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Abstract: The slip angle and attitude are vital for automated driving. In this paper, a systematic
inertial measurement unit (IMU)-based vehicle slip angle and attitude estimation method aided by
vehicle dynamics is proposed. This method can estimate the slip angle and attitude simultaneously
and autonomously. With accurate attitude, the slip angle can be estimated precisely even though
the vehicle dynamic model (VDM)-based velocity estimator diverges for a short time. First, the
longitudinal velocity, pitch angle, lateral velocity, and roll angle were estimated by two estimators
based on VDM considering the lever arm between the IMU and rotation center. When this information
was in high fidelity, it was applied to aid the IMU-based slip angle and attitude estimators to eliminate
the accumulated error correctly. Since there is a time delay in detecting the abnormal estimation results
from VDM-based estimators during critical steering, a novel delay estimation and prediction structure
was proposed to avoid the outlier feedback from vehicle dynamics estimators for the IMU-based slip
angle and attitude estimators. Finally, the proposed estimation method was validated under large
lateral excitation experimental tests including double lane change (DLC) and slalom maneuvers.

Keywords: sensor data fusion; slip angle estimation; attitude estimation; adaptive Kalman filter

1. Introduction

Automated driving technology has attracted much attention recently [1]. Implementing high-level
automated driving technology in on-road vehicles needs to address many cutting-edge issues. Among
them, accurate sideslip angle and attitude are highly significant [2]. For example, image processing
and feature recognition could be aided by the external pitch and roll angle of the vehicle body [3]. Also,
sideslip angle and attitude are prerequisites for determining vehicle location [4]. From the perspective
of vehicle dynamics control, slip angle, which has been researched for more than 20 years, is the basis
for vehicle steering behavior control [5,6].

Unfortunately, commercial devices such as the RT3000 from OxTS [7] or the S-Motion from
Kistler [8], which can measure vehicle slip angle and attitude, are too expensive to be used for
commercial vehicles and are usually used only for experimental measurement purposes. The RT3000
is a GNSS/INS integration system which can estimate the vehicle velocity in navigation coordinates.
Then the slip angle can be estimated by projecting the vehicle velocity in navigation coordinates onto
the vehicle body coordinates. The S-Motion is an optical sensor to measure the slip angle. A more
feasible way is to use an estimation technique by fusing information from different sensors of an
intelligent vehicle. Usually, these sensors include lidars, radars, cameras, inertial measurement units
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(IMUs) and Global Navigation Satellite System (GNSS) receivers. Integrating the angular rate and
acceleration sensor with attitude and velocity is one approach. However, angular rate and acceleration
sensors are contaminated by unstable bias and long-term accumulated error when an automotive grade
micro-electro-mechanical system (MEMS) IMU is used [9]. Thus, integrating a MEMS IMU to estimate
slip angle and attitude should be done with the aid of other sensors such as a GNSS or cameras [10,11].
However, there are also some drawbacks when using IMUs with sensors like GNSS or cameras. The
GNSS signal may be weak and easily blocked or suffer from multipath effects in city canyons. Cameras
have high requirements for suitable light conditions. In dynamic situations such as emergency steering
maneuvers, it is difficult to track the features all the time. In addition, delay and low sample rate issues
emerge when low-cost GNSS and cameras are used. Much attention is required when implementing
GNSS and cameras to estimate slip angle and attitude [12]. Besides GNSS and cameras, there are other
standard sensors such as steering wheel angle and onboard angular speed sensors and wheel speed
sensors. These sensors could be input to vehicle dynamics observers for slip angle estimation [6,13].
Using the estimated slip angle, the acceleration part due to translation movement could be removed
and the residual part due to gravity could be used to calculate attitude [14]. However, in critical
maneuvers, the performance of VDM–based observers would degrade due to model discrepancy.

In Ref. [15], we proposed the elementary idea that, under normal driving conditions, the vehicle
dynamic model (VDM)-based estimators for velocity and attitude could assist the IMU-based velocity
and attitude estimators to remove the accumulated errors. In this paper, we improved the VDM-based
estimators in lateral and longitudinal directions considering the lever arm between the IMU and the
vehicle body rotation center. Besides, we further optimized the feedback mechanism for velocity
and attitude and a systematic IMU-based vehicle slip angle and attitude estimation method aided by
vehicle dynamics is proposed. The main contributions of this paper are summarized as follows:

• A novel and autonomous estimation method for slip angle and attitude without aids from external
information such as GNSS or lane lines is proposed. The IMU-based slip angle and attitude
estimator only needs assistance from VDM-based velocity and attitude estimators. Distinguished
from many of the state of the art of slip angle estimation methods, which only consider horizontal
motion, to further improve the estimation precision, especially in critical driving conditions,
movement, including rotation and translation of the vehicle body in three dimensions, is considered.
Simultaneous estimation of attitude and velocity keep the IMU-based estimator in a good state
to prepare for open loop integration mode, when the vehicle enters critical driving conditions.
An accurate attitude guarantees that the acceleration generated by gravity with changing attitude
can be removed correctly. Then even when feedback from the VDM-based estimator is cut off, the
estimation results of slip angle and attitude are still accurate for a short time.

• The proposed VDM-based estimator for attitude and velocity could eliminate the accumulated
error of IMU-based slip angle and attitude estimation in normal driving conditions. Without
accumulated error, the IMU-based slip angle and attitude estimation results have higher precision
than the VDM-based estimators.

• A delayed estimator and predictor structure is proposed to deal with the time delay in detecting
abnormal estimation results from VDM-based estimators. The delayed estimator and predictor
structure avoids outlier feedback from the VDM-based estimators for IMU-based slip angle and
attitude estimators.

The remainder of this paper is organized as follows: Section 2 introduces the state of the art.
Section 3 explains the design procedure for the estimation method. Section 4 shows the experimental
results. Finally, this paper is concluded in Section 5.

2. Related Work

Extensive work has been done to estimate slip angle and vehicle attitude. In this section, we
provide a brief review of the state of the art. Attitude estimation methods can be divided into IMU-based
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and integration methods. Slip angle estimation methods can be divided into vehicle kinematic model
(VKM)-based and VDM-based methods.

2.1. Attitude Estimation

The attitude can be represented by Euler angle, quaternion and direct cosine matrix [9]. In essence,
they are similar ways of representing the attitude. The triaxial gyroscope was used to estimate
attitude in direct cosine matrix and quaternion representation forms [16]. As discussed before, only a
high-performance and high-cost gyroscope such as a ring-laser or fiber-optic gyroscope can generate
accurate attitude estimation results in a relatively short time. Long-term integration without assistance
from other sensors inevitably leads to huge accumulation error. Some studies have used the gravity
part due to attitude from a triaxial accelerometer to calculate the pitch and roll angle to aid the
gyroscope [9,17]. The main challenge in abstracting the attitude information from an accelerometer is
variable acceleration due to translation movement. Threshold methods in Ref. [18] and fuzzy logic and
adaptive methods in Ref. [19] were adopted to handle the translation movement problem.

Other sensors could be used to give accessible measurement of attitude. A magnetometer can
measure the direction of the sensor, but it is easily disturbed by surrounding magnetic materials [20].
Also, the pitch angle and roll angle are usually small and the signal-to-noise ratio is very low for
magnetometers. Integrating GNSS for attitude estimation has been widely researched [10,21]; the
main challenge is that the GNSS signal could be blocked by trees or high buildings, which limits
its performance [22]. In recent years, cameras have been used to estimate vehicle attitude through
computer vision [23]. Another limitation of GNSS and cameras is that their measurements are usually
delayed and sampled at a low rate, which could cause extra measurement errors if the delay and low
sample problems are not addressed [12].

2.2. Slip Angle Estimation

VKM–based methods use the kinematic relationship among sensors such as IMU, GNSS, or
cameras to estimate slip angle. In Ref. [24], a direct integrator was used to estimate slip angle based on
the basic relationship of sideslip angle and lateral acceleration. In Ref. [14], a six-degree-of-freedom
(DOF) IMU was used to address the coupling problem between velocity and angular rate, and then a
Luenberger-like observer was proposed to estimate the slip angle. In Ref. [25], an IMU combined with
GNSS was chosen to estimate the sensor bias and slip angle. In Ref. [26], a camera was innovatively
introduced to estimate the optical flow, and then the slip angle could be estimated. However, the
accuracy of those kinds of observers depends on the output accuracy of the sensors. For example,
sensors such as IMUs suffer from bias error, temperature drift, and random noise when measuring
longitudinal and lateral acceleration and yaw rate. Besides, in critical situations, the accelerometer
measurements contain the gravity component due to large roll angle and pitch angle [9]. More effort
should be made to remove bias, noise, and the gravity part when integrating sensors. Otherwise huge
estimation drift may arise after long-term integration.

Besides those kinds of methods, the basic principle for VDM–based methods is to use somea
measurable input signal, such as the steering wheel angle, driving torque, or braking torque exerted on
the actuators, to drive a virtual vehicle dynamic model to generate lateral velocity. Then the measurable
output of the actual vehicle, such as yaw rate and lateral acceleration, are used as feedback to correct
the virtual slip angle, i.e., the estimated slip angle. Since different vehicle models, tire models, or
estimation methods could be adopted to address different problems when estimating sideslip angle,
many methods have arisen [6,13]. For example, in Ref. [24], a three-DOF vehicle model and magic
formula tire model were used to describe the vehicle and tire dynamics. Then an unscented Kalman
filter (UKF) was applied to estimate the sideslip angle. In Ref. [13], a variable structured extended
Kalman filter (EKF) method was designed to estimate the sideslip angle based on a two-track vehicle
model with three-DOF and magic formula tire model. Considering road friction, a high-gain observer
was introduced to estimate the sideslip angle with small calculation load based on a single-track vehicle
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model [27]. However, the sideslip angle was hard to estimate due to the nonlinear and uncertain
vehicle and tire dynamics [28]. The accuracy of those kinds of observers relies on the accuracy of the
vehicle dynamic model. Model discrepancies will result in estimation errors. Some researchers have
combined the kinematic model and dynamic model based methods to make full use of the merits of
each one [6,11,29].

3. Methods

The holistic structure of the proposed estimation method in this paper is shown in Figure 1. The
proposed estimation architecture is divided into two parts: the delayed estimator and the predictor.
The delayed estimator contains two parts: the two IMU-based estimators, used to estimate velocity
and attitude respectively, and the two VDM-based estimators, used to estimate longitudinal velocity
and pitch angle and lateral velocity and roll angle respectively. In normal driving condition which can
be determined by the FlagF_vy_VD

and FlagF_vx_VD
, the feedback as measurement in Kalman filter from

the VDM-based velocity and attitude estimators can remove the accumulated error of the IMU-based
velocity and attitude estimators. In critical driving conditions such as fast steering or hard braking, the
precision of the VDM-based estimation method is reduced significantly due to the model discrepancy.
At this time, the IMU-based estimator should be insulated from the VDM-based estimator. However,
the time delay needs to be detected to determine when to start the insulation, since the determination
can only be made after the critical driving condition occurs. Therefore, those estimators are delayed to
allow synchronization. In other words, those estimators are for estimating x̂τ(t) at t− τ moment. Then
the predictor fuses the x̂τ(t) and presents input u(t) to predict the current x̂(t).
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Figure 1. Overview of proposed slip angle and attitude estimation architecture. IMU, inertial
measurement unit.

3.1. Vehicle-Dynamics-Model-Based Velocity Estimator

This section shows the estimation methods of lateral velocity, roll angle, longitudinal velocity, and
pitch angle by vehicle dynamics.
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3.1.1. Vehicle Kinematic Model

The kinematic model of the center of rotation is described by Equation (1):
ax_kine
ay_kine
az_kine

 =


.
vx
.
vy
.
vz

+


.
ϕ
.
θ
.
ψ

×
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vx

vy

vz

 (1)

where vx, vy, and vz are longitudinal, lateral, and vertical velocity in vehicle body coordinates; ax_kine,

ay_kine, and az_kine are kinematic acceleration of the vehicle body; and
.
ϕ,

.
θ, and

.
ψ are roll, pitch, and

yaw angular velocity, respectively. However, due to the suspension, implementing the IMU at the
rotation center is not possible, since there is a lever arm between the IMU and the rotation center.
The lever arm will influence the measurement in the accelerometer when the vehicle body rotates.
The lever arm should be estimated and then the convective acceleration should be removed from the
acceleration. The convective acceleration is computed by Equation (2):
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where ax_compen, ay_compen, and az_compen are the compensated acceleration and Loffset_x, Loffset_y, and

Loffset_z are the lever arms in the x, y, and z directions, respectively; and
..
ϕ,

..
θ, and

..
ψ are the roll, pitch,

and yaw angular acceleration, respectively.
Then we have the acceleration of the center of rotation of the body as Equation (3), where[

axs ays azs

]T
is the output of the accelerometer in x, y, and z directions, respectively:

axb
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Gravity will also contribute to the measurement in the accelerometer due to roll and pitch variation.

The acceleration in body coordinate
[

axb ayb azb

]T
is given by Equation (4):

axb
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−g sinθ

g sinϕ cosθ
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 (4)

where g is gravity. The velocity
[

v̂x_VD v̂y_VD v̂z_VD

]T
and kinematic acceleration[ .

v̂x_VD
.
v̂y_VD

.
v̂z_VD

]T
could also be estimated from the vehicle dynamics (Equations (5), (9),

(10), (25), and (26)). Based on this motivation, we can separate out the gravity component from
the accelerometer to estimate the roll and pitch angles through Equation (6) to aid the IMU-based
attitude estimator: 
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where
[ .
ϕs

.
θs

.
ψs

]T
is the angular velocity output from the gyroscope in the x, y, and z

directions, respectively.
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−g sinθ

g sinϕ cosθ
g cosϕ cosθ

 (6)

where the subscript of bg means the acceleration due to gravity in body coordinate. With the gravity
component in acceleration, the roll angle ϕVD and pitch angle θVD can be computed as Equation (7):

[
θ̂VD

ϕ̂VD

]
=

 −arcsin(
axbg

g )

arcsin(
aybg

g cosθm_delay
)

 (7)

3.1.2. Longitudinal Velocity and Its Acceleration Estimation

There is much research about longitudinal velocity estimation based on vehicle dynamics and
wheel dynamics. In this part, the wheel speed from the driven wheel is used to estimate the longitudinal
velocity and longitudinal acceleration. In normal driving conditions, this wheel speed is accurate as
the real longitudinal velocity, while in braking conditions, if the braking force is large, the wheel speed
may diverge due to the tire slip. Thanks to the IMU-based attitude and velocity estimators, in strong
braking conditions, the feedback from vehicle dynamics is cut off and the longitudinal velocity can be
estimated with relatively high precision.

• Longitudinal velocity estimation

The wheel model is shown in Figure 2. ω is rotation speed of the wheel and r is tire radius. The
longitudinal velocity v̂x_VD can be estimated from the wheel speed of the driven wheel as Equation (9): v̂x_rl = ωrl · rrl +

.
ψs
2 · br

v̂x_rr = ωrr · rrr −

.
ψs
2 · br

(8)

v̂x_VD =
v̂x_rl + v̂x_rr

2
(9)

The subscripts rl and rr mean rear left and rear right, ω is the wheel speed, r is the tire radius, and
br is the rear wheel base.
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wheel dynamics. In this part, the wheel speed from the driven wheel is used to estimate the 
longitudinal velocity and longitudinal acceleration. In normal driving conditions, this wheel speed 
is accurate as the real longitudinal velocity, while in braking conditions, if the braking force is large, 
the wheel speed may diverge due to the tire slip. Thanks to the IMU-based attitude and velocity 
estimators, in strong braking conditions, the feedback from vehicle dynamics is cut off and the 
longitudinal velocity can be estimated with relatively high precision.  

• Longitudinal velocity estimation 

The wheel model is shown in Figure 2. ω  is rotation speed of the wheel and r is tire radius. 
The longitudinal velocity _ˆ VDxv  can be estimated from the wheel speed of the driven wheel as 
Equation (9):  

_

_

ˆ
2

2
ˆ

s
x rl

s
x rr

rl rl r

rr rr r

ω r b
ψ

v

ψ
v ω r b


⋅ + ⋅


 ⋅ ⋅

=

− =






 

(8) 

_
_

_ˆ
2

ˆ
ˆ VD

x rl x rr
x

v v
v

+
=

 
(9) 

The subscripts rl and rr mean rear left and rear right, ω  is the wheel speed, r  is the tire 
radius, and rb  is the rear wheel base. 

ω
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Figure 2. Wheel model. 

• Kinematic longitudinal acceleration estimation  

With the estimated longitudinal velocity, we can estimate the kinematic longitudinal 
acceleration to estimate the pitch angle. We assume that the longitudinal velocity can be described 
by a fourth-order Taylor series at t moment. Then, we have: 

Figure 2. Wheel model.
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• Kinematic longitudinal acceleration estimation

With the estimated longitudinal velocity, we can estimate the kinematic longitudinal acceleration
to estimate the pitch angle. We assume that the longitudinal velocity can be described by a fourth-order
Taylor series at t moment. Then, we have:

vx_VD(t + 4t) = vx_VD(t) + 4t ·
.
vx_VD(t) + 1

2! 4 t2
·

..
vx_VD(t) + 1

3! 4 t3
·
...
v x_VD(t) + O + w1

.
vx_VD(t + 4t) =

.
vx_VD(t) + 4t ·

..
vx_VD(t) + 1

2! 4 t2
·
...
v x_VD(t) + O + w2

..
vx_VD(t + 4t) =

..
vx_VD(t) + 4t ·

...
v x_VD(t) + O + w3...

v x_VD(t + 4t) =
...
v x_VD(t) + w4

(10)

where
.
vx_VD,

..
vx_VD, and

...
v x_VD are the first-order, second-order, and third-order derivatives of

longitudinal speed; w1 ∼ w4 are Gaussian white noise; 4t is the time step; and O is the high-order
term, which is ignored.

Remarks: Since the longitudinal acceleration is controlled by the driver, there would not be
very high-order dynamics in the longitudinal velocity, and we make this assumption about the
longitudinal velocity.

Then, we have the discrete form of Equation (10). The system equation is given by Equation (11)
and the measurement equation is given by Equation (12), where η means the measurement noise:

vx_VD(k + 1)
.
vx_VD(k + 1)
..
vx_VD(k + 1)
...
v x_VD(k + 1)

 =


1 4t 1
2! 4 t2 1

3! 4 t3

0 1 4t 1
2! 4 t2

0 0 1 4t
0 0 0 1




vx_VD(k)
.
vx_VD(k)
..
vx_VD(k)...
v x_VD(k)

+


w1

w2

w3

w4

 (11)

vx_VD =
[

1 0 0 0
]

vx_VD(k)
.
vx_VD(k)
..
vx_VD(k)...
v x_VD(k)

+ η (12)

With different driving conditions such as passing deceleration strips or slipping, the noise in the
wheel speed sensor changes a lot. The measurement noise covariance of wheel speed sensor output
should be adapted with different driving conditions, which would enhance the dynamic performance of
the filter. Then, the innovation adaptive estimation (IAE)-based Kalman filter mentioned in Section 3.1.3
is applied to estimate the longitudinal acceleration.

• Feedback flag for IMU-based estimator

When a vehicle brakes hard, the tires will slip and the accuracy of the longitudinal velocity will
drop fast. At this time, we need to detect this moment and insulate the feedback from the VDM-based
longitudinal velocity estimator to the IMU-based longitudinal velocity estimator. Here, we design
some feasible rules to set up the feedback flag for the IMU-based estimator.

Define ax_dev as:

ax_dev =
∣∣∣∣ .
vx_VD −

(
axs − ax_Compen + g sin θ̂

)∣∣∣∣ (13)

The mechanism of the feedback flag for the IMU-based longitudinal velocity and pitch angle
estimator is shown in Figure 3. When the acceleration is smaller than a threshold value, Flagvx_VD

is set
up to detect the hard braking operation. When the expectation and variance of ax_dev are larger than
the threshold value, Flagvx_VD

is set up. axs_Thresh, ax_Thresh, ax_EThresh, and ax_VarThresh are the threshold
values that need to be tuned in the application.
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Essentially, the longitudinal velocity and pitch angle estimated from vehicle dynamics help to
remove the accumulated error of the IMU-based estimator. Under normal driving conditions, the tire
slip is very small, which means Equation (9) has high precision. This accurate longitudinal velocity
and pitch angle is enough to remove the accumulated error. Thus, the threshold value in Figure 3
could be set strictly to detect abnormal values of the longitudinal velocity and pitch angle estimated
from vehicle dynamics.

Since this mechanism is only effective when the tires have already slipped, if we use this flag to
cut off the feedback to the IMU-based longitudinal velocity and attitude estimators, the IMU-based
longitudinal velocity and attitude estimators have already been injected with polluted longitudinal
velocity and pitch angle. In other words, this flag is too late to cut off the feedback, or there is a delay
in the flag. Therefore, in order to synchronize, we delay the IMU-based estimator. As for the flag, we
set up a new flag as Equation (14):

FlagF_vx_VD
= Flagτvx_VD ‖ Flagvx_VD

(14)

where Flagτvx_VD is delayed by τ from Flagvx_VD
.

This operation would guarantee the exact time to cut off the feedback, and we could use the
longitudinal velocity and pitch angle from the vehicle dynamics estimator to assist the IMU-based
attitude and longitudinal velocity estimator safely. In the end, the IMU-based estimator would output
the delayed state.

3.1.3. Estimation Algorithm

In order to eliminate the random noise of the process model and measurement model, an IAE-based
Kalman filter is proposed to estimate the velocity and attenuate the influence of the measurement
outlier from the VDM-based estimator. The basic Kalman filter process is shown in Figure 4, where
subscript k means the k moment, k|k− 1 means prediction of k moment from k−1 moment, k|k means
prediction after correction at time k, A is the system matrix, x̂ is the state, P is the state error covariance,
Q is the covariance of the system noise, Γ is the input matrix of the input noise, dt is the sample time,
C is the measurement matrix, R is the covariance of measurement, G is the Kalman gain, and z is
the measurement.



Sensors 2019, 19, 1930 9 of 28
Sensors 2019, 19, x FOR PEER REVIEW 9 of 29 

 

( )

( )

( )

1

1 1 1 1 1

1 1

1 1 1ˆ ˆ ˆ

T T
k kk k k k k k k k k k

kk k k k k k

k kk k k k k k k k

G P C C P C R

P I G C P

x x G z C x

−

− − − − −

− −

− − −

= ⋅ +

= −

= + −

1 1 11

1 1 1 1 11 1 1

ˆ ˆ ˆk k kk k

T T
k k k k kk k k k

x A x dt x

P A P A Q

− − −−

− − − − −− − −

= ⋅ +

= + Γ Γ

 
Figure 4. Kalman filter process. 

Since the noise of the measurement is usually time-varying, the noise covariance changes with 
different driving conditions. Therefore, the noise covariance should be adapted online to enhance 
the performance of the estimator. The innovation of the basic Kalman filter is given by Equation (15): 

1ˆk k k k kd z C x −−  (15) 

The expectation of the innovation at k moment is given by Equation (16): 

( ) ( )( )
( )( ) ( )( )

( )( ) ( )

1 1

1 1

1 1

1

ˆ ˆ

ˆ ˆ

ˆ ˆ

=
TT

k k k k k kk k k k

T

k kk k k k k k k k

T T T
k kk k k k k k k k

T
k k kk k

E d d E z C x z C x

E C x x η C x x η

E C x x x x C E ηη

C P C R

− −

− −

− −

−

 ⋅ − − 
 
 = − + − + 
 
 = − − + 
 

= +  

(16) 

( )T
k kE d d⋅

 can be computed through a short window [30]. Then the covariance of measurement 
noise is estimated by Equation (17): 

( ) 1

1
1

ˆ

1

T T
k k k k kk k

n
T T

k i k i k kk k
i

R E d d C P C

d d C P C
n

−

− − −
=

= ⋅ −

= ⋅ −  
(17) 

In order to reduce the calculation, we use the recursive form to compute 
ˆ

kR , given by Equation 
(18):  

( )

( )
( ) ( )

( )

1
1

1

1 1
1

1 1

1 1

ˆ

1

1 ˆ1

1 1ˆ

k
T T

k i i i ii i
i

k
T T T T

i i i i k k k ki i k k
i

T T
k k k k kk k

T T
k k k k kk k

R d d C P C

d d C P C d d C P C
k

k R d d C P C
k
k R d d C P C

k k

−
=

−

− −
=

− −

− −

= ⋅ −

  = ⋅ − + ⋅ −  
  

 = − + ⋅ − 
−= + ⋅ −





 

(18) 

In order to improve the dynamic performance of the estimation for 
ˆ

kR , we involve a fading 
factor to forget part of the historical measurement. The fading factor b is between 0 and 1; then, we 

have the fading coefficient kα : 

Figure 4. Kalman filter process.

Since the noise of the measurement is usually time-varying, the noise covariance changes with
different driving conditions. Therefore, the noise covariance should be adapted online to enhance the
performance of the estimator. The innovation of the basic Kalman filter is given by Equation (15):

dk � zk −Ckx̂k|k−1 (15)

The expectation of the innovation at k moment is given by Equation (16):

E
(
dk · dk

T
)

= E
((

zk −Ckx̂k|k−1

)(
zk −Ckx̂k|k−1

)T
)

= E
((

Ck
(
xk|k − x̂k|k−1

)
+ η

)(
Ck

(
xk|k − x̂k|k−1

)
+ η

)T
)

= E
(
Ck

(
xk|k − x̂k|k−1

)(
xk|k − x̂k|k−1

)T
Ck

T
)
+ E

(
ηηT

)
= CkPk|k−1Ck

T + Rk

(16)

E
(
dk · dk

T
)

can be computed through a short window [30]. Then the covariance of measurement
noise is estimated by Equation (17):

R̂k = E
(
dk · dk

T
)
−CkPk|k−1Ck

T

= 1
n

n∑
i=1

dk−i · dk−i
T
−CkPk|k−1Ck

T (17)

In order to reduce the calculation, we use the recursive form to compute R̂k, given by Equation (18):

R̂k =
k∑

i=1

(
di · di

T
−CiPi|i−1Ci

T
)

= 1
k

[(
k−1∑
i=1

di · di
T
−CiPi|i−1Ci

T
)
+

(
dk · dk

T
−CkPk|k−1Ck

T
)]

= 1
k

[
(k− 1)R̂k−1 +

(
dk · dk

T
−CkPk|k−1Ck

T
)]

= k−1
k R̂k−1 +

1
k

(
dk · dk

T
−CkPk|k−1Ck

T
)

(18)

In order to improve the dynamic performance of the estimation for R̂k, we involve a fading factor
to forget part of the historical measurement. The fading factor b is between 0 and 1; then, we have the
fading coefficient αk:

αk =
αk−1

αk−1 + b
(19)

The recursive form of the estimation for R̂k is given by Equation (20):

R̂k = (1− αk)R̂k−1 + αk
(
dk · dk

T
−CkPk|k−1Ck

T
)

(20)
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In addition, since there is subtraction operation for
(
dk · dk

T
−CkPk|k−1Ck

T
)
, when dk and Pk|k−1

are mismatched, the sign of
(
dk · dk

T
−CkPk|k−1Ck

T
)

may be negative, leading to the loss of positive
certainty of R̂k, which would cause abnormity of the filter. Therefore, we add a limitation for every
element of R̂k for stability of the Kalman filter. For the i-th measurement, define χi

k as Equation (21):

χi
k =

(
di

k

)2
−Ci

kPi
k|k−1Ci

k
T (21)

Then R̂i
k can be calculated as Equation (22):

R̂i
k =


(1− αk)R̂i

k−1 + αkR̂i
min χi

k < R̂i
min

R̂i
max χi

k > R̂i
max

(1− αk)R̂i
k−1 + αkχ

i
k R̂i

min ≤ χ
i
k ≤ R̂i

max

(22)

In the following section, we will also use the IAE-based Kalman filter to estimate attitude and
velocity by fusing vehicle dynamics and IMU information.

3.1.4. Lateral Velocity and Its Acceleration Estimation

As stated in the introduction, there is a lot of research about lateral velocity estimation based on
vehicle dynamics [6,13]. In this section, a linear two-DOF single-track vehicle model is used to estimate
the sideslip angle and lateral acceleration in normal driving conditions to remove the accumulated
error of the IMU-based lateral velocity and attitude estimator.

• Lateral velocity estimation

In Figure 5, β is slip angle, α f is tire slip angle of front axle and αr is tire slip angle of rear
axle. The dynamics of the linear 2DOF single-track vehicle model shown in Figure 5 is illustrated by
Equation (23) [31]:  .

β
..
ψ

 = [
a11 a12

a21 a22

]
︸         ︷︷         ︸

A

 β
.
ψ

+ [
b11

b21

]
︸  ︷︷  ︸

B

δ f (23)

β =
vy

vx
(24)

where C f is front axle equivalent cornering stiffness, Cr is rear axle equivalent cornering stiffness, m is
vehicle mass, l f is distance from the front axle to the center of gravity (COG), lr is distance from the
rear axle to the COG, Iz is the vehicle yaw moment of inertia, δ f is the steering angle of the front wheel,

β is the sideslip angle, A =


C f +Cr

mvx

C f l f−Crlr
mv2

x
− 1

C f l f−Crlr
Iz

C f l2f +Crl2r
Iz

, and B =

 − C f
mvx

−
C f l f

Iz

.
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x xx
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mv mvmv
 (26) 

In addition, the derivative of the lateral velocity is:  

_ |
ˆˆ = ⋅
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Figure 5. Single-track vehicle model.

Since we can obtain the yaw rate from the IMU, with that we can use the Kalman filter method
shown in Figure 4 to estimate the sideslip angle.
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With the estimated sideslip angle, the lateral velocity can be estimated by Equation (25):

vy_VD = β · vx (25)

• Kinematic lateral acceleration estimation

After updating the measurement of the sideslip angle estimation with the Kalman filter, we can
also calculate the derivative of the sideslip angle based on the state equation:

.
β̂k|k =

C f + Cr

mvx
β̂k|k +

(C f l f −Crlr
mv2

x
− 1

)
.
ψ−

C f

mvx
δ f (26)

In addition, the derivative of the lateral velocity is:

.
v̂y_VD =

.
β̂k|k · vx (27)

• Feedback flag for IMU-based estimator

The design principle for the feedback flag for lateral velocity and roll angle is the same as that for
longitudinal velocity. In the linear region of the tire, the linear tire model and 2DOF single-track vehicle
model are well matched. With that, it is feasible to estimate the sideslip angle with high precision. As
long as an accurate estimated sideslip angle is used, the accumulated error in the IMU-based lateral
velocity and attitude estimator can be removed.

We define γdev, vy_dev, and ay_dev, which are the yaw rate deviation, lateral velocity deviation,
and lateral kinematic acceleration deviation, respectively, as Equations (28)–(30). γ̂d can be estimated
from the linear 2DOF single-track vehicle model, as Equation (31).

γdev =
∣∣∣∣γ̂d −

.
ψs

∣∣∣∣ (28)

vy_dev =
∣∣∣v̂y_VD − v̂y

∣∣∣ (29)

ay_dev =
∣∣∣∣ .
v̂y_VD −

(
ays − v̂x

.
ψ− g sin ϕ̂ cos θ̂

)∣∣∣∣ (30)

γ̂d =
vx/

(
l f + lr

)
1 + m

(l f +lr)
2

(
l f
Cr
−

lr
C f

)
vx2
· δ f (31)

The mechanism of the feedback flag for the IMU-based lateral velocity and roll angle estimator is
shown in Figure 6. When the lateral acceleration is larger than a threshold value, Flagvy_VD

is set up to
detect the critical steering operation. When the expectation and variance of vy_dev, γdev are larger than
the threshold value, Flagvy_VD

is set up. In addition, the steering wheel angle and speed are also used
to detect the critical steering operation. ays_Thresh, vy_Thresh, vy_EThresh, vy_VarThresh, γThresh, γE_Thresh,

γVarThresh, δ f _Thresh, and
.
δ f _Thresh are the threshold values that need to be tuned in application. The

subscript of ’Thresh’ means threshold.
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Like the longitudinal velocity estimation, only under normal driving conditions can the
accumulated error in the IMU-based lateral velocity and roll angle estimator be removed. Thus,
the threshold value in Figure 6 could be set strictly to detect abnormal values of the lateral velocity and
roll angle estimated from vehicle dynamics.

Since this mechanism is only effective when the vehicle has already side-slipped, if we use this
flag to cut off the feedback, the IMU-based lateral velocity and roll angle estimator have already been
injected with polluted lateral velocity and roll angle. In other words, this flag is too late to cut off the
feedback or there is a delay in the flag. Therefore, in order to synchronize, we delay the IMU-based
estimator. As for the flag, we set up a new flag as Equation (32):

FlagF_vy_VD
= Flagτvy_VD ‖ Flagvy_VD

(32)

where Flagτvy_VD is delayed by τ from Flagvy_VD
.

This operation would guarantee the exact time to cut off the feedback, and we could use the
lateral velocity and roll angle from the vehicle dynamics estimator to assist the IMU-based attitude
and lateral velocity estimator safely. In the end, like the longitudinal velocity part, the IMU-based
estimator would output the delayed state.

3.2. IMU-Based Attitude Estimation

In this section, based on the triaxle angular rate and the attitude estimated from the vehicle
dynamics, we design the attitude estimator using the IAE- based Kalman filter.

3.2.1. Gyroscope Sensor Model

We analyzed the gyroscope and acceleration sensor by the Allan variance method to determine the
error composition in the IMU sensor [32]. The gyroscope or accelerometer measurement is composed
of a real value, a constant bias term b0, a random walk bias term b1, and a wideband noise term w.
A first-order Markov model can be used to show the random walk bias. τ is the time constant and wb
is the wideband noise. Besides, due to the earth’s rotation, the gyroscope would also sense the angular
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speed
[ .
ϕe

.
θe

.
ψe

]T
, and this part should be removed to estimate attitude. The gyroscope model is

given by Equations (33) and (34):
.
ϕs =

.
ϕr + bϕ0 + bϕ1 +

.
ϕe + wϕ.

θs =
.
θr + bθ0 + bθ1 +

.
θe + wθ.

ψs =
.
ψr + bψ0 + bψ1 +

.
ψe + wψ

(33)


.
bϕ1 = − 1

τϕ1
bϕ1 + wbϕ1

.
bθ1 = − 1

τθ1
bθ1 + wbθ1

.
bψ1 = − 1

τψ1
bψ1 + wbψ1

(34)

where the subscript s means the measurement of the sensor, the subscript r means the real measurement,
and the superscript ·means the derivative of the variable:

.
ϕe.
θe.
ψe

 =


cosψ cosθ − sinψ cosϕ+ cosψ sinθ sinϕ sinψ sinϕ+ cosψ sinθ cosϕ
sinψ cosθ cosψ cosϕ+ sinψ sinθ sinϕ − cosψ sinϕ+ sinψ sinθ cosϕ
− sinθ cosθ sinϕ cosθ cosϕ


T

0
ωie cos L
ωie sin L

 (35)


.
ϕe.
θe.
ψe

 =


cosψ sinψ 0
− sinψ cosψ 0

0 0 1




0
ωie cos L
ωie sin L

 (36)

where ωie is the rotation speed of the Earth and L is the latitude of the vehicle. Equation (35) shows
how to compute the angular speed in vehicle coordinates.

3.2.2. Attitude Dynamics

Since the simple form of Euler angle, in this paper, we chose the Euler angle as the representation
of attitude. In Euler angle representation, we can involve the sensor bias in the state variable directly
without further transformation compared with quaternion representation. The rotation sequence is
Z-Y-X. Rotating about each axle, we have yaw, pitch, and roll angle, respectively. Then the dynamics
of the Euler angle are given by Equation (37):

.
ϕ
.
θ
.
ψ

 =


1 sinϕ tanθ cosϕ tanθ
0 cosϕ − sinϕ
0 sinϕ/ cosθ cosϕ/ cosθ




.
ϕr.
θr.
ψr

 (37)

3.2.3. Attitude Estimator

For the attitude estimation, we applied the IAE-based Kalman filter. The state variable we used

here contains
[
ϕ θ ψ bϕ1 bθ1 bψ1

]T
and the measurement variable is

[
ϕm θm ψm

]
. The

attitude dynamics can be described by Equation (38):

.
x(t) = f (x(t)) + Γ(x(t))ξ(t) (38)
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where x(t) =
[
ϕ θ ψ bϕ1 bθ1 bψ1

]T
, ξ(t) =

[
wϕ wθ wψ wbϕ1 wbθ1 wbψ1

]T
,

f (x(t)) =



.
ϕs − (bϕ0 + bϕ1) + sinϕ tanθ

( .
θs − (bθ0 + bθ1

)
+ cosϕ tanθ

( .
ψs − (bψ0 + bψ1)

)
cosϕ

( .
θs − (bθ0 + bθ1)

)
− sinϕ

( .
ψs − (bψ0 + bψ1)

)
sinϕ/ cosθ

( .
θs − (bθ0 + bθ1)

)
+ cosϕ/ cosθ

( .
ψs − (bψ0 + bψ1)

)
−

1
τϕ1

bϕ1

−
1
τθ1

bθ1

−
1
τψ1

bψ1


, and

Γ(x(t)) =



−1 − sinϕ tanθ − cosϕ tanθ 0 0 0
0 − cosϕ sinϕ 0 0 0
0 − sinϕ/ cosθ − cosϕ/ cosθ 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

The model in Equation (38) is a nonlinear system, the EKF should be adopted [13]. The first step
of the EKF is to compute the predicted state by Equation (39):

xk|k−1 ≈ f (x̂k) 4 t + x̂k (39)

Then in order to compute the state transition matrix, the system should be linearized. After
the linearization given by Equation (40), the rest procedures of the EKF and KF are the same. The
IAE-based Kalman filter is also implemented:

.
xk ≈ f (x̂k) +

∂ f (x̂k)
∂x̂k
· (xk − x̂k)

=
∂ f (x̂k)
∂x̂k
· xk +

[
f (x̂k) −

∂ f (x̂k)
∂x̂k
· x̂k

] (40)

The system matrix is given by Equation (41):

A =
∂ f (x)
∂x

=

[
A11 A12

A21 A22

]
(41)

where:

A11 =


cosϕ tanθ

( .
θs − bθ1

)
− sinϕ tanθ

( .
ψs − bψ1

) sinϕ
cos2 θ

( .
θs − bθ1

)
+

cosϕ
cos2 θ

( .
ψs − bψ1

)
0

− sinϕ
( .
θs − bθ1

)
− cosϕ

( .
ψs − bψ1

)
0 0

cosϕ
cosθ

( .
θs − bθ1

)
−

sinϕ
cosθ

( .
ψs − bψ1

) sinϕ sinθ
cos2 θ

( .
θs − bθ1

)
+

cosϕ sinθ
cos2 θ

( .
ψs − bψ1

)
0

,

and A12 =


−1 − sinϕ tanθ − cosϕ tanθ
0 − cosϕ sinϕ
0 − sinϕ/ cosθ − cosϕ/ cosθ

, A21 =


0 0 0
0 0 0
0 0 0

, A22 =


−

1
τϕ1

0 0

0 −
1
τθ1

0
0 0 −

1
τψ1

.
The measurement equation is


ϕ̂VD

θ̂VD

ψ̂GNSS

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





ϕ
θ
ψ

bϕ1

bθ1

bψ1


+ η (42)

where ψ̂GNSS is the heading angle from the GNSS receiver.
Then, with system matrix Equation (38) and measurement Equation (42), the IAE-based Kalman

filter is used to estimate the attitude.
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Remarks: As stated before, under critical driving conditions, the roll and pitch angles estimated
from the vehicle dynamics lose fidelity and FlagF_vx_VD

and FlagF_vy_VD
are set. At this time, the feedback

term should be cut off and the IMU-based attitude estimator turns to open loop integration mode.

3.3. IMU-Based Velocity Estimation

In this section, based on the triaxle accelerometer and the velocity estimated from the vehicle
dynamics, we design the velocity estimator using the IAE-based Kalman filter.

3.3.1. Accelerometer Sensor Model

Similar to the gyroscope sensor model, the accelerometer sensor model is given by Equations (43)
and (44): 

axs = axr + bx0 + bx1 + wax

ays = ayr + by0 + by1 + way

azs = azr + bz0 + bz1 + waz

(43)


.
bx1 = − 1

τx1
bx1 + wbx1.

by1 = − 1
τy1

by1 + wby1
.
bz1 = − 1

τz1
bz1 + wbz1

(44)

3.3.2. Velocity Dynamics

The dynamics of velocity in the vehicle body frame are given by Equation (45):
.
vx
.
vy
.
vz

 =


axr

ayr

azr

−


0 −
.
ψr

.
θr.

ψr 0 −
.
ϕr

−

.
θr

.
ϕr 0




vx

vy

vz

−

−g sinθ

g sinϕ cosθ
g cosϕ cosθ

 (45)

3.3.3. Velocity Estimator

Since the vertical velocity is usually small under normal driving conditions, referring to the
first-order Markov model, a damping term − 1

τdamp
· vz is involved in the dynamics of vertical velocity in

case of divergence. Therefore, the dynamics of velocity are changed to Equation (46):



.
vx
.
vy
.
vz.
bx1.
by1.
bz1


=



0
.
ψs −

.
θs −1 0 0

−
.
ψs 0

.
ϕs 0 −1 0

.
θs −

.
ϕs −

1
τdamp

0 0 −1

0 0 0 −
1
τx1

0 0
0 0 0 0 −

1
τy1

0

0 0 0 0 0 −
1
τz1





vx

vy

vz

bx1

by1

bz1



+



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





(axs − bx0) + g sin θ̂(
ays − by0

)
− g sin ϕ̂ cos θ̂

(azs − bz0) − g cos ϕ̂ cos θ̂
0
0
0


+



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





wax

way

waz

wbx1

wby1

wbz1



(46)

where the state variable is x =
[

vx vy vz bx1 by1 bz1
]T

, input is[
(axs − bx0) + g sin θ̂

(
ays − by0

)
− g sin ϕ̂ cos θ̂ (azs − bz0) − g cos ϕ̂ cos θ̂ 0 0 0

]T
, and noise is[

wax way waz wbx1 wby1 wbz1

]T
.
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The measurement is given by Equation (47):

[
vx_VD

vy_VD

]
=

[
1 0 0 0 0 0
0 1 0 0 0 0

]


vx

vy

vz

bx1

by1

bz1


+ η (47)

Then, with system matrix Equation (46) and measurement Equation (47), the IAE-based Kalman
filter is used to estimate the velocity.

As stated before, under critical driving conditions, the longitudinal and lateral velocity estimated
from the vehicle dynamics lose fidelity and FlagF_vx_VD

and FlagF_vy_VD
are set. At this time, the feedback

term should be cut off and the IMU-based velocity estimator turns to open loop integration mode.

3.4. Attitude and Velocity Predictor

From Section 3.2, there is a time delay in Flagvx_VD
and Flagvy_VD

, which are the indicators to
insulate the IMU-based estimator from abnormal feedback from the VDM-based estimator. Therefore,
we propose FlagF_vx_VD

and FlagF_vy_VD
to extend the time scale. When the IMU-based estimator is

delayed to t − τ moment, FlagF_vx_VD
and FlagF_vy_VD

precede the delayed estimator to set up when
the vehicle is under critical maneuvers, then a predictor is adopted to move the estimator at t− τ to t
moment. This process is shown in Figure 7.
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At t moment, the systems from Sections 3.2–3.4 for the estimator design can be abstracted by
Equation (48), and the corresponding estimator is designed for estimation x̂τ(t) for t− τ moment.

.
x(t− τ) = f (x(t− τ), u(t− τ)) + w(t− τ)
z(t− τ) = h(x(t− τ)) + η(t− τ)

(48)

x̂τ(t) is the estimated result for t− τ moment at t moment. In real-time application, we should
reserve a buffer to store the sensor data from t− τ to t for the predictor.

With x̂τ(t) (refer to Ref. [33]), a predictor is designed to predict x̂(t) based on the present u(t) and
system model. The predictor is described by Equations (49) and (50):

.
δ(t) = f (x̂τ(t) + δ(t) − δ(t− τ), u(t)), t ≥ τ (49)

x̂(t) = x̂τ(t) + δ(t) − δ(t− τ), t ≥ τ (50)

where the dynamics of δ(t) are the same as the corresponding system in Equation (48) and are driven
by x̂τ(t) and u(t) with δ(t), x̂(t) predicted by Equation (50).

Within this delayed observer and predictor structure, the estimation error of the predictor is stable,
and the proof of estimation error stability of the predictor is shown in Appendix A.

4. Results and Discussion

This section shows the experimental implementation and results.
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4.1. Experimental Implementation

Figures 8 and 9 show the details of hardware implementation for this paper. The Novatel 718D
receiver records the trajectory of the vehicle in 10 Hz and the ADIS 16495 provides the acceleration
and angular speed and its increment in 100 Hz. The steering wheel angle, steering wheel angular
speed, and wheel speed are acquired from the On-Board Diagnostics (OBD) port in the test vehicle
in 50 Hz. The reference attitude, including roll angle, pitch angle, and velocity in longitudinal and
lateral directions, are measured by the Kistler S-Motion in 50 Hz. All information is collected by the NI
CompactRIO 9082 through a CAN bus and the data acquisition system is programmed by Labview
2013. MatLab/Simulink 2012a running on the computer is used to run the proposed method offline in
100 Hz.Sensors 2019, 19, x FOR PEER REVIEW 18 of 29 
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Figure 9. Hardware implementation: (a) test vehicle and part of equipment; (b) GNSS receiver and IMU.

4.2. Expeimental Results

Double lane change (DLC) and slalom maneuvers under large lateral excitation were performed to
validate the proposed estimation method. Large lateral excitation means lateral acceleration between 6
and 8 m/s2.

4.2.1. DLC Maneuver

Figure 10 shows the test results of the proposed method with the DLC maneuver. In the legend,
late means lateral and longi means longitudinal; Delayed means the estimated result of x̂τ(t), Predicted
means the estimation result of x̂(t) at the present moment, S-Motion is the measurement result from
the Kistler S-Motion, and VD is the estimation result from the VDM-based estimator. Longi Delayed
and Longi in the flag figure mean FlagF_vx_VD

and Flagvx_VD
, respectively. Late Delayed and Late in the

flag figure mean FlagF_vy_VD
and Flagvy_VD

, respectively. ‘deg’ means degree.
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4.2.2. Slalom Maneuver

Figure 11 shows the test results of the proposed method with the slalom maneuver.
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4.3. Discussion

Figures 10 and 11 show the DLC and slalom maneuver test results. Figures 10a and 11a show
the vehicle trajectory. In those two maneuvers, the vehicle was driven violently with the steering
wheel angular speed over 500◦/s. The peak lateral acceleration reached 8 m/s2, which is nearly the road
friction limit. Because the attitude from VDM-based estimators was very noise, which would affect the
expression of the test results, the cyan line was only given in Figure 10f,g. In Figure 11, some of the
important results were given compared with Figure 10. Tables 1 and 2 show the absolute estimation
errors in each maneuver. As for roll angle and slip angle, we select four peak points to compute the
absolute estimation errors and averaged error. As for the pitch angle and longitudinal velocity, we
randomly select four points to compute the absolute estimation errors and averaged error because
under critical steering conditions, the dynamics in longitudinal direction is small. Tables 3 and 4 show
the root mean square errors in each maneuver.

Table 1. Absolute estimation errors during critical steering in DLC maneuver. “Ave” means averaged
estimation error. “P” means point.

Proposed Method Vehicle Dynamics

P1 P2 P3 P4 Ave P1 P2 P3 P4 Ave

Roll angle (deg) 0.05 0.04 0.02 0.1 0.05 – – – – –
Pitch angle (deg) 0.05 0.26 0.2 0.25 0.19 – – – – –

Longi velocity (m/s) 0.11 0.02 0.06 0.15 0.09 0.05 0.08 0.01 0.02 0.04
Slip angle (deg) 0.01 0.21 0.15 0.02 0.10 0.91 0.65 0.42 0.45 0.61
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Table 2. Absolute estimation errors during critical steering in slalom maneuver.

Proposed Method Vehicle Dynamics

P1 P2 P3 P4 Ave P1 P2 P3 P4 Ave

Roll angle (deg) 0.09 0.01 0.02 0.07 0.05 – – – – –
Pitch angle (deg) 0.05 0.14 0.09 0.43 0.18 – – – – –

Longi velocity (m/s) 0.08 0.02 0.04 0.13 0.07 0.04 0.07 0.07 0.03 0.05
Slip angle (deg) 0.5 0.05 0.25 0.14 0.24 1.48 0.58 0.51 0.17 0.69

Table 3. Root mean square (RMS) of estimation errors in DLC maneuver.

Proposed Method Vehicle Dynamics

Roll angle (deg) 0.114 –
Pitch angle (deg) 0.168 –

Longi velocity (m/s) 0.054 0.032
Slip angle (deg) 0.069 0.176

Table 4. RMS of estimation errors in slalom maneuver.

Proposed Method Vehicle Dynamics

Roll angle (deg) 0.089 –
Pitch angle (deg) 0.181 –

Longi velocity (m/s) 0.05 0.03
Slip angle (deg) 0.100 0.291

During the dramatic steering process, the vehicle body rotated fast with peak roll angle over 5◦.
Aided by the VDM-based estimator in normal driving conditions, the IMU-based attitude estimator
could maintain a good state with roll angle estimation error smaller than 0.1◦ even without aid for
a short time during the dramatic steering. The estimation error for pitch angle was below 0.5◦ in
the total test process. The IAE-based Kalman filter for attitude estimation eliminated large noise, as
shown by the green curves in Figure 10f,g. This is significant for the application from the control
perspective. On the other hand, since the main error source of IMU-based estimator is the bias error,
this accumulated error will not grow fast and in order to obtain the smooth estimation result, usually
we set the noise covariance as a large initial value to reduce the weight of the measurement from
VDM-based attitude estimators. Also the R̂i

min in Equation (22) is set as large value. From Figure 10f,
we see that the cyan line which is the roll angle estimation result as the feedback for the IMU-based
attitude estimation result was very noise. Thanks to the large noise covariance, the red line follows the
cyan line smoothly in the partial enlarged detail of roll angle in Figure 10g. The convergence time is
near 2 s from 0.82◦ to 0.8◦ from 104 s to 106 s. The averaged estimation error of roll angle was smaller
than 0.1◦ and the RMS error of roll angle was smaller than 0.15◦. The averaged estimation error of
pitch angle was smaller than 0.2◦ and the RMS error of pitch angle was smaller than 0.2◦.

In normal driving conditions, the precise longitudinal and lateral velocity from the VDM-based
estimator can be used as feedback to correct the IMU-based velocity estimator. This correction
would remove the accumulated error in the IMU-based velocity estimator. From Figure 10j,k and
Figure 11e, the velocity estimated by the proposed method can follow the velocity from the VDM-based
estimator smoothly and without accumulated error. When the driver steered fast, the feedback to the
lateral velocity was cut off if the flag in Figures 10i and 11e was set. Then the slip angle shown in
Figures 10k and 11e was integrated in open loop integration mode. Thanks to the accurate attitude
estimation result compensating the gravity component, the slip angle did not diverge over a short time.
The maximum slip angle estimation error was less than 0.25◦ and the estimation precision reached 90%,
which was much higher than that of the VDM-based estimator. This proved the idea in this paper that
the VDM-based estimator would contribute bad information if we still injected it into the IMU-based
estimator. Compared with lateral velocity, the precision of longitudinal velocity was higher because
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the tire slip ratio in the longitudinal direction was small, and it was over 95%. From Tables 1 and 3,
the averaged estimation error of longitudinal velocity was smaller than 0.1 m/s and the RMS error of
longitudinal velocity was also smaller than 0.1 m/s from Tables 2 and 4. The averaged estimation error
of slip angle was smaller than 0.25◦ and the RMS error of slip angle was smaller than 0.1◦, which was
better than the slip angle from VDM-based estimator.

The novel feedback strategy in Sections 3.2.2 and 3.2.3 can generally detect critical driving
conditions. Since the rules were established on the assumption that the vehicle had already entered into
the critical situation, the detecting flag introduced a time delay to cut off the feedback. We proposed
Equations (14) and (32) to extend the time domain of the critical driving condition as the blue and cyan
curves shown in Figures 10i and 11e, and in the meantime, we delayed all input and output to realize
synchronization for a short time to make the flag setting precede the critical condition. Then we used
the predictors to move the past state x̂τ(t) to the current time, as shown by the predicted curves in
Figures 10f–k and 11b–e, compared with the delayed curves. This moving process would not involve
large estimation error in the current state, and this proof is theoretically made in Appendix A.

5. Conclusions

In this paper, a novel and autonomous IMU-based vehicle slip angle and attitude estimation
method aided by vehicle dynamics and GNSS is proposed. Three main conclusions can be drawn:

• Better performance has been gained by fusing VDM-based estimators and IMU-based estimators
for slip angle and attitude than each of them. On the one hand, under normal driving conditions,
assistance from VDM-based estimators can eliminate the accumulated error for the IMU–based
slip angle and attitude estimation by the Kalman filter considering the lever arm between the IMU
and rotation center. On the other hand, under critical driving conditions, without the accumulated
error, the IMU-based slip angle and attitude estimation results have higher precision than the
VDM-based estimator results.

• The simultaneous estimation of attitude and velocity keeps the IMU-based estimators in a good
state to prepare for the open loop integration mode when the vehicle enters critical driving
conditions. An accurate attitude guarantees that the acceleration generated by gravity with
changing attitude can be removed correctly. Then, even when the feedback from the VDM-based
estimators is cut off, the estimation results of slip angle and attitude are still accurate for a
short time.

• The delayed estimator and predictor structure can avoid outlier feedback from VDM-based velocity
and attitude estimators for IMU-based slip angle and attitude estimators with rejecting the time
delay in detecting abnormal estimation results from VDM-based estimators. Also, the estimation
error of the delayed estimator and predictor structure has been proved convergence theoretically.

In this paper, the aiding information for IMU-based estimators is obtained from estimators
based on vehicle dynamics. In future work, our team will seek more accurate estimators based on
vehicle dynamics to extend the aid to relatively critical driving conditions considering the nonlinear
characteristics and uncertainty of the vehicle model. Also, when the IMU-based estimators enter the
open loop integration mode under critical conditions, we will involve some external information from
GNSS to correct the accumulated error. Last but not least, we will implement this method online on an
embedded processor such as a DSP 28335.

Author Contributions: Conceptualization, L.X. and X.X.; Funding acquisition, L.X.; Investigation, X.X., W.L.;
Methodology, X.X. and X.L.; Hardware, H.S.; Validation, X.X., W.L., Y.L., L.G., Y.H., and H.S.; Resources, L.X. and
W.L.; Supervision, X.L. and Z.Y.; Writing—original draft, X.X.; Writing—review and editing, X.X. and W.L.

Funding: This research is supported by the National Key Research and Development Program of China (grant no.
2016YFB0100901) and Shanghai Scientific Research Project (grant no. 16DZ1100700).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2019, 19, 1930 24 of 28

Appendix A

Assumption:

• The estimation error of x̂τ(t) is bounded.
• The system is Lipschitz with respect to x, which means there exists a positive constant L ∈ R

such that
∣∣∣ f (x1, u) − f (x2, u)

∣∣∣ ≤ L|x1 − x2| for any x1 ∈ R and x2 ∈ R and any u, where |·| means
Euclidean norm on Rn.

• The delayed time τ is smaller than 1
L and there exists σ such that:

L
eστ − 1
σ

≺ 1 (A1)

Proof:
Define the estimation error e(t) � x̂(t) − x(t), and when t ≥ τ, we also have:

x(t) = x(t− τ) +
∫ t

t−τ
f (x(s), u(s))ds (A2)

x̂(t) = x̂(t− τ) +
∫ t

t−τ f (x̂(s), u(s))ds

= x̂τ(t) +
∫ t

t−τ f (x̂(s), u(s))ds
(A3)

The initial state satisfies Equation (A4):

x(t)
∣∣∣[0, τ] = x̂(t)

∣∣∣[0, τ] � x̂(τ) + δ(τ) − δ(0) (A4)

Subtract Equation (A2) from (A3) and then multiply the result by eσt, we have:

eσt
∣∣∣x̂(t) − x(t)

∣∣∣ ≤ eσt
(∣∣∣x̂τ(t) − x(t− τ)

∣∣∣+ ∫ t

t−τ

∣∣∣ f (x̂(s), u(s)) − f (x(s), u(s))
∣∣∣ds

)
(A5)

With Inequality (A1), we have:

eσt
∣∣∣x̂(t) − x(t)

∣∣∣ ≤ eσt
(∣∣∣x̂τ(t) − x(t− τ)

∣∣∣+ L
∫ t

t−τ

∣∣∣x̂(s) − x(s)
∣∣∣ds

)
(A6)

On the other hand, we get∫ t
t−τ

∣∣∣x̂τ(s) − x(s)
∣∣∣ds =

∫ t
t−τ eσ(s−s)

∣∣∣x̂τ(s) − x(s)
∣∣∣ds

≤ sup
t−τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) · ∫ t

t−τ e−σsds (A7)

However: ∫ t

t−τ
e−σsds = e−σt eστ − 1

σ
· (A8)

Therefore, we have:

sup
t−τ≤s≤t

(
eσs

∣∣∣x̂τ(s) − x(s)
∣∣∣) ·∫ t

t−τ
e−σsds = e−σt eστ − 1

σ
· sup

t−τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) (A9)

With Inequality (A5) and Equation (A9) and e−σt
≺ 1, we will get:

eσt
∣∣∣x̂(t) − x(t)

∣∣∣ ≤ eσt
∣∣∣x̂τ(t) − x(t− τ)

∣∣∣+ L
eστ − 1
σ
· sup

t−τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) (A10)
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When t ≥ τ, taking the supremum over t, we will get:

sup
τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) ≤ sup

τ≤s≤t

(
eσs

∣∣∣x̂τ(s) − x(s− τ)
∣∣∣)+ L

eστ − 1
σ
· sup

0≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) (A11)

Then two cases should be made to analyze the supremum.
(a) The supremum falls in [0, τ].
If Equation (A12) is satisfied, then Inequality (A11) becomes Inequality (A13):

sup
0≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) = sup

0≤s≤τ

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) (A12)

sup
τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) ≤ σ

σ−L(eστ−1) sup
τ≤s≤t

(
eσs

∣∣∣x̂τ(s) − x(s− τ)
∣∣∣)

+ sup
0≤s≤τ

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) (A13)

(b) The supremum falls in [τ, t].
If Equation (A14) is satisfied, then we also have Inequality (A13):

sup
0≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) = sup

τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) (A14)

According to Inequality (A13) and combined with eσt
∣∣∣x̂(t) − x(t)

∣∣∣ ≤ sup
τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣),

multiplying e−σt by Equation (A12), we have:∣∣∣x̂(t) − x(t)
∣∣∣ ≤ e−σt sup

τ≤s≤t

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣)

≤
σ

σ−L(eστ−1) sup
τ≤s≤t

(
eσ(s−t)

∣∣∣x̂τ(s) − x(s− τ)
∣∣∣)+ e−σtsup

0≤s≤τ

(
eσs

∣∣∣x̂(s) − x(s)
∣∣∣) (A15)

Therefore, we get that the estimation error converges to an upper bound given by Inequality (A16):∣∣∣e(t)∣∣∣ ≤ σ

σ− L(eστ − 1)
sup
τ≤s≤t

(
eσ(s−t)e(s− τ)

)
+ e−σtsup

0≤s≤τ
(eσse(s)) (A16)

From Inequality (A16), the first part on the right side is related to τ and the second part is related
to the initial estimation error. There is an attenuation term e−σt in the second part, therefore the second
part would converge to zero over time.

In addition, with Equation (A16) we can draw three conclusions: if the estimation error of x̂τ(t) is
bounded, then e(t) is bounded; if the estimation error of x̂τ(t) is asymptotically convergent, then e(t)
is asymptotically convergent; if the estimation error of x̂τ(t) is exponentially convergent, then e(t) is
exponentially convergent.

(i) e(t) is bounded.
If the estimation error of x̂τ(t) is smaller than δ0 ≥ 0 and t ≥ τ, from Inequality (A16), it is easy to

derive Inequality (A17) with respect to any t ≥ τ:∣∣∣e(t)∣∣∣ ≤ σ

σ− L(eστ − 1)
δ0 + δ1 (A17)

(ii) e(t) is asymptotically convergent.
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If the estimation error of x̂τ(t) satisfies lim
t→∞

e(t− τ) = 0, then for any ςr � 0, there exists Tr such

that, for any t ≥ Tr, we have e(t− τ) ≤ ςr. Thus for any t ≥ Tr, from Inequality (A16), we have
Inequality (A18): ∣∣∣e(t)∣∣∣ ≤ σ

σ−L(eστ−1)ςr sup
τ≤s≤t

(
eσ(s−t)

)
+ e−σt sup

0≤s≤τ
(eσse(s))

≺
σ

σ−L(eστ−1)ςr + e−σt sup
0≤s≤τ

(eσse(s))
(A18)

With specified ς � 0, we can always find ςr small enough and T∗ large enough such that

σ

σ− L(eστ − 1)
ςr + e−σT∗sup

0≤s≤τ
(eσse(s)) (A19)

Therefore, for any t ≥ max(T∗, Tr), we have
∣∣∣e(t)∣∣∣ ≺ ς, which means Equation (A20) holds:

lim
t→∞

e(t) = 0 (A20)

(iii) e(t) is exponentially convergent.
If the estimation error of x̂τ(t) is exponentially convergent, there exist positive κ and χ such that:

e(t− τ) ≤ κ
∣∣∣x̂τ(τ) − x(0)

∣∣∣e−χt (A21)

Then the first part on the right side of Inequality (A16) satisfies Inequality (A22):

sup
τ≤s≤t

(
eσ(s−t)e(s− τ)

)
≤ κ

∣∣∣x̂τ(τ) − x(0)
∣∣∣e−(χ+σ)t · sup

τ≤s≤t
(eσs)

≤ κ
∣∣∣x̂τ(τ) − x(0)

∣∣∣e−χt
(A22)

Substituting Inequality (A21) into Inequality (A16), we have:∣∣∣e(t)∣∣∣ ≤ σ
σ−L(eστ−1)κ

∣∣∣x̂τ(τ) − x(0)
∣∣∣e−χt + e−σt sup

0≤s≤τ
(eσse(s))

≤ κe−χt
(A23)

where χ = min(σ,χ) and κ = σ
σ−L(eστ−1)κ

∣∣∣x̂τ(τ) − x(0)
∣∣∣e(χ−χ)τ + sup

0≤s≤τ
(eσse(s))e((χ−σ)τ).

Thus, if there is a convergent estimation error in x̂τ(t), the estimation error of x̂(t) is also convergent.
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