysia [179], which used Landsat TM/ETM+/OLI,
and from 1972–2010 in Queensland, Australia [180], which used Landsat images. Similarly, the data of
Landsat TM/ETM+, ASTER, SPOT-4, and Kompsat-2 were used to estimate the damage of seagrass
meadows caused by a typhoon over 24 years in Korea. In this case, remote sensing data successfully
detected much damage and provided a comprehensive understanding of seagrass dynamics at study
sites [138]. However, as described in the research results of [181] and [179], the biggest disadvantage
in long-term change detection is that an accuracy assessment was not conducted for all classified maps.
This may lead to the uncertainty on seagrass area estimation and leave the problem of conservation
zoning to the policy makers.

At a higher spatial resolution, APs have contributed considerably to mapping through the
description of seagrass dynamics. Using visual interpretation and vector change analysis, the variation
of the spatial distribution of seagrass was detected from APs in several regions and over several
periods: in the northern Gulf of Mexico over 1940, 1971, and 2006 [182], in the Bay of Plenty, New
Zealand, during the years 1959, 1996, and 2011 [183], and in Massachusetts, USA, over 1994–2007 [184].
Especially, very long-term change of seagrass from APs over 1939–2011 was also compared [181].
Despite the long period of change detection in this research, the accuracy of mapping was only
reported for 2008–2011 due to the unavailability of ground truth data. By including modelling,
Lyons et al. [177] developed a linear model for seagrass biomass estimation from benthic photos.
This model was then reapplied to a time-series of remote sensing to retrieve the change detection
of biomass in the past. Three models were built for biomass estimation, but they produced a low
R2 value. The highest R2 achieved was 0.77, which was obtained when the above-ground biomass
was a function of the Syringodium isoetifolium percentage cover. Object-based classification [135,166],
clustering classification [125,138,178], and contextual editing with spatial analysis [135,182] are other
interesting approaches for both high and very HS imagery in this category.

Machine learning has emerged as a new effective mapping approach to precisely detect the change
of seagrass meadows over various time scales. At the time of this review, only one research paper has
been published on Mediterranean seagrass [174]. In the study, using an RF algorithm, the inter-annual
variation was evaluated from the RapidEye imagery with the OAs ranging between 73.5% and 82%
over 2011, 2012, 2015, and 2016.
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Table 5. Monitoring seagrass change detection using remote sensing techniques.

Technique Used Sensor Location Reference Year of Detection Year of
Publishing

GIS vector analysis, MLC,
post-classification comparison QuickBird Moreton Bay, Australia [172] 2004 and 2007 2011

Change vector analysis Landsat Bay of Plenty, New Zealand [183] 1959, 1996, 2011 2011

Edge-detection, visual
interpretation, GIS contextual
editing

Airborne imagery Gulf of Mexico [182] 1940–2007 2011

Change vector analysis, GIS
contextual editing

Airborne imagery, orthorectified
digital image New England, USA [184] 1994–2007 2011

Segmentation, post-classification
comparison Landsat Southeast Queensland, Australia [180] 1972–2010 2012

MLC, post-classification
comparison IRS Lakshadweep Islands, India [125] 2000 and 2008 2012

OBIA, time-series analysis Landsat TM, Landsat ETM+ Moreton Bay, Australia [177] 1988–2010 2013

Water type and seagrass change
modelling, post-classification
comparison

MODIS Queensland, Australia [176] 2007 – 2011 2014

OBIA, Arithmetic, GIS
Contextual Editing

Landsat TM, ALOS AVNIR-2,
THEOS Phu Quoc Island, Vietnam [135] 2001–2011 2014

Post-classification comparison Landsat Spermonde Archipelago, Indonesia [185] 1972–2013 2014

Unsupervised classification,
principle component analysis Aerial photo Port Phillip Bay, Australia [181] 1939–2011 2014

OBIA, post-classification
comparison

QuickBird–2, IKONOS,
WorldView–2 Moreton Bay, Australia [166] 2004–2013 2014

Mahalanobis distance, pixel
analysis, post-classification
comparison

Landsat TM, Landsat ETM+, Aster,
SPOT-4, Kompsat–2 Korea [138] 1990–2014 2015
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Table 5. Cont.

Technique Used Sensor Location Reference Year of Detection Year of
Publishing

Seed pixel growing,
post-classification comparison Landsat-5 TM, Landsat-7, Landsat-8 Malaysia [179] 1990, 2000, 2014 2015

Linear modelling Landsat-5 TM, Landsat-8 Malaysia [173] 2009 and 2013 2016

Clustering, pixel analysis,
post-classification comparison

Landsat TM, Landsat ETM+,
Landsat OLI Cam Ranh Bay (Vietnam) [178] 1996–2015 2016

Post-classification comparison Landsat TM, SPOT-5 Inhambane bay(Mozambique) [165] 199–2013 2017

Time-series analysis, random
forest RapidEye Mediterranean [174] 2011 and 2016 2018
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2.5. Salt Marsh Ecosystems

2.5.1. Mapping Salt Marsh Ecosystems

The first work on salt marsh vegetation mapping using remote sensing data was reported by Budd
and Milton [186], who used the first four Landsat TM data. Gao and Zhang [187] analysed the spectral
characteristics of the salt marsh vegetation of four main regions in spring, summer, and autumn by
a ground FieldSpecTM and found that the discrimination ability in all regions was highest in autumn.
Li et al. [188] applied multiple endmember spectral mixture analysis (MESMA) to AVIRIS images
of salt marshes at China Camp in San Pablo Bay, California. Connel et al. [189] developed the tidal
marsh inundation index (TMII) for daily MODIS 500-m surface reflectance data, which performed
well in salt and brackish marshes in the Atlantic Ocean and Gulf Coast. The unsupervised (K-means)
and supervised (MLC and SAM) classifiers were compared in [190] on different spatial resolutions of
multi-spectral (IKONOS and QuickBird) and hyper-spectral images (ROSIS, CASI, and MIVIS). They
found that: (1) hyperspectral images are superior to multi-spectral ones, and (2) the spatial resolution
is more important than the spectral resolution. A similar investigation that led to similar conclusions
was made in [191]. The machine learning-based techniques of vegetation community-based neural
network classifier (VCNNC) [192], SVMs, and support vector data description (SVDD) [193] were used
for the classification of salt marshes in tidal environments and in the European Union, respectively.
These techniques achieved a better accuracy than MLC, and LiDAR and ground data played a crucial
role in characterizing and classifying patterns of ground and low vegetation [194,195].

Table 6 summarizes the salt marsh mapping techniques using remotely-sensed data from
2010–2018. Because of the advanced remote sensing sensors and technologies used, most of the studies
adopted multi-source and multi-temporal datasets or integrated different techniques. For a single
dataset, Collin et al. [196] used the normalized difference LiDAR vegetation index model (NDLVIM)
and SHOALStopography datasets to map intertidal habitats and their adjacent coastal areas (Gulf of
St. Lawrence, Canada), and results with satisfactory accuracy were generated from a single LiDAR
dataset using the NDLVIM and the digital terrain models (DTM) approach. Full-waveform LiDAR
acquired at Cape Cod, Massachusetts, USA, was used for three marshes with five nonparametric
regression methods, in which TreeNet’s stochastic gradient boosting produced the best results [197].
Connel et al. [189] developed the tidal marsh inundation index (TMII) for daily MODIS 500-m surface
reflectance data, which performs well in salt and brackish marshes on the Atlantic Sea and Gulf Coast.
Additionally, OBIA, SVMs, and RF classifiers have been widely applied on very high spatial resolution
images (e.g., QuickBird and WorldView-2) [198–200] and hyperspectral images (e.g., AVIRIS and
HyMap) [201,202] to examine the effectiveness of salt marsh mapping. The results demonstrated that
the OBIA, SVMs, and RF classifiers were superior to the traditional classifiers [198]. High resolution
SAR sensors, such as TerraSAR-X and Cosmo-SkyMed, are effective resources for mapping salt marshes
in tidal flats and monitoring their seasonal variations. The best seasons for mapping and monitoring
are winter and summer [203]. They also suggested the use of HH polarization in a single polarization
for mapping salt marshes, because it can produce maximum backscattering.
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Table 6. Salt marsh mapping techniques using remotely sensed data from 2010–2018.

Datasets Methods

HS MS SAR LiDAR Ancillary SL UL OBIA Advanced Subpixel

Collin et al. [196], 2010
√ √

Chust et al. [204], 2010
√ √

Ouyang et al. [198], 2011
√ √ √

Dehouck and Lafon [205], 2011
√ √ √

Bertels et al. [206], 2011
√ √ √

Lucas et al. [207], 2011
√ √ √ √

Dehouck et al. [208], 2012
√ √ √

Lee et al. [203], 2012
√ √

Mishra et al. [209], 2012
√ √ √

Timm and McGarigal [199], 2012
√ √

Zhang and Xie [201], 2012
√ √ √

Zhang and Xie [202], 2013
√ √ √

Hladik et al. [210], 2013
√ √ √

Allen et al. [211], 2013
√ √ √

Hladik and Alber [212], 2014
√ √ √

Kumar and Sinha [191], 2014
√ √ √ √

van Beijma et al. [213], 2014
√ √ √

Carle et al. [200], 2014
√ √ √

Reschke and Hüttich [214], 2014
√ √ √

Rapinel et al. [215], 2015
√ √ √

Sun et al. [29], 2016
√ √

O’Connell et al. [189], 2017
√ √

Rogers et al. [197], 2018
√ √ √

For the multi-source dataset, Lucas et al. [207] integrated the datasets acquired from different
optical sensors, namely the orthorectified SPOT-5 high resolution geometric (HRG) reflectance, ASTER,
and IRS, as well as ancillary datasets to produce the first national map (Wales) of habitats in Europe
through OBIA. For the combination of optical and SAR data, TerraSAR-X offers many ways to
increase the performance of thematic mapping products, as well as L-band signatures provided
by ALOS-PALSAR [208], along intertidal flats and coastal salt marshes using supervised classification
methods [205]. Beijima [213] investigated the use of multiple sources (e.g., polarimetric SAR, elevation,
and optical images) for the classification of salt marsh vegetation with RF. The RF classifier was found
to be very powerful, and its performance was improved with the help of S-band and X-band SAR.
For the integration of optical and LiDAR, Chust et al. [204] tested the discrimination potential of the
LiDAR height and reflectance information, together with multi-spectral imagery (three visible and
near-infrared bands), for the classification of 22 salt marsh and rocky shore habitats. The performance
of LiDAR topographic variables and reflectance alone was poor (with OAs between 52.4% and 65.4%).
The combination of the LiDAR-based DEM and derived topographical features with the near-infrared
and visible bands achieved high OAs of between 84.5% and 92.1%. Airborne hyperspectral and
LiDAR data were also used to map the salt marshes and riverbank vegetation based on multiple
binary classification algorithms based on Fisher’s linear discriminant analysis (LDA) [206]. Similar
studies were performed in [212,216]. In [211], spaceborne SAR and airborne LiDAR elevation (bare
earth elevation and vegetation heights) were evaluated. The highest OA was achieved with SAR,
LiDAR canopy, and the DEM data (81%), but no significant difference was observed from the SAR-only
classification (81%). Both classifications exceeded the data combination using SAR data and DEM
(66%) and SAR data with vegetation canopy (80%).

For the multi-temporal imagery, Reschke and Hüttich [214] developed an RF regression method
based on multi-temporal Landsat data with HS datasets to extract sub-pixel information. Landsat-8
images (acquired in September and December 2013) were employed for mapping in coastal marshlands
and mapping marshland using minimum distance, Mahalanobis, MLC, RF, and SVM classifiers.
The highest performance was obtained using the MLC algorithms for the two Landsat-8 images
(85.9%). Sun et al. [29] used time-series NDVI extracted from the Chinese HJ-1 optical images for the
classification mapping and species identification of salt marshes.
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2.5.2. Monitoring Salt Marsh Ecosystems

Table 7 summarizes the change detection and monitoring techniques of salt marshes using various
remote sensing datasets between 2010 and 2018. The areas studied and the periods of change are
also described.

Table 7. Change detection and monitoring techniques of salt marshes using remote sensing datasets.

Technique Used Sensor Location Reference Year of
Detection

Year of
Publishing

Vegetation change High-resolution
(20 cm)

San Francisco
Bay, CA, USA [217] 1990 and 2000 2011

Vegetation change
and MLC

Aerial photos
(20 cm)

San Pablo Bay,
CA, USA [218] 2003 and 2004 2011

NDVI change Landsat TM
and ETM+ East Asia [219] 2000–2012 2012

Post-classification
comparison Aerial photos

Bahia Blanca
estuary,
Argentina

[220] 1967, 1996,
and 2005 2013

Index change Hyperspectral
AVIRIS

Gulf of
Mexico, USA [221] 2010 and 2011 2013

Vegetation change
Aerial
photographs
and maps

Algarve,
Portugal [222] 1958–2010 2014

GIS-based mapping Aerial
photographs

New England,
USA [223] 1984 and 2003 2015

Post-classification
comparison Landsat TM Liao River

Delta, China [224] 1988–2009 2015

Canonical
discriminant analysis
classification
comparison

AVIRIS Gulf of
Mexico, USA [225] 2010 and 2012 2016

OBIA change
QuickBird
and
WorldView

Jamaica Bay,
NY, USA [226] 2003–2013 2017

NDVI change Landsat
TM/ETM+

Virginia Coast
Reserve, USA [227] 1984–2011 2018

Persistent Scatterer
Interferometry X-band SAR Venice, Italy [228] 1984–2011 2018

For monitoring salt marsh vegetation, publicly-available datasets, such as Landsat time-series,
have been the most widely used. For instance, Sun et al. [227] proposed a flexible monthly NDVI
time-series (MNTS) approach for multi-temporal salt marsh classification in the Virginia Coast Reserve,
USA, by utilizing all viable Landsat TM/ETM+ images over the period 1984–2011 and indicated
that the upper low marsh vegetation population significantly diminished in the analysed period.
Jia et al. [224] investigated the changes of salt marshes in the Liao River Delta of China using Landsat
TM time-series datasets acquired in 1988, 1995, 2000, 2004, 2007, and 2009. They used conversion
matrices obtained from the classification tree to monitor the changes between salt marshes and other
land cover types. Experiment results indicated that from 1988–2004, a larger area of salt marshes was
replaced by other man-made land cover types and then was recovered from 2004–2009 by human
activities. The authors of [219] mapped tidal flats and monitored the changes over very large areas
using all Landsat Archive images and demonstrated their utility by mapping the tidal flats of China,
the Democratic People’s Republic of Korea, and the Republic of Korea.
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For several specific areas, historic maps, and HS data, including APs, airborne and sensor data,
were used. Tuxen et al. [218] employed high-resolution (20 cm) remotely-sensed colour infrared
imagery to map vegetation pattern changes of tidal salt marshes in the San Francisco Estuary over two
years and performed a multi-scale analysis of derived vegetation pattern metrics. They also mapped
six tidal marshes (two natural and four restored) in the San Francisco Estuary, CA, USA, between 2003
and 2004 using detailed vegetation field surveys and high spatial resolution colour infrared APs.
They concluded that vegetation changes were significant, but the differences in composition and
patterns across sites were larger than changes within sites over two growing seasons. Historical AP,
HS satellite images, and GIS were used to quantify land cover changes in the inner section of Canal
Principal, in the Bahia Blanca estuary [220]. Total losses of 33 and 6% of the area of mudflats and
marshes, respectively, were observed, which may reflect increased erosion of relict Holocene coastal
terraces in response to the rising sea level. Similarly, historical maps and APs taken from 1958–2010
were analysed to map salt marsh ecosystems and quantify LULC changes in the Alvor estuary and
Arade River, Portugal [222]. They found that more than half of the salt marshes were lost due to dyke
building and salt marsh reclamation for agriculture between approximately 1800 and 2010. In the
mid-1960s, the abandonment of reclaimed agricultural areas resulted in the recolonization of salt marsh
vegetation, which developed physically separated from natural marshes. Smith [223] explored the
changes of six salt marshes within the Cape Cod National Seashore (CCNS) using a GIS-based methods
with APs obtained from 1984 and 2013. Higher water levels could lead to significant changes. Multiple
temporal high resolution images, such as QuickBird-2 and WorldView-2, were used to analyse salt
marsh restoration in the Jamaica Bay, New York, based on OBIA. The study found that 21 hectares of
salt marsh vegetation were lost between 2003 and 2013. Between 2012 and 2013, restoration efforts
resulted in an increase of 10.6 hectares of salt marsh [227].

In addition, hyperspectral AVIRIS data taken over the Gulf of Mexico, USA, in September 2010
and August 2011 were used to assess the impact of oil spills on the salt marsh plant population with the
change of vegetation index [221]. Furthermore, Beland et al. [225] developed field-referenced image
endmembers and canonical discriminant analysis (CDA) to investigate the changes from 2010–2012.
Marshes that were heavily contaminated with oil exhibited variable responses in this period. Marsh
vegetation classes converted to subtidal and open water classes along oiled and non-oiled shorelines,
respectively, that were similarly situated in the landscape.

A recent study reported by Da Lio et al. [228] showed that an advanced persistent scatterer
interferometry (PSI) technique on a five year-long stack of X-band SAR acquisitions of the Venice
Lagoon, Italy, can be used to quantify land subsidence in the salt marshes’ environment. They pointed
out that land subsidence was much larger on man-made than natural salt marshes. However, to date,
the number of studies using SAR data and a combination of SAR and optical data for monitoring salt
marsh ecosystem is still limited. Thus, more studies on SAR and data fusion should be carried out in
the near future for monitoring salt marshes.

3. Future Trends in Mapping and Monitoring BC Ecosystems

3.1. Future Trends in Mapping

This review indicated that optical imagery, such as multispectral and hyper-spectral data, is
the most common for mapping BC ecosystems. Very HS imagery (e.g., WorldView, QuickBird,
and IKONOS) is becoming more popular for small-scale mappings and can produce a better accuracy
than high and MS imagery. For the classification of mangrove, seagrass, and salt marsh species
ecosystems, hyperspectral imaging is effective and so is detection with the contribution of the spectral
library. However, the hyperspectral data used were mainly airborne and constrained to limited areas.
So far, SAR sensors have not been used commonly for mapping BC ecosystems despite the fact that
SAR data can be acquired on larger areas in all weather conditions [11]. Thus, the integration of
hyperspectral and SAR data offers important resources and further promotes the research studies in
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mapping BC ecosystems. A range of published research papers conducted atmospheric and water
column corrections as a mandatory step in the image preprocessing for seagrass mapping. It can be
concluded that very high spatial resolution imagery, such as SAR and LiDAR, and machine learning
techniques are becoming more popular in dealing with patchy and mixed mangrove, seagrass, and salt
marshes [229].

Despite the improved results in mapping BC ecosystems, a number of obstacles need to be further
investigated, including: (i) the high cost of commercial sensors; (ii) the small area and low observing
frequency of airborne, UAV, sUAV, and hyper-spectral imagery; (iii) the impact of the atmosphere
and water depth on pixel values. Several potential solutions have been proposed, but there are still
challenges with the detection of scatter meadows in turbid waters and with species detection. In terms
of feature extraction, the OBIA has been effectively combined with very high spatial resolution imagery
(<2 m). In many cases, the usage of feature extraction methods for medium spatial resolution (2–30 m)
has not reached the expected accuracy (>85%). Therefore, OBIA training with machine learning
algorithms should be addressed. On the other hand, it is necessary to motivate spectral library sharing
to the public through the initiative of the open data gate. The spectral library data can strengthen
the applications of hyper-spectral imagery, as well as improve existing models for seagrass species
detection around the world.

The development of computer vision, pattern recognition, machine learning, and deep learning
algorithms is expected to provide more effective tools in mapping BC ecosystems with promising
results in the future. Several open source projects, which allow the integration of a wide range of
machine learning techniques, such as the Python Scikit-learn library [230] and the Weka library [231],
have been developed, significantly motivating the research community to improve the performance of
machine learning algorithms for mapping BC ecosystems. The majority of qualified machine learning
algorithms can be adapted to amend the detection under various conditions of marine and tidal
environments. Finally, mapping should be standardized to unify the data sources for large-scale and
comprehensive conservation around the world.

3.2. Future Trends in Monitoring

The change of ecosystem has been monitored using various satellite sensors over different
time periods. The procedures are different from terrestrial change detection owing to the effects
of water columns on pixel values. In almost all cases, satellite imagery must be pre-processed
by various atmospheric and water column corrections, and therefore, the application of several
change detection techniques is limited. The most frequently-used Landsat imagery has served as a
very good multitemporal dataset for the monitoring of BC ecosystems. In addition, short-term and
annual assessments have been improved owing to the availability of very high spatial resolution
imagery. The Sentinel series, which has already been launched, provides an opportunity to monitor
BC ecosystems using both optical (Sentinel-2A and -2B) and SAR (Sentinel-1A and -1B) images [232].
The impressive development of machine learning in the last few years has significantly contributed to
the increase of the mapping accuracy, allowing more reliable monitoring. The combination of Landsat
and a wide range of imagery, i.e., QuickBird, IKONOS, APs, UAVs, UMVs, and AUVs, provides
a change detection assessment with higher spatial and temporal resolution. It is now important to
consider the implementation of cloud computing such as the Google Earth Engine [233], which can
automate and expand this task on a global scale.

However, in several cases, the combination of different sensors presents the challenges of
the post-classification phase from the alternation in image processing and acquisition date of the
sensors. The most common problem in change detection is the accuracy assessment of classified
maps at different time points. Owing to the unavailability of data filed in the past, this task was not
always performed in the studies considered in this review. As a result, the change evaluation is still
questionable in many cases. An optimal technique for seagrass change detection has not been presented
yet despite the development of several change detection techniques for land cover change [234].
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Almost all research studies attempted to achieve the best accuracy of the mapping, and then
applied a post-classification comparison (or image differencing) to retrieve the change assessment
(classification-based approach). This approach is still reliable owing to the good performance of
post-classification comparison [235], as well as the improvement of classification techniques.

In summary, future BC ecosystems monitoring research needs to consider the following points:

• Improving the mapping accuracy for each time point during the change detection period. Using
multisource Earth observation data combined with state-of-the-art machine learning techniques,
such as DT ensemble learning, i.e., RFs, rotation forests, and canonical correlation forests [236,237],
may improve the mapping accuracy in certain periods.

• In case of a lack of ground truth data in the past, new accuracy metrics should be developed.
Limited training data and data incompleteness are common in remote sensing, especially in
large-scale time-series datasets. Further, fundamental technologies in remote sensing can deal with
limited training data through novel detection techniques, such as transfer learning approaches
with deep CNN for image classification [238,239].

• Addressing the best combination of multiple sensors with different techniques for change
detection. Because each SAR and optical sensor has its own characteristics in reflecting BC
ecosystems, the integration of different remotely-sensed data can offer a number of improvements
in accuracy and data acquisition issues in monitoring BC ecosystems. However, the processing
time over large areas involved in time-series image analysis should be taken into account [11].
Thus, more research on multiple sensor for monitoring BC ecosystems is needed in the future.

• Developing a standard framework for change detection assessment to enhance the reliability of
change detection and to automate the image processing throughout the world. In this context,
high performance computing (HPC) facilitates the process, and programming skills are required.
This allows researchers to update automatically and re-use classification algorithms, making
research faster and expanding the boundaries of BC research [240].

• Understanding the rate of change and the drivers of BC ecosystems. Quantifying the diversity
of drivers of BC ecosystems’ changes is important for policy implementations for sustainable
conservation and management all over the world [19]. Using combined multitemporal and
multi-sensor data can help quantify the key drivers of coastal ecosystem changes.

4. Concluding Remarks

BC ecosystems are important to coastal communities, but continue to be threatened all over
the world. As they cover relatively large areas, commonly inaccessible for field research, remote
sensing is an alternative tool for mapping and monitoring their changes. This review highlighted
significant contributions of remote sensing datasets and various techniques applied on BC ecosystems
(e.g., mangrove, seagrass, and salt marsh). High spatial resolution data can improve the accuracy of
mangrove, seagrass, and salt marsh classification. Medium spatial resolution data, such as the Landsat
time-series, are the most widely-used data for monitoring BC ecosystems on larger scales. Active
remotely-sensed data, such as SAR and LiDAR, can contribute to higher performance in mapping and
monitoring ecosystems. Multi-temporal high spatial resolution images have been used to monitor
the changes in specific areas. Incorporation of multi-resolution and multi-source (SAR, multispectral,
and LiDAR) data may improve the monitoring accuracy.

A critical overview of the key studies undertaken from 2010 onwards on the most common mapping
and monitoring techniques, as well as the remote sensing datasets, was presented in this work. Research
efforts have been made with optical sensors, such as multispectral and hyperspectral datasets and
different traditional methods for mapping and monitoring BC ecosystems. We gained several insights
into the research trend for mapping and monitoring BC ecosystems. Slightly more attention seems to
have been paid to the advanced methods or the hybrid methods using multi-source and multi-temporal
datasets. In the near future, more advanced sensors, such as SAR and LiDAR, and novel machine
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learning approaches using ensemble DTs and deep learning methods should be used for the mapping
and monitoring of BC ecosystems. Focus on the development and choices of state-of-the-art machine
learning algorithms should be placed for mapping and monitoring in future studies.
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