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Abstract: In aerial images, corner points can be detected to describe the structural information
of buildings for city modeling, geo-localization, and so on. For this specific vision task,
the existing generic corner detectors perform poorly, as they are incapable of distinguishing corner
points on buildings from those on other objects such as trees and shadows. Recently, fully
convolutional networks (FCNs) have been developed for semantic image segmentation that are
able to recognize a designated kind of object through a training process with a manually labeled
dataset. Motivated by this achievement, an FCN-based approach is proposed in the present work
to detect building corners in aerial images. First, a DeepLab model comprised of improved FCNs
and fully-connected conditional random fields (CRFs) is trained end-to-end for building region
segmentation. The segmentation is then further improved by using a morphological opening
operation to increase its accuracy. Corner points are finally detected on the contour curves of building
regions by using a scale-space detector. Experimental results show that the proposed building corner
detection approach achieves an F-measure of 0.83 in the test image set and outperforms a number of
state-of-the-art corner detectors by a large margin.

Keywords: building; corner detection; convolutional networks; semantic segmentation; aerial image;
conditional random fields

1. Introduction

Building corners, one of the most useful types of geometric information, can effectively describe
the structure of buildings in urban areas. They have therefore been widely exploited to solve a number
of tasks including city modeling [1] and geo-localization [2,3], among many others. In this paper,
the problem of building corner detection in aerial images is investigated and an efficient approach is
developed to solve it.

Over the past decades, a number of generic corner detectors have been proposed, which can
be broadly classified into three groups as follows: intensity-based algorithms [4], contour-based
algorithms [5–7], and model-based algorithms [8]. The intensity-based algorithms detect corner points
by checking the change of local gray values in the input image. The contour-based detectors, such as
the curvature scale-space (CSS) algorithm [5], first extract contour curves with an edge detector and
then obtain corner points by searching for curvature maxima along those curves. The model-based
detectors find corners by matching image patches to a set of predefined corner models.

The existing generic detectors are designed to identify corners from normal images. However,
in some kinds of vision tasks, the desired corner points could be defined with task-specific constraints.
In particular, it is observed that the generic detectors are incapable of detecting building corners from
aerial images. The reason is that there exist many disturbances in aerial images, e.g., corners on trees,

Sensors 2019, 19, 1915; doi:10.3390/s19081915 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19081915
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1915 2 of 14

shadows, and road signs. As a result, many false positives could be produced, as demonstrated in
Figure 1. In this work, we will incorporate the concept of semantic image segmentation into the corner
detection process to overcome this difficulty. It will be shown that building corners can be reliably
detected while non-building ones are suppressed. The proposed approach could also be extensively
used, with some changes, to solve other specified corner detection tasks.

(a) (b) ( c)

Figure 1. The problem to be solved in the present work: building corners in aerial images are hard to
identify with existing generic corner detectors. (a) An aerial image for testing. (b) The ground-truth
corner points (manually labeled). (c) Performance of a recently-proposed corner detection algorithm,
the WEAE [9].

The goal of semantic image segmentation is to assign a category label to each pixel in the input
image, that is, to conduct a pixel-level classification of image regions. In recent years, AlexNet [10],
the VGG [11], GoogLeNet [12], and ResNet [13] have significantly promoted the development of
image classification. Based on these achievements, rapid progress in image semantic segmentation has
been inspired by fully convolutional networks (FCNs) [14], in which the last fully-connected layers of
previous well-known classification networks are replaced with convolutional ones.

Although FCN semantic image segmentation delivers a superior performance compared to
traditional methods, there are still several problems. First, its consecutive pooling operations could
abandon pixel-level spatial information and reduce the resolution of image features. For that, a
dilated convolution can be used so that the networks may control the resolution of feature maps
[15,16]. Second, objects at multiple scales require an integration of information from various spatial
scales. One effective approach is to employ the strategy of multi-scale feature fusion. In [17] , it is
suggested to exploit multi-scale inputs by resizing the image at several different scales and then fuse
the features produced from all of the scales. DeepLab [15] uses atrous spatial pyramid pooling, (ASPP),
where side-by-side dilated convolution layers with different rates are used to obtain multi-scale context
information. Another method is to apply a post-processing stage using a conditional random field
(CRF) [15,18]. In this work, we employ DeepLab for building region segmentation since it combines
most of the above-mentioned merits.

The remainder of the paper is organized as follows. DeepLab for semantic image segmentation
is briefly reviewed in Section 2. Our new algorithm for building corner detection is proposed and
investigated in detail in Section 3. Experimental results and discussions are presented in Section 4.
Finally, conclusions are drawn in Section 5.

2. Semantic Image Segmentation with the DeepLab

DeepLab [15] is comprised of two well-known modules, i.e., FCNs and CRFs. For an input image,
its semantic segmentation result is produced by the FCNs, and this is followed by the use of the CRFs
to achieve higher segmentation accuracy.
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2.1. Atrous Convolution

FCNs have been successfully used for semantic image segmentation by deploying networks in
a fully convolutional fashion. To deal with the down-sampling issue of the input image during the
convolution operations in the FCNs, atrous convolution (or dilated convolution) [19] is employed,
by which a given resolution of feature maps can be yielded so that the field-of-view of filters are
enlarged. For a one-dimensional (1-D) input x with a filter w of length K, the atrous convolution is
defined as follows:

y [i] =
K

∑
k=1

x [i + r · k]w [k] , (1)

where r is a rate parameter representing the stride with which the input signal is sampled and y [i]
denotes the output. When r = 1, the atrous convolution degenerates to a standard convolution
operation. For a two-dimensional (2-D) input, the implementation of the atrous convolution operation
is similar to the 1-D case.

Due to a trade-off between efficiency and accuracy, atrous convolution is used in a chain of layers
to increase the final resolution from 1/32 to 1/8 of the original image.

2.2. Multiscale Processing

To enhance the FCNs for capturing both local and global information, multi-scale feature fusion is
used [17]. To be specific, several parallel FCNs (three in this work) are first implemented with the same
parameters to extract feature maps at multiple scales for an input image, and then these feature maps
are fused to improve the segmentation performance. In addition, several parallel atrous convolutional
layers with diverse sampling rates are employed to extract context information in different ranges.
This technique is called atrous spatial pyramid pooling (ASPP).

2.3. Fully Connected Conditional Random Fields

FCNs generate a semantic segmentation result; however, the result is often inaccurate and
therefore cannot precisely predict the borders of objects in the segmentation map. To improve the
segmentation accuracy, the fully connected CRFs model is exploited. Define θi = − log P (xi), where
P (xi) is the label allocation probability at the ith pixel computed by the FCNs. Let θij represent a
quantized relationship between two pixels defined as

θij = µ

{
w1 exp

(
−
∥∥pi − pj

∥∥2

2σ2
α

−
∥∥Ii − Ij

∥∥2

2σ2
β

)
+ w2 exp

(
−
∥∥pi − pj

∥∥2

2σ2
γ

)}
, (2)

where µ equals 1 if xi 6= xj and 0 otherwise. The two terms on the right-hand side of Equation (2) use
two Gaussian kernels in different feature spaces, respectively. The first one takes into account pixel
locations (denoted by p ) as well as RGB color (denoted by I), and the second one only considers pixel
locations. The CRFs model applies an energy function in the form of

E (x) = ∑
i

θi (xi) + ∑
ij

θij
(
xi, xj

)
, (3)

where x is the label allocation for pixels.
By incorporating FCNs, multi-scale processing, and fully connected CRFs, DeepLab is able to

achieve a satisfactory performance.

3. Proposed Algorithm for Building Corner Detection

Our new algorithm for building corner detection mainly contains three steps: building region
segmentation, building contour extraction, and building corner detection, which will be developed
step-by-step and described in detail.
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3.1. Dataset of Aerial Images

The dataset of aerial images used for training (11,700 images of 321 × 321 pixels) and testing
(450 images of 321×321 pixels) is from the Vaihingen dataset for the ISPRS 2D semantic labeling
contest [20]. The Vaihingen dataset contains 33 true orthophoto tiles of high resolution with three
channels (that is, near-infrared, red, and green), and each channel corresponds to a digital surface model
(DSM) derived from dense image-matching techniques. It comprises abundant surface information
with a spatial resolution of 9 cm; however, labeled ground truth is only available for some of the
images (16 labeled images from a total of 33 images). Six surface categories have been annotated in the
dataset, namely, impervious surfaces, buildings, low vegetation, trees, cars, and background.

In our work, the building regions are focused on, and therefore the surface categories defined
in our dataset only include buildings and background. In addition, for a fast implementation of our
developed algorithm, we only pay attention to the common aerial image data and abandon the
additional DSM information. As a result, a new dataset, without DSM, is generated by marking out
building areas from background only. Similar to [21], we further split these 16 newly-produced images
with labeled ground truth into training (including #1, #3, #5, #7, #13, #15, #17, #21, #23, #26, #28,
#32, and #34) and testing images (including #11, #30, and #37). We randomly sample 150 patches
of 321×321 pixels from each training image, and we conduct data augmentation including image
flipping and rotation of 90 degrees, 180 degrees and 270 degrees. In total, 11,700 new and smaller
training images are therefore obtained to determine the FCN parameters which have been pre-trained
on MS-COCO [22]. In the same way, 450 images are also produced for testing. Figure 2 shows two
example images as well as the ground-truth segmentation results for our developed dataset.

(a) (b)

Figure 2. Two example images and the ground-truth segmentation results for our dataset: (a) Test
images; (b) ground-truth building regions by human annotation.

3.2. Building Segmentation

DeepLab based on ResNet-101 [13] is used to generate the initial segmentation of building regions
because of its superior performance. The ResNet-101 model contains a 7 × 7 convolutional layer and
5 residual blocks. Each residual block includes several 3 × 3 or 1 × 1 convolutional layers. The latter
two blocks are re-purposed by atrous convolution, as described previously in Section 2.1. Pre-training
is then conducted on MS-COCO [22]. When training with the 11,700 images in our dataset, 40 K
iterations are implemented, where the batch size is taken to be 1. The base learning rate is set to
2.5× 10−4 and a “poly” learning rate policy is employed. The values of momentum and weight decay
are 0.9 and 5× 10−4, respectively.

Figure 3 illustrates two examples of our testing. The first column of the figure presents the
test images, and the second column shows the ground-truth segmentation. It can be seen from the
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third column that the FCN (DeepLab without CRF) can extract most building regions; however,
the segmentation maps are somewhat blurred and inaccurate. By using the CRF for post-processing,
the boundary edges of buildings become sharper, as shown in the fourth column. Unfortunately, some
segmentation flaws such as spur-like artifacts are still observed, which could incur many false positives
in the subsequent corner detection process.

Image Annotation FCN FCN-CRF FCN-CRF-MOP

Figure 3. Segmentation results of the Fully Convolutional Network (FCN), the FCN with
fully-connected Conditional Random Fields (FCN-CRF), and the DeepLab model with a CRF
post-processing step and the morphological opening operation for flaw removal, denoted as
FCN-CRF-MOP.

The morphological opening operation, which works as a basic tool of morphological noise removal
in computer vision and image processing, is exploited to remove the segmentation flaws produced by
the FCN-CRF, as mentioned above. This operation is defined by

A ◦ B = (A	 B)⊕ B, (4)

where A is the input image, B is a structural element, and 	 and ⊕ denote the morphological erosion
and dilation operations, respectively.

For the experiment demonstrated in Figure 3, the results after using the morphological opening
operation are shown in the last column of the figure. For convenience, the DeepLab model with a CRF
post-processing step and the morphological opening operation (MOP) for flaw removal is denoted
as FCN-CRF-MOP. For an objective evaluation, Table 1 shows a comparison of the above-mentioned
segmentation methods in terms of the Intersection over Union (IoU) metric. One can see that our
model (mean IoU = 93.21%) clearly outperforms the FCN (mean IoU = 92.83%) and FCN-CRF (mean
IoU = 93.16%). This verifies that the flaw removal step using the opening operation can improve the
accuracy of segmentation.

Table 1. A comparison of different segmentation models under mean IoU (Intersection over Union).
The highest result is highlighted in boldface.

Segmentation Method Mean IoU (%)

FCN 92.83

FCN-CRF 93.16

FCN-CRF-MOP (Proposed) 93.21
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For the task of building corners detection, it is of crucial importance that the segmentation method
used can produce enough accuracy along building boundaries. Therefore, the mean IoU within the
trimap region (a narrow band along object boundaries, as defined in [23]) has also been exploited
to evaluate different segmentation methods. For a demonstration, Figure 4 shows the trimaps on
an example image with a width of 5 and 10 pixels. To evaluate our segmentation model, Table 2
documents the mean IoU measured within the trimaps of different widths on all 450 test images.
It is observed that the measured accuracy of each compared method increases as the trimap width
increases (that is, when a less-strict evaluation condition is imposed); however, our proposed model
(i.e., the FCN-CRF-MOP) always outperforms the other two methods. This further verifies that the
opening operation is able to improve the segmentation performance along building boundaries.

(a) (b) (c) (d)

Figure 4. Evaluation of boundary accuracy within trimap regions. (a) Test image; (b) annotation;
(c) the trimap with a width of 5 pixels. (d) the trimap with a width of 10 pixels. The trimap regions for
conducting accuracy evaluation are colored gray and were generated by taking 5 and 10 pixel bands
surrounding the object boundaries, respectively.

According to the objective evaluations of overall regional segmentation and marginal part
segmentation, it can be concluded that our segmentation model can provide higher accuracy for
segmentation than existing models.

Table 2. Mean IoU of the compared methods within the trimap under varying widths. For each used
trimap width, the highest result is highlighted in boldface.

Segmentation Method Trimap Width (Pixels)

5 10 15 20 25 30

FCN 72.59 83.70 88.15 90.50 91.95 92.90
FCN-CRF 74.98 84.91 88.98 91.14 92.46 93.33

FCN-CRF-MOP (Proposed) 75.12 85.00 89.05 91.50 92.50 93.36

3.3. Building Contour Extraction

The Matlab function bwboundaries is used to extract the contour curves from the previously
generated maps of building area segmentation. The parameter CONN in this function, which specifies
the connectivity to use when tracing parent and child boundaries, is taken to be 8. Since we only need
peripheral contours of buildings, the parameter of the target type is chosen as “noholes”. For each
contour curve, this function returns a set of point coordinates. The set of extracted building contours is
denoted as {Ci|i = [1, N]}, where N is the number of curves and Ci contains m points describing the
ith curve, in the form of Ci =

{
pj :

(
xj, yj

)
|j = 1, 2, ..., m

}
.

For a visual evaluation, Figure 5 presents the contour extraction results of six input aerial images.
For each image, the extracted curves are very close to the labeled ground-truth curves, where different
curves are marked in different colors. One can see that the building boundaries have all been precisely
predicted. This will be very beneficial for conducting corner detection in the subsequent step.
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(a) (b) (c) (d) (e) (f)

Figure 5. Contour curve extraction on 6 aerial images: (a,d) test images; (b,e) ground-truth curves;
(c,f) results generated and used in our corner detection algorithm.

3.4. Building Corner Detection

In generic corner detection, the extraction of contour curves is generally implemented by using
the Canny edge detector. However, to detect corners from aerial images, precise contour extraction
plays a much more important role than in generic corner detection. In fact, as the contour curves of
buildings have been extracted with high accuracy (as shown in Figure 5), the corner detection step
becomes rather easy. In the following, scale-space corner detection is conducted to obtain a reliable
detection performance.

Our corner detection step is similar to the corner detection process proposed in [24], but with a
simpler implementation since the scale-space tree phrasing is omitted (this tree phrasing operation is
used to cope with complex shapes; however, the contour curves of a building are, in general, simple).
Let r(s) = (x(s), y(s)) be the building contour under consideration, where s is the arc-length parameter.
Scale-space corner detection [24] is based on a scale-space representation of the contour curve r(s),
which can be expressed as the solution of a heat equation, as follows:

∂r
∂t

=
1
2

∂2r
∂s2 , (5)

where t the time variable. In the digital case, a contour curve is represented by a set of samples
{(xi, yi) | i ∈ Z} (i using modulo n in the case of a closed curve that has n points) that are equally
spaced with a spacing of ∆s = 1. To conduct a scale-space corner detection, a curve evolution is
performed to generate a scale-space representation of the curve:

xi,m+1 = 0.25xi−1,m + 0.5xi,m + 0.25xi+1,m; (6)

yi,m+1 = 0.25yi−1,m + 0.5yi,m + 0.25yi+1,m, (7)

where m = 0, 1, 2, · · · serves as a scale parameter of the evolution procedure, and
{(xi,0, yi,0)} = {(xi, yi)}. The weightage {0.25, 0.5, 0.25} used above is derived from a discretization of
the heat Equation (5). Then, the curvature of the curve is computed by using a standard curvature
measure for digital curves [24]. To be specific, at the ith point we have

κi,m =
δxi,mδ2yi,m − δ2xi,mδyi,m

{(δxi,m)2 + (δyi,m)2}3/2 , (8)
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where δ and δ2 denote the first-order and second-order central difference operators given by

δ fi,m = 0.5( fi+1,m − fi−1,m);

δ2 fi,m = fi+1,m − 2 fi,m + fi−1,m.

The curvature measure presented above is in compliance with the standard curvature expression
in the continuous case. It is therefore more straightforward than the one proposed by Rattarangsi
and Chin [25]. Finally, corner points are recognized on a coarse scale (m = 400) by performing a
non-maximum suppression on κi,m and then tracked back to the finest scale (m = 0) for location
improvement.

By an incorporation of the corner detection step and the semantic segmentation, a full algorithm
for detecting building corners from aerial images is developed, as demonstrated in Figure 6. The main
steps of the proposed algorithm are outlined below.

ResNet101-Based FCN

Dilated Dilated

Input
Final
Result

MOPCRF

Corner 
detection 

Contour 
extraction 

Figure 6. A global view of our proposed building corner detector.

Step 1. Building region segmentation. With the trained DeepLab model, a building region segmentation
of the input image is conducted using the FCNs (a ResNet-101 re-purposed by atrous
convolution), followed by the exploitation of a CRF step and the morphological opening
operation (MOP) to improve segmentation accuracy.

Step 2. Building contour extraction. The Matlab function bwboundaries is employed to extract the
contour curves on the segmentation map of building regions.

Step 3. Building corner detection. Based on a scale-space representation of each building boundary,
corner points are recognized at a coarse scale and then tracked back to the finest scale to improve
their locations.

4. Experimental Results and Discussions

Ten images are selected for testing from our developed dataset of aerial images, as shown in
Figure 10a. These images contain rich building corner information, as well as a large number of
disturbances generated by trees and shadows. For an objective evaluation, we manually annotated the
ground-truth corners on each test image (highlighted by yellow squares, as shown in Figure 10b).

4.1. Evaluation Metrics

Three evaluation metrics, i.e., the precision, recall, and F-measure, are adopted to evaluate the
performance of corner detection. The precision measures the ability of the used approach to retrieve
corners that are relevant to the ground truth; the recall measures the relevant corners that are actually
detected; and the F-measure is a consolidated metric based on the precision and the recall. These three
evaluation metrics are computed as follows:

Precision =
Nr

Nr + Nw
=

Nr

Nd
, (9)
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Recall =
Nr

Nr + Nm
=

Nr

Ng
, (10)

Fβ =

(
1 + β2) Precision× Recall

β2Precision + Recall
, (11)

where Nr is the number of true corners that have been detected; Nw is the number of false corners that
have been detected; Nd is the total number of all detected corners; Nm is the number of mis-detected
corners; and Ng is the number of ground-truth corners. During evaluation, it is observed that the
recall rate of a generic corner detector is always much higher than its precision rate. To achieve a fair
comparison, we set β = 2 so that the evaluation pays more attention to the recall rate.

4.2. Verification of the FCN-CRF-MOP Model

Our algorithm is developed upon an effective building segmentation approach,
i.e., the FCN-CRF-MOP model as proposed and discussed in Section 3.2. This model is of
crucial importance for the final building corner detection. For verification, corner detection is
conducted on the segmentation results produced with the existing FCN and FCN-CRF models and
our proposed FCN-CRF-MOP model individually. Figure 7 shows a performance comparison of the
three segmentation models with respect to the precision, recall, and F-measure of the detected corners.
While it has been shown in Section 3.2 that the FCN-CRF-MOP model improves the segmentation
accuracy of building regions, one can see from Figure 7 that this model also helps to generate better
corner detection performance when compared with the FCN and FCN-CRF models.

Figure 7. A performance comparison of the existing FCN and FCN-CRF models and our proposed
FCN-CRF-MOP model with respect to corner detection.

4.3. Verification of Our Corner Detection Scheme

Our proposed building corner detector is based on the building segmentation results produced
with a DeepLab model, followed by conducting a scale-space corner detection on the building contours.
We treat this as an effective scheme for solving the building corner detection task. For verification,
a reference algorithm is developed, which skips over the building segmentation step and extracts
building contours directly to conduct corner detection. For the training data set, we use the building
regions defined by human annotation as described in Section 3.1 to generate binary edge maps.
Subsequently, a DeepLab model is trained on the new data set by using the method specified in
Section 3.2. However, no edge information is produced at the testing stage. In fact, the loss function of
the DeepLab is the sum of cross-entropy terms for each spatial position in the Convolutional Neural
Networks (CNN) output map, where all positions and labels are equally weighted in the overall loss
function. When DeepLab is directly used for edge detection, a strong imbalance between edge pixels
and background pixels could cause the edge information be totally neglected.

To overcome the difficulty mentioned above, the existing CNN models usually employ a weighted
loss function to keep a balance between background and edges. The Richer Convolutional Features
(RCF) [26], a typical network of edge detection, is therefore exploited as the basic network for building
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contour detection. In our training process, the resolution of every input image is 321 × 321, and all the
other network parameter settings are taken to be the default values of the RCF. Since each edge map
produced from the RCF is in a probability format, a standard non-maximum suppression (NMS) is
used to transform these into a binary ones for conducting the follow-up corner detection step.

Figure 8 shows the performance of the RCF in building contour extraction. The test images are
shown in the first column, and the ground-truth building contours are shown in the second column.
The outcome of the RCF is presented in the third column, and the binary edge maps produced by
using non-maximum suppression is demonstrated in the fourth column. In the last column, the final
results of curve extraction are presented, which are generated from the binary edge maps with several
necessary operations such as redundant edge removal and adjacent edge merging. One can see that
the reference algorithm is incapable of predicting building contours with high accuracy. To be specific,
the predicted edges could be blurred, fragmented, or mis-detected.

(a) (b) (c) (d) (e)

Figure 8. Building contour extraction in aerial images using the Richer Convolutional Features
(RCF) [26]. (a) Test images; (b) ground-truth building contour curves; (c) RCF edge probability
map; (d) RCF binary edge map; (e) Final results of the RCF.

Through a comparison of the performance of the reference contour extraction approach (as shown
in the last column of Figure 8 and that of our approach (as shown in the last column of Figure 5, it can
be concluded that the corner detection scheme proposed in this work represents a more effective way
of detecting building corners from aerial images.

4.4. Objective Evaluation

The performance of our proposed corner detection algorithm is evaluated and compared with that
of seven state-of-the-art corner detectors, including the ANDD [8], CSS [5], CPDA [27], Fast CPDA [28],
He & Yung [29], GCM [30], and WEAE [9]. Specifically, a reference corner detector, i.e., corner detection
based on the reference contour extraction approach as developed in Section 4.3, is also included for a
comparison with the proposed corner detector. Both detectors share the same corner detection step as
specified in Section 3.4, and a comparison between them will further verify the validity of our corner
detection scheme developed upon the FCNs.

For each of the existing corner detectors under comparison, its parameters are optimized
individually to get the best detection performance, as summarized in Table 3, where the parameter
η denotes the threshold of the discrete curvature individually defined and exploited in every corner
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detector for suppressing redundant corner points (those generated from insignificant image structures
or caused by images noise), and the parameter T = (Tl , Th) specifies the sensitivity threshold of the
Canny edge detector used in building contour extraction. For our detector, the default parameters of
DeepLab suggested in [15] are used to produce the building segmentation, and the structuring element
of the morphological opening operation is chosen to be a disk with a radius of 3.

Table 3. Parameter settings of the compared corner detectors.

Detectors ANDD CPDA CSS Fast CPDA GCM He & Yung WEAE

η 0.2 0.21 – 0.12 0.0095 1.8 146

Tl 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Th 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Figure 9 shows the evaluation results. It is observed that the existing corner detectors all have
rather high recall rates, indicating that they are able to detect most of the building corner points.
Unfortunately, their precision rates are all remarkably low, indicating that a lot of false positives are
generated. As a result, they all have low F-measure values. Our proposed detector generates much
fewer false positives and more true positives simultaneously. In consequence, it delivers the best
results in terms of all of the evaluation metrics and outperforms the existing detectors, as well as the
reference one, by a large margin.

Figure 9. Evaluation results of different corner detectors.

4.5. Subjective Evaluation

For a subjective evaluation, Figure 10 shows a visual comparison of all of the evaluated corner
detectors. The proposed detector produces the greatest number of true positives and shows strong
robustness against disturbances, i.e., corners on other objects such as trees, building shadows,
and roads. More specifically, for the first two test images, all building corner points were detected,
as shown in the first and second rows. In the other cases as shown in the third to fifth rows, only a few
building corner points are mis-detected. Although the other corner detectors under comparison are
also able to detect most building corners, they yield many unwanted corners in non-building areas.
These observations clearly indicate that the proposed corner detector is more suitable for detecting
building corners than the existing detectors and the reference one.

4.6. Computational Complexity

The FCNs model for building segmentation is trained on a GPU (NVIDIA TITAN X), where the
iteration number is taken to be 40,000. This training stage takes about 48 h. In Table 4, the run-times of
different corner detectors are compared. For our new detector, the inference time of DeepLab for every
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aerial image is about 0.45 s, and the subsequent operation to improve its accuracy takes about 0.07 s.
Therefore, the overall running time of our algorithm is 0.52 s per image, on average.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 10. Performance comparison of different corner detectors. (a) Test images; (b) ground-truth
corner points; (c) the ANDD [8]; (d) the CPDA [27]; (e) the CSS [5]; (f) the fast CPDA [28]; (g) the
GCM [30]; (h) the He & Yung [29]; (i) the WEAE [9]; (j) the RCF [26]; (k) the proposed model.

Table 4. A comparison of different detectors in terms of running time (in seconds).

Detectors ANDD CPDA CSS Fast CPDA GCM He & Yung WEAE RCF Proposed

Time (s) 1.03 0.14 0.13 0.04 0.04 0.05 0.06 0.2 0.52

4.7. Discussion

The performance of our proposed corner detector relies on the accuracy of the extracted building
contours. In most scenarios, the contours of buildings can be precisely predicted by using the
FCN-CRF-MOP model developed in Section 3.2, and hence building corners are well detected. On the
other hand, it is occasionally observed that for buildings with a complex structure, the extracted
contours might be blurred (e.g., the third row of Figure 5c). In such a case, a sharp corner can become
rounded and tends to be mis-detected (see the last low of Figure 10k). To cope with this problem,
our future work will investigate in how to preserve the curvature of building contours. A possible way
is to add the curvature values of each labeled building contour to the FCNs so that an edge-preserving
network model can be trained for building contour extraction.

5. Conclusions

In this paper, we proposed an algorithm for detecting building corners in aerial images. The
novelty of our work lies in the fact that an image’s semantic information is incorporated into the corner
detection process by training a DeepLab network. To produce building segmentation results with
high accuracy, a morphological opening operation is used to improve the performance of the network.
Building corners are then reliably detected based on a scale-space representation of building contours.
Both objective and subjective evaluations are conducted, and the results indicate that our proposed
approach outperforms the state-of-the-art corner detectors by a large margin. To be specific, it achieves
an F-measure of 0.83 on the test image set.
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